Title: The Lonely Multiverse of Holographic cosmology

Date: Sep 03, 2008 02:00 PM

URL: http://pirsa.org/08090046

Abstract:

Pirsa: 08090046 Page 1/32

The Lonely Multiverse of Holographic Cosmology

T. Banks, Perimeter Institute Conference on the Multiverse, September 2-4, 2008

Pirsa: 08090046 Page 2/32

The Lonely Multiverse of Holographic Cosmology

T. Banks, Perimeter Institute Conference on the Multiverse, September 2-4, 2008

Pirsa: 08090046 Page 3/32

Holographic Space-Time

- □ Causal Diamond ← → Hilbert Space
- ☐ Maximal Diamond in Intersection: Tensor Factor ② (n; x,y) in ¾(n, x or y)
- x labels a topological spatial lattice
- \square Dim $\mathfrak{H}(\mathbf{n}, \mathbf{x}) = (Dim \mathcal{P})^{\mathbf{n}}$
- □ 9. Pixel Hilbert Space, Representation of $[S_a^I, S_b^J] = \delta_{ab} M^{IJ} \{\chi * \gamma^{\mu} \chi \gamma_{\mu} \chi = 0 \rightarrow = (0,S)\}$
- Pixel = Basis element of finite dimensional (non-abelian) function algebra on holoscreen

Pirsa: 08090046 Page 4/32

Overlapping Causal Diamonds $\leftarrow \rightarrow$ Tensor Factorized Hilbert Spaces

Pirsa: 08090046 Page 5/32

Holographic Space-Time

- □ Causal Diamond ← → Hilbert Space
- ☐ Maximal Diamond in Intersection: Tensor Factor ② (n; x,y) in ¾(n, x or y)
- x labels a topological spatial lattice
- \square Dim $\mathfrak{H}(\mathbf{n}, \mathbf{x}) = (Dim \mathcal{P})^{\mathbf{n}}$
- □ \mathcal{G} . Pixel Hilbert Space, Representation of $[S_a^I, S_b^J] = \delta_{ab} M^{IJ} \{\chi * \gamma^{\mu} \chi \gamma_{\mu} \chi = 0 \rightarrow = (0,S)\}$
- Pixel = Basis element of finite dimensional (non-abelian) function algebra on holoscreen

Pirsa: 08090046 Page 6/32

Overlapping Causal Diamonds $\leftarrow \rightarrow$ Tensor Factorized Hilbert Spaces

Pirsa: 08090046 Page 7/32

A Quantum Space-Time Is A Spatial Lattice Of Overlapping Nested Sequences of Causal Diamond⁹⁵

Holographic Cosmology

- Dense Black Hole Fluid (DBHF): an explicit quantum model, which satisfies consistency conditions of holographic space time and gives rise to scaling laws of p=ρ, flat FRW universe in the large area limit (TB, Fischler, Mannelli)
- □ TB, Fischler: Heuristic model of our universe as a low entropy defect in DBHF

Pirsa: 08090046 Page 10/32

Pirsa: 08090046 Page 11/32

Properties of the DBHF Defect Model:

- Transition to dilute BH gas
- Sets up initial conditions for inflation
- Solves homogeneity, isotropy, flatness problems w/o inflation – only ~ 20 e-folds necessary to explain correlations in CMB
- Possible explanation for low entropy beginning but no quantitative calculation of initial fluctuation amplitude
- Another source of scale invariant fluctuations

Pirsa: 08090046 Page 12/32

Properties of the DBHF Defect Model:

- Transition to dilute BH gas
- Sets up initial conditions for inflation
- Solves homogeneity, isotropy, flatness problems w/o inflation – only ~ 20 e-folds necessary to explain correlations in CMB
- Possible explanation for low entropy beginning but no quantitative calculation of initial fluctuation amplitude
- Another source of scale invariant fluctuations

Pirsa: 08090046 Page 14/32

Holographic Cosmology

- Dense Black Hole Fluid (DBHF): an explicit quantum model, which satisfies consistency conditions of holographic space time and gives rise to scaling laws of p=ρ, flat FRW universe in the large area limit (TB, Fischler, Mannelli)
- □ TB, Fischler: Heuristic model of our universe as a low entropy defect in DBHF

Pirsa: 08090046 Page 15/32

Pirsa: 08090046 Page 16/32

Properties of the DBHF Defect Model:

- Transition to dilute BH gas
- Sets up initial conditions for inflation
- Solves homogeneity, isotropy, flatness problems w/o inflation – only ~ 20 e-folds necessary to explain correlations in CMB
- Possible explanation for low entropy beginning but no quantitative calculation of initial fluctuation amplitude
- Another source of scale invariant fluctuations

Pirsa: 08090046 Page 17/32

Properties of the DBHF Defect Model:

- Transition to dilute BH gas
- Sets up initial conditions for inflation
- Solves homogeneity, isotropy, flatness problems w/o inflation – only ~ 20 e-folds necessary to explain correlations in CMB
- Possible explanation for low entropy beginning but no quantitative calculation of initial fluctuation amplitude
- Another source of scale invariant fluctuations

Pirsa: 08090046 Page 19/32

Pirsa: 08090046 Page 20/32

Properties of the DBHF Defect Model:

