Title: What is the Multiverse?

Date: Sep 02, 2008 02:00 PM

URL: http://pirsa.org/08090043

Abstract:

Pirsa: 08090043 Page 1/55

What is the Multiverse?

But why this 'change of heart'?

By Necessity

and,

By Experience

Pirsa: 08090043 Page 3/55

But why this 'change of heart'?

By Necessity

and,

By Experience

Pirsa: 08090043 Page 4/55

A Necessary Extension of Physics

1. Mystery of the Initial Conditions of our universe needs a multiverse:

How else can we ask the question: why did we start with these I.C./Universe -without implying - as compared to what other choices?

(long list of such questions, why these values for: Lambda, G, e).

Fundamental Questions about our Universe Do imply the Existence of a Phase Space for the Initial Conditions, a.k.a, a Landscape

A Necessary Extension of Physics, ctd...

- 2. A 'black box' model creates huge discrepancies with what's known of our observable universe:
 - *
 Boltzmann Brains? Arrow of Time? Inflation? 'Anthropics'
- 3. Inflationary Big Bang Theory already predicts a universe much larger than the observable one:
 - there is no good reason to why stop there. After all, Big Bang is only a local process in the neighborhood of our I.C. .
 - there is no indication or criterion that a local theory is cohesive and self-consistent.

Inflation: Such Extraordinary Unlikely Initial Conditions!

 What selected these Initial Conditions?

Chances: 1/10^{10^122}!

 What Banged? Where did this come from? Need to extend to Multiverse?

Pirea: 08000013

Puzzle of Initial Conditions and the Multiverse

BUT: GRAVITY IS TRICKY!

"REALLY SPECIAL" OR JUST "OUT OF EQUILIBRIUM"

RARE FLUCTUATION? DYNAMIC SELECTION?

The Trouble with I.C.

Probability to start with Big Bang,

P = Exp[S], Entropy S = 1/Lambda.

Extraordinarly Unlikely Event I Anything Else More Likely!

mmediate Troubles:

A Computational View of the Multiverse: Information

Information is contained in Correlations.

Entropy parameterizes Information.

We know Exactly how to calculate Correlations.

Then: why don't we understand the Entropy of the Universe?

Because: It is not clear which correlations to include?

Pirsa: 08090043 Page 10/55

Experience with Multiverses?

The 3 Major Theories in Modern Physics Have Led to a Multiverse Prediction!

They are

:

- Quantum Mechanics, (Many-World Interpretation)
- Inflation, (Almost Generically of Eternal Nature)
- String Theory, (the Landscape)

Inflation: Simple and in Agreement with Observations. BUT:

- Big Bang Inflation: Universe Bangs into Accelerated Expansion
- But once Inflation Starts, almost generically it never stops Eternally producing New Bubbles - the Inflationary Multiverse
- Inflationary Universe already much larger than its observable subdomain

Experience with Multiverses?

The 3 Major Theories in Modern Physics Have Led to a Multiverse Prediction!

They are

:

- Quantum Mechanics, (Many-World Interpretation)
- Inflation, (Almost Generically of Eternal Nature)
- String Theory, (the Landscape)

Inflation: Simple and in Agreement with Observations. BUT:

- Big Bang Inflation: Universe Bangs into Accelerated Expansion
- But once Inflation Starts, almost generically it never stops Eternally producing New Bubbles - the Inflationary Multiverse
- Inflationary Universe already much larger than its observable subdomain

String Theory Landscape

Circa 2002: Advances in String Theory Result in Not Just 1 vacua for A Universe Like Ours. More Like 10^500 of Them?!

((oined the 'Landscape' By L. Susskind)

A proton is made of quarks and gluons...

... and each particle is really a str

CRISIS: A whole LANDSCAPE of Universes... but:

How do we select our Universe in this multitude?

Page 15/55

Landscape Discovery Considered a Crisis because we hoped STH would produce 1 unique solution for a (3+1)-D world that was like ours

Reason: We had embraced a REDUCTIONIST view. But instead ...

String Theory Multiverse

Advocating a MERITOCRATIC view

It's applied to the STH Landscape, by suggesting :

- * to view the Landscape as the Phase Space if Initial Conditions
- and allow the Wavefunction of theuniverse to propagate on the Landscape, while including Decoherence mechanism
- * Selection of 'Survivor Universes', such as ours, based on the dynamics of gravitational and matter degrees of freedom a 'tug of war'.

In this view, the STH Landscape has to be expected as a STH Multiverse Prediction

It Embeds the Landscape of String Theory into the Quantum Mechanics Multiverse

Pirsa: 08090043

2 Views For TOE

- "Reductionist": TOE must yield 1 unique universe
- "Meritocratic": TOE must provide an ensemble of possible universes

Features of a Generic Multiverse

Perhaps some new theory of Quantum Gravity will be conceived in the future...

