Title: Abelian fibrations, string junctions and Flux/Geometry duality

Date: Sep 02, 2008 11:00 AM

URL: http://pirsa.org/08090024

Abstract: TBA

Pirsa: 08090024 Page 1/36

String Junctions, Abelian Fibrations and Flux-Geometry Duality

Peng Gao
University of Toronto
Perimeter Institute, September 2nd, 2008

Based on work with R. Donagi and M. B. Schulz, arXiv:0809.XYZW.

irsa: 08090024 Page 2/36

Overview

view

vation

rgravity analysis

m-up: IIB on Zo

itruction I: odromy of ular fibers

struction I:

itruction II: tive Jacobian of face

clusions

- IIB T^6/\mathbb{Z}_2 orientifold w. $\mathcal{N}=2$ flux \equiv IIA CY duals with no flux. Goal: Construct the dual manifolds explicitly
 - Many properties deduced by classical sugra dualities (Schulz [hep-th/0412270])
 - We have found two explicit constructions:
 - Monodromy/string-junction description analogous to F-theory description of K3, but with T⁴ rather than T² fibers.
 - Explicit algebro-geometric construction
 via relative Jacobian of genus-2 fibered surface.
- Relation of CYs to one another? Construction of new CYs.

Pirsa: 08090024 Page 3/3

vation

vations

motivations

rgravity analysis

m-up: IIB on

struction I: odromy of ular fibers

truction I:

struction II: tive Jacobian of rface

clusions

Motivation

sa: 08090024 Page 4/36

Overview

view

vation

rgravity analysis

m-up: IIB on

struction I: odromy of ular fibers

struction I: g-junctions

itruction II: tive Jacobian of face

clusions

- IIB T^6/\mathbb{Z}_2 orientifold w. $\mathcal{N}=2$ flux \equiv IIA CY duals with no flux. Goal: Construct the dual manifolds explicitly
 - Many properties deduced by classical sugra dualities (Schulz [hep-th/0412270])
 - We have found two explicit constructions:
 - Monodromy/string-junction description analogous to F-theory description of K3, but with T⁴ rather than T² fibers.
 - Explicit algebro-geometric construction
 via relative Jacobian of genus-2 fibered surface.
- Relation of CYs to one another? Construction of new CYs.

sa: 08090024 Page 5/3

String Junctions, Abelian Fibrations and Flux-Geometry Duality

Peng Gao
University of Toronto
Perimeter Institute, September 2^{nd} , 2008

Based on work with R. Donagi and M. B. Schulz, arXiv:0809.XYZW.

irsa: 08090024 Page 6/36

Overview

view

vation

rgravity analysis

m-up: IIB on Zo

struction I: odromy of ular fibers

struction I: g-junctions

itruction II: tive Jacobian of face

- IIB T^6/\mathbb{Z}_2 orientifold w. $\mathcal{N}=2$ flux \equiv IIA CY duals with no flux. Goal: Construct the dual manifolds explicitly
 - Many properties deduced by classical sugra dualities (Schulz [hep-th/0412270])
 - We have found two explicit constructions:
 - Monodromy/string-junction description analogous to F-theory description of K3, but with T⁴ rather than T² fibers.
 - Explicit algebro-geometric construction
 via relative Jacobian of genus-2 fibered surface.
- Relation of CYs to one another? Construction of new CYs.

n: 08090024 Page 7/36

vation

vations

motivations

rgravity analysis

m-up: IIB on

truction I: odromy of ular fibers

struction I: g-junctions

struction II: tive Jacobian of rface

dusions

Motivation

Page 8/36

Motivations

view

vation

vations

motivations

rgravity analysis

m-up: IIB on

struction I: odromy of ular fibers

struction I: g-junctions

truction II: tive Jacobian of face

dusions

- Fate of non-perturbative dualities in the presence of flux. Example of open-closed, strong-weak (& RR-NS) duality.
- IIB T^6/\mathbb{Z}_2 orientifold one of the simplest IIB flux compactifications (e.g., Kachru et.al. [hep-th/0201028]). May still lead to insight on flux vacua duality in general.
- IIA CY duals $X_{m,n}$ have $\pi_1 = \mathbb{Z}_n \times \mathbb{Z}_n$ w. n = 1, 2, 3, 4. \Rightarrow useful for Heterotic phenomenology. Few CYs with nontrivial π_1 are known (work in progress by Donagi, Saito.).
- ullet D3 instantons dualize to WS instantons wrapping \mathbb{P}^1 sections.
 - ⇒ Exact check of results on D-instantons w. background flux. (work in progress with Schulz.)

