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A New Challenge for Science:
QM + the Large Multiverse

We would like to discriminate between theories by
whether they predict the data we observe.

What we know about our data is that the universe
exhibits at least one instance of it

But in a very large universe the probability that any
data occur at least once somewhere approaches one if
by no other mechanism than quantum fluctuations for
a wide class of theories.

) YVe can’t discriminate between such theories by data
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Boltzmann Brains

*A spatially closed universe lasting an
infinite time.

*A very small probability per unit four
volume that a brain will fluctuate into
existence for a short time. A

*Since the volume is infinite the g
probability is one that there are a infinite
number of such brains.

If we are typical in the class of such
observers then we are much more likely
to have fluctuated into existence a

moment ago than to have had 3.7 Gyr < spce —>
of history.
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Boltzmann Brains

*A spatially closed universe lasting an
infinite time. l

*A very small probability per unit four ; &

.yolume.that.a.brain will fluctuate into
e ey RSO S SR L A @ .?

January 15. 2008

Big Brain Theory: Have Cosmologists Lost Theirs?
By DENNIS OVERBYE

Correction Appended

It could be the weirdest and most embarrassing prediction in the history of cosmology. if not
science.

—_—
If true, it would mean that vou vourself reading this article are more likely to be some momentary >

fluctuation in a field of matter and energy out in space than a person with a real past born
thisu@PMlions of vears of evolution in an orderly star-spangled cosmos. Your memories and the PE= T
warld vou think vou =ee around vou are illusions.



The dangers of typicality arguments

® |s there intelligent life on
Jupiter?

® No, there can’t be
because, since Jupiter is
larger, there would be
many more Jovians than
Humans and then we
would not be typical
observers in the solar
system.
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Homilies

® We have no data on extraterrestrial observers and
therefore no evidence for an assumption that we are
typical in any class that contains them.

® There is no evidence that we are unique in the
universe and have been randomly selected by any
physical process and should not reason as though we
were. To do so risks conflict with the likely situation
that our data are duplicated in a large universe.

® We are physical systems within the universe and the

route to clarity is to make statements that refer to us
in terms of our physical description.
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Duplication of Data

We are typical by definition in the class
of systems that have exactly the same
data we do. The class in which every
scrap of information we have about the
universe is the same, every astronomical
observation, every detail of every leaf,
and every part of the description of
ourselves.

Duplication is the only reliable typicality.

irsa: 08090044
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Duplication of Data

We are typical by definition in the class A
of systems that have exactly the same

data we do. The class in which every

scrap of information we have about the
universe is the same, every astronomical 1\
observation, every detail of every leaf, ="
and every part of the description of
ourselves.

Duplication is the only reliable typicality.

BB’s redux: There are an infinite
number of BB’s that have our data and | J
we are more likely to be one of them. <- Space —>

PPPPP : 08090044



Bayesian Framework

Theories {Ta}: to be discriminated.

Data D: every piece of information the human scientific
IGUS has about the universe including a physical
description of itself. (Facts.)

Likelihoods p(D|Ta): assumed to be calculable. (Logical
deduction.)

Priors p(Ta): (Prejudices)

Bayes Formula:

p(Ta|D) = P(D|Ta)p(Ta)

> 4P(D|Ta)p(Ta)
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Duplication of Data

We are typical by definition in the class A
of systems that have exactly the same

data we do. The class in which every

scrap of information we have about the
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Bayesian Framework

Theories {Ta}: to be discriminated.

Data D: every piece of information the human scientific
IGUS has about the universe including a physical
description of itself. (Facts.)

Likelihoods p(D|Ta): assumed to be calculable. (Logical
deduction.)

Priors p(Ta): (Prejudices)

Bayes Formula:

p(T4|D) = PPITa)p(Ta)

> 4 P(D|Ta)p(Ta)
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All we know from our data is that the
universe exhibits one instance of it.

The relevant likelihoods for the
Bayes procedure are
p(at least one instance of D|TAa)

Pirsa: 08090044




Inferences from Bayes Procedure

® Theories are tested using our data D. What other
observers with different data might see, how many of
them there are, and what properties they might share
with us are irrelevant for this process.

® No additional assumption of typicality is needed if we
use the probabilities given by the fundamental theory.