- I believe, it has to contain a Multiverse Prediction, part of which will survive deconstruction in the low energy limit.
- The Multiverse of any theory will likely have two phases: quantum and classical, since our universe has to be part of it.
- Ultimately, Only One Multiverse can correspond to Physical Reality!

Pirsa: 08090043

Consensus on Definitions:

• Multiverse:

The ensemble of all possible universes predicted by the underlying theory, i.e. all there is.

Universe:

Domain of Spacetime in which points were causally connected at some timeslice 't=0' of their past lightcone.

Pirsa: 08090043 Page 20/55

Multiverse Types and Hierarchy:

With current limited knowledge, we can expect these types and hierarchy of multiverses:

- TYPE A: Different Laws Across the Multiverse
- TYPE B: Same Laws but Different Constants
- TYPE C: Varying Dimensionality 'D' Across the Multiverse, which can further subdivide into above Types - A^D, B^D.

Pirsa: 08090043 Page 21/55

Consensus on Definitions:

• Multiverse:

The ensemble of all possible universes predicted by the underlying theory, i.e. all there is.

Universe:

Domain of Spacetime in which points were causally connected at some timeslice 't=0' of their past lightcone.

Pirsa: 08090043

Features of a Generic Multiverse

Perhaps some new theory of Quantum Gravity will be conceived in the future...

- I believe, it has to contain a Multiverse Prediction, part of which will survive deconstruction in the low energy limit.
- The Multiverse of any theory will likely have two phases: quantum and classical, since our universe has to be part of it.
- Ultimately, Only One Multiverse can correspond to Physical Reality!

Pirsa: 08090043

Multiverse Types and Hierarchy:

With current limited knowledge, we can expect these types and hierarchy of multiverses:

- TYPE A: Different Laws Across the Multiverse
- TYPE B: Same Laws but Different Constants
- TYPE C: Varying Dimensionality 'D' Across the Multiverse, which can further subdivide into above Types - A^D, B^D.

Pirsa: 08090043 Page 24/55

Consensus on Definitions:

• Multiverse:

The ensemble of all possible universes predicted by the underlying theory, i.e. all there is.

Universe:

Domain of Spacetime in which points were causally connected at some timeslice 't=0' of their past lightcone.

Pirsa: 08090043 Page 25/55

Features of a Generic Multiverse

Perhaps some new theory of Quantum Gravity will be conceived in the future...

- I believe, it has to contain a Multiverse Prediction, part of which will survive deconstruction in the low energy limit.
- The Multiverse of any theory will likely have two phases: quantum and classical, since our universe has to be part of it.
- Ultimately, Only One Multiverse can correspond to Physical Reality!

Pirea: 08000043

Multiverse Types and Hierarchy:

With current limited knowledge, we can expect these types and hierarchy of multiverses:

- TYPE A: Different Laws Across the Multiverse
- TYPE B: Same Laws but Different Constants
- TYPE C: Varying Dimensionality 'D' Across the Multiverse, which can further subdivide into above Types - A^D, B^D.

Pirsa: 08090043 Page 27/5

'Russian Dolls' Hierarchy

rsa: 08090043 Page 28/5

Differences in the Interpretation

MULTIVERSE: A Mathematical or a Physical Entity?

Only 1 Multiverse can Correspond to Physical Reality

- I do share Tegmark's view to allow all mathematical solutions on equal footing of existence, as candidates for correspondence to reality
- But: I take them as equal contenders only up to the Inclusion of Dynamics. I would suggest we include dynamics for determining the probability of their physical existence and correspondence.

(Not quite a Platonic view).

Pirsa: 08090043 Page 29/55

But Dynamical Description Demands Space and Time

A Very Simple Question, (50 years after Everett..): In what Space and Time do the Multiverse (s) Exist? How can we decide this?

I Would like to Postulate 2 Principles:

 SPACE: The Principle of 'Domains Correlations'

If correlations exist, then multiverse embedded in One Bckg Spacetime (Connected)

Connected

Disconnected

 TIME: Principle of No 'Perpetual Motion', based on Time-Translation Symmetry

Energy cant be created and destroyed in/across domains. Then only one time parameter in common for all domains.

- Possibly Fundamental in TYPE B?!
- Emergent in TYPE A?

(IF QM Survives)

And, if Nature is Economic, then:

** Time-Translation Symmetry + Domain Correlation Reduce the Class of Multiverses corresponding to Physical Reality, to :

* Only the Connected Multiverse where Time is Fundamental *

- The Multiverse does not need have same Dim. as its domains: correlations can exist in higher Dim.
- ii) We could distinguish Disconnected Type as Multi-world instead of Multiverse.

Pirea: 08000043

Hierarchy: Dynamics+ Quantum Mechanics

Contemplating Observational Imprints

?

Pirsa: 08090043 Page 33/55

Hierarchy: Dynamics+ Quantum Mechanics

Contemplating Observational Imprints

?