More motivations

view

vation

vations

motivations

rgravity analysis

n-up: IIB on

struction I: odromy of ular fibers

struction I: g-junctions

struction II: tive Jacobian of face

dusions

- Studying the moduli space of CY duals in IIA⇒ Can in principle deduce warped KK reduction of the flux compactification in IIB. (e.g., Douglas et.al. [0805.3700])
- Connection to D(imensional)-duality?
 (via relative Jacobian of second construction for CYs).
 (Silverstein; Green et.al.)

irsa: 08090024 Page 10/36

vation

rgravity analysis

ing the duality

erties of $X_{m,n}$ erties of $X_{m,n}$

m-up: IIB on Z₂

struction I: odromy of ular fibers

struction I: g-junctions

struction II: tive Jacobian of rface

lusions

Supergravity analysis

Pirsa: 08090024 Page 11/36

Flux-Geometry Duality Pent Gao (Hoff) - 6 / 27

Chasing the duality chain

view

vation

rgravity analysis ing the duality

erties of $X_{m,n}$ erties of $X_{m,n}$

m-up: IIB on Zo

struction I: odromy of ular fibers

struction I: g-junctions

struction II: tive Jacobian of rface

- Snapshot: 3 T-duals (IIB→IIA) and M-theory lift & drop
 - Starting point: Warped product $M_4 \times_w \mathrm{T}^6/\mathbb{Z}_2$ w. D3/O3.
 - Finer structure: T⁶ = T²₍₁₎ × T⁴, T⁴ is a T²₍₂₎ fiber. over T²₍₃₎ base w. flat connections.
 - Step one: T-dualize along $S^1 \subset \mathrm{T^2}_{(1)}$ and $\mathrm{T^2}_{(2)}$, result in: $(M_4 \times \mathrm{T^3_{fib}}) \times_w \mathrm{T^3_{base}}/\mathbb{Z}_2$ w. D6/06 (IIA).
 - Fate of NS flux: $H_3 \to 1$ st Chern class of dual fibration $\widetilde{\mathrm{T}^2}_{(2)} \subset \mathrm{T}^3_{\mathrm{fib}} \propto n$.
 - Fate of RR flux: F₃ → F₂ = dC₁ captures the distribution of D6/O6 and curvature (∝ m) over T³_{base}.
 - Note: non-trivial dilaton profile, as is generic in T-dualizing.
 - Step two: Lift to M-theory, result in $M_4 \times S^1_{(1)} \times \text{CY3}$ w. $\text{CY3} = ((S^1_{10} \rtimes_w \widetilde{\text{T}^2_{(2)}} \ltimes_{w'} S^1_{(1)}) \times_{w'} \text{T}^2_{(3)}/\mathbb{Z}_2)$
 - Purely geometric: C₁ identified as A₁₀, D6/O6 → TN/GH.
 (color conservation 123. step3/ IIA')

Properties of $X_{m,n}$

view

vation

ergravity analysis sing the duality

erties of $X_{m,n}$

erties of $X_{m,n}$

m-up: IIB on Zo

struction I: odromy of ular fibers

struction I:

struction II: tive Jacobian of rface

We can learn the following additional information:

- Abelian surface (T⁴) fibration over \mathbb{P}^1 , has 8 + N singular fibers of nodal type, $N = \text{number of D3-branes in } \mathbb{T}^6/\mathbb{Z}_2$.
- Hodge # of $X_{m,n}$: $h^{11}=h^{21}=N+2$, N+4mn=16. Follows from massless spectrum, including open string moduli $F_3\sim 2m,\ H_3\sim 2n,\ N_{\mathrm{D}3}+\int H\wedge F=\frac{1}{4}N_{\mathrm{O}3}$ in IIB.
- Generic D_N lattice of sections (mod torsion) Follows from N D-branes + O-plane giving rise to SO(2N).
- Fundamental group and discrete isometries $\pi_1 = \mathbb{Z}_n \times \mathbb{Z}_n$, isometry $= \mathbb{Z}_m \times \mathbb{Z}_m$. For flux $m, n \neq 1$, partial higgsing of U(1)s in IIB.
- The case m=n=0 leads to special case $X_{0,0}=\mathsf{K3}\times\mathsf{T}^2$.