® Two theories that predict equal probabilities that there
is at least one instance of our data somewhere are not
distinguished by the Bayesian process. A significant
probability for further copies does not change the
probability that there is at least one instance.
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The Red/Blue Model

® A universe consisting of N boxes. The boxes are either

red (R) or blue (B).There is a probability pe that there
is an observing system (IGUS) exists in each box.We

are one.

® Two theories are proposed'

RTRTRTRT

A |

RL__ l i , Z 30
R | ' !

R 1°5 l HEHE

We exist (E) in one box and see red (R).
Which theory does this data (R,E) favor?
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Red/Blue Likelihoods
Ngr(T) = (# red boxes in theory T) < N

p(R,E|T) =1 — (prob of no boxes with (R, E))
p(R,E|IT)=1— (1 —pg)Vr@

p(D|Ta)p(Ta)

p(TalD) = 2 aP(D|Ta)p(Ta)

With equal priors the posteriors are

p(T|R.E) x1— (1 — pg)VE(T)
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Limiting Cases of Red

/Blue Model

AR{

| |

pr

R

R RIRIR|IR
Ig % 1

(T|R, E) x1— (1—pg)"="

SR

e pe~1. p(T|R.E) =1 for both theories ---

no discrimination. (we are not

o pr < 1/N (weare rare):

rare).

p(T|R,E) < Nr(T)pE

This is the same as if we were unique in the
universe but didn’t know what box we were in.

o\ R S favored, discrimination.



Infinite Red/Blue Model

AR [RTRTR[R|R[R|R[R]

J b E : Ngr(T) 1 121 12| L EE
(T|R, E) x1—(1—pE) | | I
Rls|elrlriB[B]|RB

R gl 1sh | isi |

In the limit NR(T) — OC, P(T‘R;E) — 1 | and
there is no discrimination between AR and SR on the
basis of data.

In an infinitely large universe the probability is one that
there is at least one instance of our data no matter

how rare it is.
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No Confidence in Experiment

e Consider a set of theories 7'(/\) that differ only by
the value of a parameter A\ .

® A series of laboratory measurements of the
parameter give values \1.--- A, .
Which theory does that data favor?

® |f the universe is infinite the likelihood that this string
occurs at least once approaches one in any theory.

p(A1,--- ,Ap|T(A)) = 1

..e. the experiments say nothing about the value
Pirsa: 08090044 Of A .



Ways Out

If two theories predict that the probability is one that
any data occurs somewhere then we can’t distinguish
them in the Bayesian framework.

p(T|D) = p(T)
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Ways Out

If two theories predict that the probability is one that
any data occurs somewhere then we can’t distinguish
them in the Bayesian framework.

p(T|D) = p(T)
® Require the universe to be finite in space and time
(Page).
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e Allow a probability that the universe is finite.

® Change quantum theory so that likelihoods are
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Ways Out

If two theories predict that the probability is one that
any data occurs somewhere then we can’t distinguish
them in the Bayesian framework.

p(T|D) = p(T)
® Require the universe to be finite in space and time

(Page).
e Allow a probability that the universe is finite.

® Change quantum theory so that likelihoods are
computed differently (Page).

® Admit its all in data dependent priors and agree on
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We favor theories that are ....

simple unifying

beautiful explanatory

mathematically formulable falsifiable

economical in assumptions accessible to intuition

comprehensive make us typical
relational

But most importantly we favor theories that are
predictive, testable, and give a coherent explanation of
the data we have.

Lhe utility of a physical theory is its predictive power.



Predictability

® Predictability concerns a stream of data in time,
di,...dn. A theory is pFEdICtIVE
when p( N dy, - dn—1) is peaked in dn about
some particular value which is the prediction.

® We favor theories for which there is a coherent
story connecting a past stream of data to
predictions of future data.
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Predictability

® Predictability concerns a stream of data in time,
di,...dn. A theory IS predlctwe
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Typicality Leading to Predictabilit

® |f we assume that we are
typical observers in the
solar system we predict
that there are no
observers on Jupiter.

® But the assumption is risky
because it is ad hoc and
without basis in 2 more
fundamental theory.

Pirsa: 08090044




Atypicality Leading to Predictability

® [wo theories:

*UT: the usual theory. @ @ l
*UTA:UT + the assumption that

we live close to the big bang. ie that &

we are atypical according to UT. A @

&

e UT is not predictive, UTA is, the
further assumption is therefore
testable.