- Transition to dilute BH gas
- Sets up initial conditions for inflation
- Solves homogeneity, isotropy, flatness problems w/o inflation – only ~ 20 e-folds necessary to explain correlations in CMB
- Possible explanation for low entropy beginning but no quantitative calculation of initial fluctuation amplitude
- Another source of scale invariant fluctuations

Pirsa: 08090046 Page 21/32

For the present purpose:

- Most important property of DBHF defect model is that the universe MUST evolve to asymptotically de Sitter future.
- Asymptotic future c.c. determined by initial conditions (local number of states not in DBHF):
- A multiverse of lonely universes with range of possible c.c.'s: sprinkling of marginally trapped surfaces in p=ρ background do not meet and join
- Other parameters of low energy physics may NOT be random, if theory of stable low c.c. dS relatively unique.

Pirsa: 08090046 Page 22/32

More lessons from the holographic universe:

- Field theory is a good approximation only inside a large causal diamond in a normal universe
- Particles: isolated excited pixels on the screen of a "normal" causal diamond.
- Field theory is NOT a good approximation in the very early universe, even when ρ << m_p⁴
- Only valid after transition to normal universe and in situations where it does not predict formation of event horizons with size > or = the particle horizon

Pirsa: 08090046 Page 23/32

Rough criterion for validity of field theory

- □ Variables on holoscreen N X M matrices M ~ N
- When dynamics couples only N^{3/2} block diagonal matrices, we get permutation statistics = particles
- More d.o.f. coupled = "Black Hole"

Pirsa: 08090046 Page 24/32

Stable dS space

- C.C. in 4d Planck units determines total number of states. Division between internal excitations and particles in dS space depends on size of representation of single pixel algebra
- □ Limit of zero c.c. should be describable by SUGRA with fine tuned W₀. Asymptotic SUSic region of field space NOT allowed: dS would be meta-stable.
- \square Limit should have R symmetry and W = 0.
- No known examples > some evidence that such systems are rare or unique.

Pirsa: 08090046 Page 25/32

Meta-stability

- For general potential, lowest dS minimum is unstable if either:
- There is a V = 0 region, possibly at infinity, or
- \square The $\Lambda=0$ limit is unstable
- □ Roughly ½ of potentials with no V = 0 points have stable dS. In particular, all those which become SUSic as A→ 0
- For these, CDL transitions to V < 0 region have probability ~ e^{-Entropy}, and are interpreted as temporary sojourns in low entropy state.

Pirsa: 08090046 Page 26/32

Conclusions

- Holographic cosmology gives a plausible account of the beginning of the universe, including a possible explanation of initial conditions.
- Sets up conditions for inflation, but needs much less inflation to explain cosmological puzzles (only scale and possibly structure of CMB fluctuations).
- Predicts asymptotic dS universe with c.c. determined by initial conditions – the lonely multiverse
- Other parameters of low energy physics may be highly constrained by as yet incomplete theory of stable dS space.
- Many field theoretic prejudices are not true in this framework

Pirsa: 08090046 Page 27/32

More lessons from the holographic universe:

- Field theory is a good approximation only inside a large causal diamond in a normal universe
- Particles: isolated excited pixels on the screen of a "normal" causal diamond.
- Field theory is NOT a good approximation in the very early universe, even when ρ << m_p⁴
- Only valid after transition to normal universe and in situations where it does not predict formation of event horizons with size > or = the particle horizon

Pirsa: 08090046 Page 28/32

For the present purpose:

- Most important property of DBHF defect model is that the universe MUST evolve to asymptotically de Sitter future.
- Asymptotic future c.c. determined by initial conditions (local number of states not in DBHF):
- A multiverse of lonely universes with range of possible c.c.'s: sprinkling of marginally trapped surfaces in p=ρ background do not meet and join
- Other parameters of low energy physics may NOT be random, if theory of stable low c.c. dS relatively unique.

Pirsa: 08090046 Page 29/32

More lessons from the holographic universe:

- Field theory is a good approximation only inside a large causal diamond in a normal universe
- Particles: isolated excited pixels on the screen of a "normal" causal diamond.
- Field theory is NOT a good approximation in the very early universe, even when ρ << m_p⁴
- Only valid after transition to normal universe and in situations where it does not predict formation of event horizons with size > or = the particle horizon

Pirsa: 08090046 Page 30/32

Rough criterion for validity of field theory

- □ Variables on holoscreen N X M matrices M ~ N
- When dynamics couples only N^{3/2} block diagonal matrices, we get permutation statistics = particles
- More d.o.f. coupled = "Black Hole"

Pirsa: 08090046 Page 31/32

Conclusions

- Holographic cosmology gives a plausible account of the beginning of the universe, including a possible explanation of initial conditions.
- Sets up conditions for inflation, but needs much less inflation to explain cosmological puzzles (only scale and possibly structure of CMB fluctuations).
- Predicts asymptotic dS universe with c.c. determined by initial conditions – the lonely multiverse
- Other parameters of low energy physics may be highly constrained by as yet incomplete theory of stable dS space.
- Many field theoretic prejudices are not true in this framework

Pirsa: 08090046 Page 32/32