Properties of $X_{m,n}$

view

vation

rgravity analysis ing the duality

erties of $X_{m,n}$

erties of $X_{m,n}$

m-up: IIB on

struction I: odromy of ular fibers

struction I:

struction II: tive Jacobian of rface

- Approximate metric, harmonic forms (small parameter = fiber/base $\propto R^{11}$).
- Polarization: $J_{\mathrm{fiber}} \propto m dy^1 \wedge dy^2 + n dy^3 \wedge dy^4$.
- Non-vanishing triple intersections: $H^2 \cdot A = 2mn, \quad H \cdot \mathcal{E}_I \cdot \mathcal{E}_J = -m\delta_{IJ}$ Follows from explicit harmonic forms.
- $H \cdot c_2 = 8 + N$, and esp. $\chi(A) = A \cdot c_2 = 0$ Abelian surface fibration (Oguiso).

Follows from $F_1=\sum\limits_{\alpha=1}^{h^{1,1}(X)}(D_\alpha\cdot c_2)t^\alpha\sim (N+8)\tau_{\rm dil}$ (Dasgupta et. al.) and $g_*^{\rm IIB}\to J_A$ in IIA CY dual.

rsa: 08090024 Page 14/36

vation

rgravity analysis

m-up: IIB on \mathbb{Z}_2 on T^2/\mathbb{Z}_2

odromy ription

struction I:

odromy of ular fibers

struction I: g-junctions

struction II: tive Jacobian of face

clusions

Warm-up: IIB on $\mathbb{T}^2/\mathbb{Z}_2$

Page 15/36

IIB on T^2/\mathbb{Z}_2

view

vation

ergravity analysis

m-up: IIB on Zo

in T^2/\mathbb{Z}_2

odromy ription

struction I: odromy of ular fibers

struction I: g-junctions

itruction II: tive Jacobian of rface

dusions

Recall IIB encoding of elliptic fibration over \mathbb{P}^1 (e.g., K3):

IIB: 7-brane

- $\oint_{\gamma} F_1 = 1$ unit RR charge \Rightarrow monodromy $\tau_{dil} \rightarrow \tau_{dil} + 1$
- (p,q) 7-brane = where (p,q)-string ends, e.g. D7 brane=(1,0) 7-brane.

F-theory: singular elliptic fiber

- $m{\theta}$ au= cpx mod. of T^2 fiber, au o au+1 about au
- $a\alpha + b\beta$ cycle in T^2 : $\binom{a}{b} \to K\binom{a}{b}$, $K = \left(\begin{smallmatrix} 1 & -1 \\ 0 & 1 \end{smallmatrix}\right)$ monodromy matrix.
- $p\alpha + q\beta$ (instead of α) cycle shrinks: $K_{[p,q]} = {1+pq p^2 \choose q^2 1-pq}$.

Monodromy description

view

vation

rgravity analysis

m-up: IIB on Zo

on T^2/\mathbb{Z}_2

odromy ription

struction I: odromy of ular fibers

struction I: g-junctions

struction II: tive Jacobian of rface

clusions

- ullet Let (p,q) charges A=(1,0), B=(1,-1) and C=(1,1).
- Perturbative description of T^2/\mathbb{Z}_2 orientifold: 16 D7s + 4 O7s. Overall (local) monodromy $\Rightarrow K_{O7} = -K_A^{-4}$
- Nonperturbative description: each O7 resolves to BC pair.(Sen) Up to equivalences K_{O7} factorizes uniquely into $(K_{[1,1]}K_{[1,-1]})$.
- $m{\Theta}$ So, F-theory on the manifold K3: Base $\mathbb{P}^1\cong \mathrm{T}^2/\mathbb{Z}_2$, 24 singular fibers $A^{16}(BC)^4$, with monodromies

$$K_A = \begin{pmatrix} 1 & -1 \\ 1 \end{pmatrix}, \quad K_B = \begin{pmatrix} 1 & -1 \\ 1 & 2 \end{pmatrix}, \quad K_C = \begin{pmatrix} 2 & -1 \\ 1 & \end{pmatrix}.$$