.

® Such atypicality assumptions are
possible when there is a variable
ke-g- location) to make them with. I

e
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Atypicality Leading to Predictability

® [wo theories:

*UT: the usual theory.

*UTA: UT + the assumption that
we live close to the big bang. ie that
we are atypical according to UT.

e UT is not predictive, UTA is, the
further assumption is therefore
testable.

® Such atypicality assumptions are
possible when there is a variable
ke-g- location) to make them with.
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Confidence in Experiment

e Consider a set of theories 7'(\\) that differ only by
the value of a parameter A .

® A series of laboratory measurements of the

parameter give values \j.--- A,
® We favor the theory T(A4.)where A, is the
average of A;.--- ., A, ,because it gives a coherent

story of the previous measurements (they were
accurate) and predicts the results of future ones
(they should get A, within error.)
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The Main Points Again

When the universe is infinite in either space or
time we will not be able to distinguish theories
by data alone if the likelihood is one that any
data occur somewhere.

® We can distinguish theories otherwise through

Pirsa: 08090044

priors that favor theories that provide a
coherent story for the data we have and make
testable predictions for data we might acquire.

Assuming atypicality can lead to predictability
just much as assuming typicality.




Expect More Controversy
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The Classical Multiverse
of the No-Boundary
Quantum State

James Hartle, UCSB, Santa Barbara
Stephen Hawking, DAMTP, Cambridge
Thomas Hertog, APC, UP7, Paris

summary: arXiv: 0711.4630 details: arXiv:0803.1663
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The Quasiclassical Realm
- A feature of our Universe

The wide range of time, place and scale on
which the laws of classical physics hold to an
excellent approximation.

® Time --- from the Planck era forward.
® Place --- everywhere in the visible universe.
® Scale --- macroscopic to cosmological.

What is the origin of this quasiclassical realm in a
quantum universe characterized fundamentally

by indeterminacy and distibuted probabilities?

Pirsa: 08090044



Classical spacetime is assumed in all
formulations of
inflationary cosmology.

Classical spacetime is the key to
the origin of the rest of the
quasiclassical realm.

Pirsa: 08090044



Only Certain States Lead to
Classical Predictions

® Classical orbits are not predictions of

every state in the quantum mechanics of a
particle.

® Classical spacetime is not a prediction of

every state in quantum gravity.

Pirsa:
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The Classical Multiverse of a
Quantum State

® A particular quantum state does not predict
one classical history, but rather the
probabilities for an ensemble of alternative
classical histories (if any at all.)

® This ensemble constitutes the quasiclassical
realm which is the classical multiverse of

that quantum state.

Pirsa: 08090044



Classical Spacetime is the Key to the
Origin of the Quasiclassical Realm.

The quantum state of the universe
is the key to the origin of classical
spacetime.

VWe analyze the classical spacetime predicted
by Hawking’s no-boundary quantum state
for a class of minisuperspace models.

\If:/(jég&bexp(-f[g? ?])
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Minisuperspace Models

Geometry: Homogeneous, isotropic, closed.

ds® = (3/A) [N*(N\)dN* + a®(\)d©]

Matter: cosmological constant A plus homogeneous
scalar field moving in a quadratic potential.

V(®) = %mz@g

—

Theory: Low-energy effective gravity.

dJ‘ (9)"?(R — 2A) + (surface terms)

Pirsa: 08090044



Classical Pred. in NRQM ---Key Points

Semiclassical form:
¥(q0) = A(go)e /"

® When $(qo) varies rapidly and A(qo) varies
slowly, high probabilities are predicted for
classical correlations in time of suitably coarse
grained histories.

® For each qo there is a classical history with
momentum po and probability:

Po — VS(QO) p(class.hist..) — ’A(QO)\z

Pirsa: 08090044 53/78



NRQM -- Two kinds of histories
¥ (go) = A(go)e™>(®)/"

® 5(qo) might arise from a semiclassical

approximation to a path integral for ¥(qo) but
it doesn’t have to.

