Title: Orientifolds and Twisted KR Theory

Date: Sep 09, 2008 11:00 AM

URL: http://pirsa.org/08090003

Abstract: I will report on some work in progress with Dan Freed and Greg Moore. In an orientifold background, D-brane charge takes values in a certain twisted version of KR Theory. Moreover, there is a nontrivial background charge (\'tadpole\'). Up \'til now, this background charge has only been calculated rationally -- i.e., ignoring torsion. We derive a formula for it, over the integers. Only after \'inverting 2\', does the charge localize to the fixed point sets of the orientifold action, and we can give a compact formula for it. This reproduces the previously known rational results, but contains new information.

Pirsa: 08090003 Page 1/71

Orientifolds & Twisted KR Theory

Background charge, over the integers

Jacques Distler

University of Texas at Austin

Orientifolds & Twisted KR Theory

Background charge, over the integers

Jacques Distler

University of Texas at Austin

Why Orientifold?

Like orbifolds: procedure for generating new string theory backgrounds from old.

Has proven very useful for model building: IIB (and IIA) orientifold, "with fluxes" (KKLT et al ...).

- Evades the Gibbons-Maldacena-Nuñez Theorem because orientifold fixed-planes have negative tension, violating the SEC.
- We think we understand moduli stabilization in this context.

Key feature: orientifolds have "background" D-brane charge. On a compact space, must be cancelled for consistency (Gauss's Law).

Pirsa: 08090003 Page 4/71

1/29

Why Orientifold?

Like orbifolds: procedure for generating new string theory backgrounds from old.

Has proven very useful for model building: IIB (and IIA) orientifold, "with fluxes" (KKLT et al ...).

- Evades the Gibbons-Maldacena-Nuñez Theorem because orientifold fixed-planes have negative tension, violating the SEC.
- We think we understand moduli stabilization in this context.

Key feature: orientifolds have "background" D-brane charge. On a compact space, must be cancelled for consistency (Gauss's Law).

Pirsa: 08090003 Page 5/71

Why Orientifold?

Like orbifolds: procedure for generating new string theory backgrounds from old.

Has proven very useful for model building: IIB (and IIA) orientifold, "with fluxes" (KKLT et al ...).

- Evades the Gibbons-Maldacena-Nuñez Theorem because orientifold fixed-planes have negative tension, violating the SEC.
- We think we understand moduli stabilization in this context.

Key feature: orientifolds have "background" D-brane charge. On a compact space, must be cancelled for consistency (Gauss's Law).

Pirsa: 08090003 Page 6/71

Is it possible to cancel the background charge rationally, but not cancel it over \mathbb{Z} ?

Le., could the uncancelled charge be pure torsion?

Pirsa: 08090003 Page 7/71

Is it possible to cancel the background charge rationally, but not cancel it over \mathbb{Z} ?

Le., could the uncancelled charge be pure torsion?

Sure. But to answer the question, need to know what the background charge is over \mathbb{Z} .

Pirsa: 08090003 Page 8/71

Is it possible to cancel the background charge rationally, but not cancel it over \mathbb{Z} ?

I.e., could the uncancelled charge be *pure torsion*?

Sure. But to answer the question, need to know what the background charge is over \mathbb{Z} .

So far, it has only ever been computed rationally (modulo torsion). Joint work with Dan Freed and Greg Moore to rectify that.

Pirsa: 08090003 Page 9/71

Is it possible to cancel the background charge rationally, but not cancel it over \mathbb{Z} ?

I.e., could the uncancelled charge be *pure torsion*?

Sure. But to answer the question, need to know what the background charge is over \mathbb{Z} .

So far, it has only ever been computed rationally (modulo torsion). Joint work with Dan Freed and Greg Moore to rectify that.

N.b.: This is a topological question. Do not assume unbroken SUSY, or even a solution.

Pirsa: 08090003 Page 10/71

Is it possible to cancel the background charge rationally, but not cancel it over \mathbb{Z} ?

I.e., could the uncancelled charge be *pure torsion*?

Sure. But to answer the question, need to know what the background charge is over \mathbb{Z} .

So far, it has only ever been computed rationally (modulo torsion). Joint work with Dan Freed and Greg Moore to rectify that.

N.b.: This is a topological question. Do not assume unbroken SUSY, or even a solution.

Subsidiary objective: clean up a bit of the bestiary of Orientifolds.

Pirsa: 08090003 Page 11/71

Bottom Line

1. Background orientifold charge (or current), μ (or $\check{\mu}$), takes values in twisted (differential) KR theory.

Pirsa: 08090003 Page 12/71

intifolds

Bottom Line

- 1. Background orientifold charge (or current), μ (or $\check{\mu}$), takes values in twisted (differential) KR theory.
- Only after inverting 2 does the formula for the background charge localize to the f.p.s.