These nonperturbative IIB data define the topology of K3.

vation

rgravity analysis

m-up: IIB on \mathbb{Z}_2

odromy of ular fibers

in T^6/\mathbb{Z}_2 :
ian fibration
odromy for T^4 s
interpretation
R tadpole

struction I: g-junctions

truction II: tive Jacobian of

Construction I: Monodromy of singular fibers

irsa: 08090024 Page 18/36

IIB on T^6/\mathbb{Z}_2 : Abelian fibration

view

vation

rgravity analysis

m-up: IIB on Z₂

itruction I: odromy of ular fibers

in T^6/\mathbb{Z}_2 :

odromy for T^4 s interpretation

struction I: g-junctions

R tadpole

truction II: tive Jacobian of face

CY duals $X_{m,n}$ are T^4 fibration over \mathbb{P}^1 . Why?

- Another point of view:
 - No flux:

$$T^6/\mathbb{Z}_2$$
 orientifold \leftarrow IIA on K3 \times T^2 (K3 = T^2 fibration over \mathbb{P}^1)

(both dual to type I or het-SO on T^6).

• With $\mathcal{N}=2$ flux $F_3\sim 2m, H_3\sim 2n$:

$$\mathrm{T}^6/\mathbb{Z}_2$$
 orientifold $\ \to \$ IIA on CY $X_{m,n}$ $(X_{m,n}=\mathrm{T}^4 \ \mathrm{fibration} \ \mathrm{over} \ \mathbb{P}^1)$

ullet Rougly flux induces twists mixing T^2 factor with T^2 fiber of K3.

Pirea: 08000021

Monodromy for T^4 fibers

view

vation

rgravity analysis

m-up: IIB on \mathbb{Z}_2

itruction I: odromy of ular fibers

in T^6/\mathbb{Z}_2 :

odromy for T^4

interpretation R tadpole

struction I: g-junctions

truction II: tive Jacobian of face

$$N$$
 D3s + O3s of $\mathrm{T}^6/\mathbb{Z}_2 \ \rightarrow \ A^N B_1 C_1 B_2 C_2 B_3 C_3 B_4 C_4$ singular T^4 fibers of $X_{m,n}$.

$$K_A = \left(\begin{array}{ccc} 1 & -1 & | & \\ -- & -\frac{1}{1} & | & -- \\ & & 1 \end{array}\right) = (\mathsf{old}\ K_A) \oplus (\mathsf{identity})\ \mathsf{on}\ \mathrm{T}^2 \times \mathrm{T}^2,$$

but B_i, C_i differ for i = 1, 2, 3, 4 (Recall pairs of O6.). For example,

$$K_{B_1} = \begin{pmatrix} -1 & | & -m \\ -\frac{1}{n} & -\frac{2}{n} & | & -\frac{m}{n} \\ -\frac{n}{n} & | & 1 & -\frac{m}{n} \\ \end{pmatrix} = (\text{old } K_B) \oplus (\text{identity}) \text{ on } T^2 \times T^2 + m, n \text{ twists.}$$

The monodromies uniquely determine the topology of $X_{m,n}$.

Page 20/36

Dual interpretation of RR tadpole

view

vation

rgravity analysis

m-up: IIB on Z₂

odromy of ular fibers

on T^6/\mathbb{Z}_2 : ian fibration odromy for T^4

interpretation R tadpole

struction I: g-junctions

truction II: tive Jacobian of face

- On the base of $X_{m,n}$, a \mathbb{P}^1 , the loop that encloses all singular fibers is contractible (to the point at ∞).
 - ⇒ Total monodromy must be unity:

$$1 = K_{\text{total}}$$

$$= K_{C_4} K_{B_4} \dots K_{C_1} K_{B_1} K_A^N$$

$$= \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & -Q & 0 \\ 1 & 0 & 1 \end{pmatrix},$$

where Q = N - 16 + 4mn.