Pirsa: 08090043 Page 35/55

Selection Of Our Initial Patch: Why Pick One with Such an Extraordinarly Low Entropy?

EXAMPLE : String Theory

 Non-Equilibrium: "Super Selection"

'SURVIVOR' =Expand Take the Landscape as the Theory of the Initial Conditions

Dynamics of gravity ersus matter determines ne superselection rule.

'TERMINAL' =Collapse

Pires: 08000041

he Universe on the Landscape

Multiverse

The Universe on the Landscape Multiverse

The Universe on the Landscape Multiverse

LANDSCAPE: Each vacua can potentially host a universe.
 Include decoherence among solutions.

The Universe on the Landscape Multiverse

LANDSCAPE: Each vacua can potentially host a universe.
 Include decoherence among solutions.

 WaveFn. Of Universe: Quantum Mechanics – not Quantum Cosmology!

V(phi)

What Happens to Phase Space

Dynamically Cleansed
Out of Low Energy
Inflationary Patches
From Gravitational
Instabilities!

"Survivor and Terminal"
Universes!

B.'s

= Log[V]: Dynamically Reduced

'Special" I. C. == Out-of-Equilibrum

Universe is Not Ergodic.

Pires: 08000043

A Radical Proposal But Does it Make Predictions that can be Tested?

Yes, Mixing Remains by Unitarity!!

An Entangled State Can Not Evolve into a Pure State

A Radical Proposal But Does it Make Predictions that can be Tested?

Yes, Mixing Remains by Unitarity!!

An Entangled State Can Not Evolve into a Pure State

 Nonlocal Entaglement Imprinted in CMB, LSS, VOIDS.

A Radical Proposal But Does it Make Predictions that can be Tested?

Yes, Mixing Remains by Unitarity!!

An Entangled State Can Not Evolve into a Pure State

Nonlocal Entaglement Imprinted in CMB, LSS, VOIDS.

A Radical Proposal But Does it Make Predictions that can be Tested?

Yes, Mixing Remains by Unitarity!!

An Entangled State Can Not Evolve into a Pure State

- Nonlocal Entaglement Imprinted in CMB, LSS, VOIDS.
- 2. Bounds on M {susy} as local fundamental scale to be tested by LHC.

Astrophysical Tests:

Entanglement Imprints on Friedman Equation

$$H^2 = \frac{1}{3M_{\rm P}^2} \left[V(\phi) + \frac{1}{2} \left(\frac{V(\phi)}{3M_{\rm P}^2} \right)^2 F(b, V) \right] \equiv \frac{V_{\rm eff}}{3M_{\rm P}^2}$$
 (4.2)

where

$$F(b,V) = \frac{3}{2} \left(2 + \frac{m^2 M_{\rm p}^2}{V} \right) \log \left(\frac{b^2 M_{\rm p}^2}{V} \right) - \frac{1}{2} \left(1 + \frac{m^2}{b^2} \right) \exp \left(-3 \frac{b^2 M_{\rm p}^2}{V} \right). \tag{4.3}$$

Constrain SUSY Scale from Flatness and CMB Conditions

$$(\nabla T/T)_{\text{quad}} \approx r_H^2 \nabla^2 \delta \phi$$

= $(ck_1/H_0)^2 \delta \phi \approx 0.5 (r_H/L_1)^2 (\delta \rho/\rho)_1$.

$$\Delta V/(\Delta \phi)^4 \leq O(10^{-7})$$

Modified Newtonian Potential.

Void Predicted at z<1 with size ~200Mpc Observed: Sigma_8 predicted <1, in agreement w. WMAP.

$$\Phi = \Phi^0 + \delta\Phi \simeq \Phi^0 \left[1 + \frac{f(b, V)}{\rho} \left(\frac{r}{L_1(k, b)} \right)^2 \right].$$

CMB: Running n_s. Suppressed sigma_8.

LSS: Power Enhanced at Cluster Scales.

Figs. 08090048 TT power spectra for the cases with $b = 4.0 \times 10^9$ GeV (dash-line) and 3.8×10^9 GeV (dot-line). For reference, the spectrum for the Λ CDM case (solid-line) and the data from WMAP3 are also

Ontology of Multiverse

- But so many types of Multiverse already. Only one can correspond to physical reality. Have we just shifted the trouble of I.C. to Multiverse selection?
- Propose 2 principles to identify the Multiverse:
 - 1) No 'Perpetual Motion' on Multiverse. (TIME)
 - 2) 'Domains Correlation' on Multiverse.(SPACE)

These principles ensure one background spacetime for the Multiverse.

Pirsa: 08090043 Page 48/55

• Who would have thought that Nature would lead us to a situation where a deeper understanding of its mysteries, at the smallest and largest scales, would guide the extension of our physical theories to the realm of the Multiverse?

Pirsa: 08090043 Page 49/55