® |f it does arise in this way, the histories for
which probabilities are predicted are generally
distinct from the histories in the path integral

supplying the semiclassical approximation.
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No-Boundary Wave Function (NBVVF)

ds® = (3/A) [N*(N\)d\* + a*(\)dQ]

(b, x) = /c 5NSadsexp(~I[N(N),a(N). &(N)]/h)

The integral is over all (a(A). (\))which are
regular on a disk and match the (b, x) on its
boundary. The complex contour is chosen so that
the integral converges and the result is real.

Pirsa: 08090044



Semiclassical Approx. for the NBVVF
¥(b, x) = /C 5Nbadéexp(—I[N(N), a(N), 6(N)]/h)

® |n certain regions of superspace the steepest
descents approximation may be ok.

® To leading order in h the NBWEF will then have the
semiclassical form:

W(b, x) =~ exp{[—Ir(b, x) +iS(b, x)]|/R},

® The next order will contribute a prefactor which we
neglect. Our probabilities are therefore only relative.

Pirsa: 08090044



Instantons and Fuzzy Instantons

In simple cases the extremal geometries may be real
and involve Euclidean instantons, but in general they
will be a complex --- fuzzy instantons.
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Classical Prediction in MSS and

The Classicality Constraint
(b, x) = exp{[—Ir(b. x) +iS(b.x)]/R}

*Following the NRQM analogy this semiclassical form
will predict classical Lorentian histories that are the
integral curves of S, ie the solutions to:

pa—VaS p(class. hist.) oc exp(—2Ig/h)

*However, we can expect this only when S is rapidly
varying and Ir is slowly varying, i.e.

Valr| < |VaSl| [ |(VIR)?| <] (VS)?.

These consitute the classicality condition.

Pirsa: 08090044
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Class. Prediction --- Key Points

*The NBWHF predicts an ensemble of entire, 4d,
classical histories.

*These real, Lorentzian, histories are not the same as
the complex extrema that supply the semiclassical
approximation to the integral defining the NBWFE

Page 59/78
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No-Boundary Measure on

the Classical Multiverse

The NBWEF predicts an ensemble (a multiverse) of
classical histories labeled by points in classical phase space.
The NBWEF gives a measure on classical phase space.

P A
r 7

\ NBWF !

The NBWEF predicts a one-parameter subset of the two-
parameter family of classical histories, and the classicality
‘e constraint gives that subset a boundary.



Singularity Resolution

® The NBWHF predicts probabilities for entire
classical histories not their initial data.

® The NBWHF therefore predicts probabilities
for late time observables like CMB
fluctuations whether or not the origin of the
classical history is singular.

® The existence of singularities in the
extrapolation of some classical approximation
in quantum mechanics is not an obstacle to
prediction by merely a limitation on the
validity of the approximation.

Pirsa: 08090044




Equations and BC

i=c=G=1, p=(3/A)Y?*m, ¢= (4x/3)"/%2®, H®>=A/3

w 1io Fe (—éz+u2@2) Lg
Extremum | -. n
Equations: o+ 3(a/a)d — p o =0,
i+ 2a6* + a(1 + p?¢%) =0 .
Regularity at | ?
Soijh Pc?l,e' a(0) =0, a(0) =1,0(0) =0
Parameter #(0) = ppe*”

_matching: (¢0,7, X,Y) — (b,%,0,0) ...



Equations and BC

h=c=G=1, p=(3/A)*m, ¢ = (4%/3)"/%2®, HZ=A/3

You won’t follow this.

EXT | just wanted to show how

Equ much work we did.
i+ 2a¢” + a(1 + p?¢*) =0 .

Regularity at | :
Soﬁrh Pc:)l(e: a(0) =0, a(0) =1,9(0) =0
Parameter #(0) = pge””

_matching: (60,7, X,Y) — (b,%,0,0) ...



Equations and BC
h=c=G=1, p=3/A)"*m, ¢=(4x/3)"/2® HX=NA/3

You won't follow this.
exer | just wanted to show how

Equ much work we did.
i+ 2a¢” + a(l + p?¢%) =0 .

Reg
S:ul The only important point is that there is

one classical history for each value of the
Parz field at the south pole

_matching: (60,7, X,Y) — (b,%,0,0) ...




Finding Solutions

® For each ¢ptune remaining parameters to
find curves in (b, x) for which Ir approaches

a constant at large b.
® Those are the Lorentzian histories.

® Extrapolate backwards using the Lorentizan
equations to find their behavior at earlier
times -- bouncing or singular.