Purely topological constraint reproduces $\mathrm{T}^6/\mathbb{Z}_2$ D3 charge condition Q=0. "Topological Tadpole cancellation"

rsa: 08090024 Page 21/3

vation

rgravity analysis

m-up: IIB on Z₂

itruction I: odromy of ular fibers

struction I: g-junctions

g junctions & dell-Weil lattice and junction te for $X_{m,n}$ tions between

truction II:

Construction I: String-junctions

Pirsa: 08090024 Page 22/36

String junctions & Mordell-Weil lattice

view

vation

rgravity analysis

m-up: IIB on Zo

struction I: odromy of ular fibers

struction I:

g junctions & dell-Weil lattice and junction te for $X_{m,n}$ tions between

struction II: tive Jacobian of

String junctions:

(Sen; DeWolfe...)

- are W-bosons of 7-brane gauge theory,
- encode homology of F-theory elliptic fibration,
 - equivalence classes (charges) form a lattice.

 $H_2(S)$ generated by:

- \bullet generic fiber, $H^0(\mathbb{P}^1, R^2\pi_*\mathbb{Z})$
- irred. components of singular fibers;
- sections. string junctions, $H^1(\mathbb{P}^1, R^1\pi_*\mathbb{Z})$

Mordell-Weil lattice of sections = junction lattice/null loops (Fukae et al.).

MW and junction lattice for $X_{m,n}$

view

vation

rgravity analysis

m-up: IIB on Zo

struction I: odromy of ular fibers

struction I: g-junctions

g junctions & dell-Weil lattice and junction to for $X_{m,n}$

tions between

struction II: tive Jacobian of face

- In CY $X_{m,n}$: a (p,q,r,s) 1-cycle in T^4 fiber shrinks at each A, B_i , C_i on \mathbb{P}^1 .
- Obtain 2-cycles in $X_{m,n}$ from $S^1_{[p,q,r,s]}$ fibration over (p,q,r,s) junction graphs in base \mathbb{P}^1 .
- Again, MW lattice of (rational) sections = junction lattice/null loops.

$$A^N \prod_{i=1}^4 B_i C_i \Rightarrow \operatorname{Again} D_N \operatorname{from} A^N B_i C_i \quad (A+A=B_i+C_i)$$

but NOT $E_{N+1} \operatorname{from} A^N B_i C_i C_j \quad (C_i \neq C_j).$

 D_N = free part of MW lattice.

Relations between CYs

view

vation

rgravity analysis

m-up: IIB on Zo

struction I: odromy of ular fibers

struction I: g-junctions

g junctions & dell-Weil lattice and junction to for $X_{m,n}$

tions between

truction II: tive Jacobian of face

- N + 4mn = 16. Complete set of 8 $X_{m,n}$ is $\{X_{1,1}, X_{m,1}, X_{1,n}, X_{2,2}\}$.
- Relations:
- IIB S-duality $H_3 \leftarrow F_3$ imples $X_{m,n} \leftarrow X_{n,m}$ via fiberwise T-dualizing T^4 , $X_{1,1}, X_{2,2}$ invariant.
- Topologically $X_{m,1}/(\mathbb{Z}_m \times \mathbb{Z}_m) = X_{1,m}$ Discrete isometry \leftarrow non-trivial π_1
- Similarly $X_{4,1}/(\mathbb{Z}_2 \times \mathbb{Z}_2) = X_{2,2}$ with diagonal $\mathbb{Z}_2 \times \mathbb{Z}_2 \subset \mathbb{Z}_4 \times \mathbb{Z}_4$.
- Is $X_{1,1}$ a good parent for all $X_{m,n}$? descending by quotienting: When singular fibers coalesce, additional isometries can develop, adds to MW torsion from "weakly integral" junctions, e.g., a (1,0) string ending on a collapsed A^2 pair: "(1/2,0) on each." Quotient by new isometry, changes polarization, but only $\pi_1 = \mathbb{Z}_n$.
- Positive side: leads to new CYs with non-trivial π_1 .

vation

ergravity analysis

m-up: IIB on Zo

struction I: odromy of ular fibers

struction I: g-junctions

itruction II: tive Jacobian of face

tive Jacobian of face ing the surface

tity checks ID checks

disions.

Construction II: Relative Jacobian of a surface

Page 26/36

Relative Jacobian of a surface

view

vation

rgravity analysis

m-up: IIB on Zo

struction I: odromy of ular fibers

struction I: g-junctions

itruction II: tive Jacobian of face

tive Jacobian of face

ing the surface

tity checks

- Restrict to m, n = 1, 1 (principle polarization).
- Idea: complex surface much easier than 3-fold. Economical description for simple enough singular fibers.
- To every genus-g curve, can associate a principally polarized Jacobian torus T^{2g} with the same H_1 (same space of 1-cycles (p, q, r, s)):

$$g=2$$
:

Abel-Jacobi map T^4 "Wilson lines"

- So, try to realize CY $X_{1,1}$ as the fiberwise Jacobian, i.e. relative Jacobian
 - of a surface S, where S is itself a genus-2 fibration over \mathbb{P}^1 .
- \bullet S could probably be made more physical as a fiberwise D-duality

Finding the surface S

view

vation

rgravity analysis

m-up: IIB on

truction 1: odromy of lar fibers

truction 1: g-junctions

truction II: tive Jacobian of ive Jacobian of

ing the surface

tity checks

A genus-2 curve = double cover of \mathbb{P}^1 with 6 branch points.

- \Rightarrow $S \equiv \text{genus-2 fibration over } \mathbb{P}^1_{(1)}$ = branched double cover of $\mathbb{P}^1_{(1)} \times \mathbb{P}^1_{(2)}$.
- Degree of branch curve $B \subset S$ is (d, 6)(6 branch pts in generic fiber of $S \to \mathbb{P}^1_{(2)}$, i.e., for genus-2). Can view as S as 2-fold section \sqrt{P} of $\mathcal{O}(d/2,3)$, where $B = \{P = 0\}.$
- For d=2, find a candidate for $X_{1,1}$ from Jacobian (S/\mathbb{P}^1) The simplest solution! Is it what what we are looking for?

Identity checks

view

vation

ergravity analysis

m-up: IIB on Z₂

struction I: odromy of ular fibers

struction I:

itruction II: tive Jacobian of face tive Jacobian of face

ing the surface

tity checks

- $c_1(X_{1,1}) = 0, \quad \text{consider } K_{X_{1,1}|\mathbb{P}^1} = K_{\mathbb{P}^1} \otimes \det(N_{\mathbb{P}^1}^*)$ $K_{\mathbb{P}^1} = \mathcal{O}_{\mathbb{P}^1}(-2), \text{ can show } N_{\mathbb{P}^1}^* = \mathcal{O}_{\mathbb{P}^1}(1) \oplus \mathcal{O}_{\mathbb{P}^1}(1).$
- $h^{1,1} = h^{2,1} = 14$, $h^{2,1}$ from cplx deform, $h^{1,1}$ from # of sections.
- \bullet 20 nodal genus-2 fibers \Rightarrow same # of singular T^4 fibers.
- $c_2 = 20$ elliptic curves (singular loci of fibers are codim. 2).
- Sections of S 2nd projection $S \to \mathbb{P}^1_{(2)}$ has genus-0 fibers $C_0 = (2\mathbb{P}^1 2 \text{ br pts})$ w. 12 degenerations, where the 2 br pts overlap, and $C_0 \to 2 \mathbb{P}^1$ s Pairs ℓ_I, ℓ_I' meeting at a point $(I = 1, \dots, 12)$. $\Rightarrow 2 \times 12$ sections of genus-2 fibration (w. relations $\ell_I + \ell_I' = C_0$).
- Sections of $X_{1,1}$ Given a fixed choice of zero section $\sigma_0 \in \{\ell_I, \ell_I'\}$, $\operatorname{MW}(X_{1,1}) \cong \langle \sigma_0, f_2 \rangle^\perp$ (with S intersection pairing). \Rightarrow 12 dimensional lattice, w. D_{12}^- matrix. (Saito: maximal rank for MW(S))