® The result is a one-parameter family of
classical histories whose probabilities are

p(dg) x exp(—21R)



Classicality Constraint ---Pert. Th.
Small field perts on deSitter space.

/‘\ /\\ f ﬁ"ﬁ
L [ /X f(\
.8} /\ ff fr\(\‘? ,a'f / H/‘/\\
K 5/—\ /] / \ A [ J | \H
/— ,." [ «H \ ) Ay “,
- > - - - - b‘-..._ £ J“A
H< 3/2 u>3/2

Classical # = (3/A)"?m Not-classical

This is a simple consequence of two decaying modes for
s e u<3/2, and two oscillatory modes for p>3 /2"



Probabilities and Origins

.
| ﬂ\ -
: e p=d
d = (3/A)"?m
o
4 |
2
1

P ] - ISR
1 2 3 = 5
SING—T ’L - BOUNCING —

There is a significant probability that the universe
raever reached the Planck scale in its entire evoluties:-




Origins

1.75
1.5
1.25)

0.75|
0.5
0.25

T

ﬁﬁﬁﬁﬁﬁﬁ

No nearly empty models for g >3/2, a minimum amount
°°°°°°°°°°°°° of matter is needed for classicality.




Arrows of Time

® The growth of fluctuations defines an
arrow of time, order into disorder.

e NBWF fluctuations vanish at the
South Pole of the fuzzy instanton.

® Fluctuations therefore increase away
from the bounce on both sides.

® Time’s arrow points in opposite
directions on the opposite sides of
the bounce.

® Events on one side will therefore have
little effect on events on the other.
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Inflation

There is scalar field driven TR =2 A—
inflation for all histories . \
allowed by the classicality : \

- 4
constraint, but a small number . L8
of efoldings N for the most 2 e

I q_““‘-»-—__________

prebable of them. =0 . : e




Conditional Probabilities

® We should not expect all of our data to be predicted

with high probability from the fundamental theory of
dynamics and the quantum state.

® Probabilities that test the theory are therefore typically
conditional --- assuming some part of our data and
predicting others. (Anthropic probs. are a special case.)

® Even probabilities assuming all of our present data are
useful as with the top-down probabilities for the past.

To test quantum theories of cosmology, we must search all
onditional probabilities to find those near 0 or..J...




Probabilities for Our Data

® The NBWHF predicts probabilities for entire classical
histories.

® Our observations are restricted to a part of a light
cone extending over a Hubble volume and located

somewhere in spacetime.

® TJo get the probabilities for our observations we must
sum over the probabilities for the classical spacetimes
that contain our data at least once, and then sum over
the possible locations of our light cone in them.

® This defines the probability of our data in a way that is
gauge invariant and dependent only on data on our
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Sum over location in
homo/iso models 3

Assume our data locate us on a surface
of homogeneity, and approx. data on
the past light cone by data ina Hubble — =%
vol. on that surface

Assume we are rare. (If we are
everywhere there is no sum).

The sum multiplies the probability for
each history @ by

Vsurt/ Vitubble = exp(3N) N= # efoldings
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Volume Weighting favors Inflation

By itself, the NBWF + classicality favor low inflation,
but we are are more likely to live in a universe that has
undergone more inflation, because there are more
places for us to be.

p(®0|Ho, p) x exp(3N)p(¢o) x exp(3N — 21R)

—2Ig IN—21g
27 CLASSICALITY |<Z - CLASSICAL A2

\




Replication and Regulation

*We have a large amount of t 1 - .
data, everything we know. 2 y

*In an infinite universe the ﬂim
probability is | that our data T Some v
is replicated exactly | SURFACE OF /
elsewhere. S A

*In a homogeneous universe
the replication scale

regulates sums over our & ,§ § | 2

location. —q-
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Is classical spacetime a vacuum
selection principle in string theory?

Pirsa: 08090044



The Main Points Again

® Only special states in quantum gravity predict classical
spacetime.

® The NBWF predicts probabilities for a restricted set
of entire classical histories that may bounce or be
singular in the past. All of them inflate.

® The classicality constraint requires a minimum
amount of scalar field (no big empty U’s).

® Probabilities of the past conditioned on limited
present data favor inflation.

® The classicality constraint could be an important part
m=¢f a vacuum selection principle.