More ID checks

view

vation

rgravity analysis

m-up: IIB on Zo

struction I: odromy of ular fibers

struction I:

truction II: tive Jacobian of face tive Jacobian of face ing the surface

tity checks

ID checks

Intersections:

- Denote

$$\begin{array}{ll} A = \text{abelian fiber}, & \mathcal{E}_I = \frac{1}{2} \big(\Theta_I - \Theta_I' \big), \\ H = \frac{1}{2} \big(\Theta_I + \Theta_I' \big) - \frac{1}{6} A, \end{array}$$

gives the desired intersections for $X_{1,1}$.

- $-\frac{1}{6}A$? Only effects self-intersection of [H] \Rightarrow Basis for H from sugra has small mismatch w. $H_2(\mathbb{Z})$.
- Wall's classification theorem for 3 folds: c_1, c_2 , intersections \Rightarrow unique CY up to homotopy type.

Identity checks

view

vation

rgravity analysis

m-up: IIB on Z₂

struction I: odromy of ular fibers

struction I: g-junctions

itruction II: tive Jacobian of face tive Jacobian of face ing the surface

tity checks

ID cliecks

- $c_1(X_{1,1}) = 0$, consider $K_{X_{1,1}|\mathbb{P}^1} = K_{\mathbb{P}^1} \otimes \det(N_{\mathbb{P}^1}^*)$ $K_{\mathbb{P}^1} = \mathcal{O}_{\mathbb{P}^1}(-2)$, can show $N_{\mathbb{P}^1}^* = \mathcal{O}_{\mathbb{P}^1}(1) \oplus \mathcal{O}_{\mathbb{P}^1}(1)$.
- $h^{1,1} = h^{2,1} = 14$, $h^{2,1}$ from cplx deform, $h^{1,1}$ from # of sections.
- \bullet 20 nodal genus-2 fibers \Rightarrow same # of singular T^4 fibers.
- $c_2 = 20$ elliptic curves (singular loci of fibers are codim. 2).
- Sections of S 2nd projection $S \to \mathbb{P}^1_{(2)}$ has genus-0 fibers $C_0 = (2\mathbb{P}^1 2 \text{ br pts})$ w. 12 degenerations, where the 2 br pts overlap, and $C_0 \to 2 \mathbb{P}^1$ s Pairs ℓ_I, ℓ_I' meeting at a point $(I = 1, \dots, 12)$. $\Rightarrow 2 \times 12$ sections of genus-2 fibration (w. relations $\ell_I + \ell_I' = C_0$).
- Sections of $X_{1,1}$ Given a fixed choice of zero section $\sigma_0 \in \{\ell_I, \ell_I'\}$, $\operatorname{MW}(X_{1,1}) \cong \langle \sigma_0, f_2 \rangle^{\perp}$ (with S intersection pairing). \Rightarrow 12 dimensional lattice, w. D_{12}^- matrix. (Saito: maximal rank for MW(S))

More ID checks

view

vation

rgravity analysis

m-up: IIB on Z₂

struction I: odromy of ular fibers

struction 1:

itruction II: tive Jacobian of face tive Jacobian of face ing the surface

tity checks

Intersections:

- Denote

$$A = \text{abelian fiber}, \quad \mathcal{E}_I = \frac{1}{2} (\Theta_I - \Theta_I'),$$

 $H = \frac{1}{2} (\Theta_I + \Theta_I') - \frac{1}{6} A,$

gives the desired intersections for $X_{1,1}$.

- $-\frac{1}{6}A$? Only effects self-intersection of [H]
- \Rightarrow Basis for H from sugra has small mismatch w. $H_2(\mathbb{Z})$.
- Wall's classification theorem for 3 folds: c_1 , c_2 , intersections \Rightarrow unique CY up to homotopy type.

Identity checks

view

vation

rgravity analysis

m-up: IIB on

truction 1: odromy of ular fibers

truction 1: g-junctions

truction II: tive Jacobian of tive Jacobian of ing the surface

- $oldsymbol{o}$ $c_1(X_{1,1}) = 0$, consider $K_{X_{1,1}|\mathbb{P}^1} = K_{\mathbb{P}^1} \otimes \det(N_{\mathbb{P}^1}^*)$ $K_{\mathbb{P}^1} = \mathcal{O}_{\mathbb{P}^1}(-2)$, can show $N_{\mathbb{P}^1}^* = \mathcal{O}_{\mathbb{P}^1}(1) \oplus \mathcal{O}_{\mathbb{P}^1}(1)$.
- $h^{1,1} = h^{2,1} = 14$, $h^{2,1}$ from cplx deform, $h^{1,1}$ from # of sections.
- 20 nodal genus-2 fibers \Rightarrow same # of singular T⁴ fibers.
- $c_2 = 20$ elliptic curves (singular loci of fibers are codim. 2).
- Sections of S 2nd projection $S \to \mathbb{P}^1_{(2)}$ has genus-0 fibers $C_0 = (2\mathbb{P}^1 - 2 \text{ br pts})$ w. 12 degenerations, where the 2 br pts overlap, and $C_0 \rightarrow 2 \mathbb{P}^1$ s Pairs ℓ_I, ℓ_I' meeting at a point (I = 1, ..., 12). $\Rightarrow 2 \times 12$ sections of genus-2 fibration (w. relations $\ell_I + \ell_I' = C_0$).
- Sections of $X_{1,1}$ Given a fixed choice of zero section $\sigma_0 \in \{\ell_I, \ell_I'\}$, $MW(X_{1,1}) \cong \langle \sigma_0, f_2 \rangle^{\perp}$ (with S intersection pairing). \Rightarrow 12 dimensional lattice, w. D_{12}^- matrix. (Saito: maximal rank for MW(S))

More ID checks

view

vation

rgravity analysis

m-up: IIB on Zo

struction I: odromy of ular fibers

struction I: g-junctions

itruction II: tive Jacobian of face tive Jacobian of face ing the surface

tity checks

ID checks

Intersections:

- Denote

$$\begin{array}{ll} A = \text{abelian fiber}, & \mathcal{E}_I = \frac{1}{2} \big(\Theta_I - \Theta_I' \big), \\ H = \frac{1}{2} \big(\Theta_I + \Theta_I' \big) - \frac{1}{6} A, \end{array}$$

gives the desired intersections for $X_{1,1}$.

- $-\frac{1}{6}A$? Only effects self-intersection of [H] \Rightarrow Basis for H from sugra has small mismatch w. $H_2(\mathbb{Z})$.
- Wall's classification theorem for 3 folds: c_1, c_2 , intersections \Rightarrow unique CY up to homotopy type.

Conclusions

view

vation

rgravity analysis

m-up: IIB on Z₂

struction I: odromy of ular fibers

struction I:

itruction II: tive Jacobian of face

clusions

lusions

- Two complimentary constructions of the geometric duals of T^6/\mathbb{Z}_2 flux vacua:
 - Monodromy/string-junction description (similar description showed up recently in Mcgreevy, Vegh),
 - 2. Relative Jacobian of a genus-2 fibered surface S (for m, n = 1, 1 case).
- In each case, we have computed the Mordell-Weil lattice of sections, to obtain the desired \mathcal{D}_N lattice.
 - In Case 1, D3 tadpole condition

 total monodromy = 1.
 - All criteria for Wall's theorem (c_1, c_2, C_{IJK}) satisfied in Case 2.
- Stage set for studying related issues in this setting:
 e.g., warped KK reduction, D-instantons (θ-functions, bound states)...
- Duality with other $\mathcal{N}=2$ string vacua, e.g. Heterotic-IIA.
- Generalization to $\mathcal{N}=1$ by adding new branes, generic flux...

vation

rgravity analysis

n-up: IIB on

odromy of ular fibers

struction I:

struction II: tive Jacobian of

rface

clusions

clusions

Thank You!

Page 36/36