Pirsa: 08090003 Page 13/71

Bottom Line

- 1. Background orientifold charge (or current), μ (or $\check{\mu}$), takes values in twisted (differential) KR theory.
- Only after inverting 2 does the formula for the background charge localize to the f.p.s.
- 3. Taking Chern characters, can compare with existing formulæ in the literature

$$(d + u^{-1}H \wedge)G = \underbrace{\check{j}}_{\text{D-branes}} + \underbrace{\check{\mu}}_{\text{orientifold}}$$

N.b.: putting the $H \wedge G$ term on the RHS, as is often done is morally wrong!

Orbifolds

Worldsheet description

- $\circ \sigma$ -model: $\Sigma \xrightarrow{\phi} Y$
- \circ Γ : discrete group of isometries of Y
- \circ Gauge the Γ -symmetry

$$\Sigma \rightarrow Y$$

- $\tilde{\Sigma} \to \Sigma$, a principal Γ -bundle
- $\tilde{\phi}: \tilde{\Sigma} \to Y$ an equivariant map.
- $\gamma_{\tilde{\Sigma}}$ is fixed-point free, so our original surface $\Sigma = \tilde{\Sigma} / \Gamma$. This defines a map $\phi : \Sigma \to \mathcal{X}$, where $\mathcal{X} = Y /\!\!/ \Gamma$ is a "stack".)

$$\tilde{\Sigma} \xrightarrow{\tilde{\phi}} Y$$

- \circ To describe states (CFT operators), allow Σ to have in/out boundaries.
 - Restricting to a boundary circle, S, get a principal Γ -bundle, $\tilde{S} \to S$.
 - · These are classified by holonomy

$$[\gamma] \in \operatorname{Hom}(\pi_1(S), \Gamma)/\operatorname{conj}$$

Twisted sectors \equiv nontrivial Γ -bundles $\tilde{S} \rightarrow S \equiv$ conjugacy classes of Γ .

Orientifolds

Manifold, Y, with a discrete group of isometries, Γ .

$$1 \to \Gamma_0 \to \Gamma \xrightarrow{\omega} \mathbb{Z}_2 \to 1$$

(As a set, $\Gamma = \Gamma_0 \coprod \Gamma_1$, but Γ can be nonabelian, even if Γ_0 , is abelian.) Gauge Γ . But, this time, accompany $\gamma \in \Gamma_1$ by orientation-reversal on worldsheet.

$$\tilde{\Sigma} \xrightarrow{\tilde{\phi}} Y \qquad \circ \tilde{\Sigma} \text{ oriented surface. } \tilde{\Sigma} \to \Sigma \text{ a } \Gamma\text{-principal bundle.}$$

$$\gamma_{\tilde{\Sigma}} \downarrow \qquad \downarrow \qquad \gamma_{Y} \qquad \circ \gamma_{\tilde{\Sigma}} \text{ fixed point free } \begin{cases} \text{ orientation preserving for } \gamma \in \Gamma_{0} \\ \text{ orientation reversing for } \gamma \in \Gamma_{1} \end{cases}$$

$$\tilde{\Sigma} \xrightarrow{\tilde{\phi}} Y \qquad \qquad \Lambda \text{ sain restricting to in out sincles, set } \Gamma \text{ bundle } \tilde{\Sigma}$$

Again, restricting to in/out circles, get Γ -bundle $\tilde{S} \to S$. Claim: reduction of structure group of \tilde{S} from Γ to Γ_0 .

No fixed point free orientation-reversing map from $S^1 \to S^1 \Rightarrow$ Or $(\Sigma = \tilde{\Sigma}/\Gamma) = \tilde{\Sigma}/\Gamma_0$ and Or $(S) = S \coprod S$. Restricting to one copy of S gives explicit

reduction of str group.

Pirsa: 08090003 Page 16/71

5/29

Abelian Gauge Theory

RR fields in String Theory: an exotic type of abelian gauge theory.

Recall electromagnetism.

- $\circ j_e \in H^{d-1}_{\mathrm{cpt}}(X), j_m \in H^3_{\mathrm{cpt}}(X).$
- Electromagnetic field trivializes these: $dF = j_m$, $d * F = j_e$.
- o In quantum theory, need Dirac quantization condition.

RR field: replace de Rham cohomology by generalized cohomology theory, E^{\bullet} . Dirac condition: integrality of bilinear form

$$b(\cdot, \cdot): E^{\bullet} \times E^{\bullet} \to H^2(S)$$

X

 $\downarrow X$

5

Self-Duality

In self-dual theory, electric current determines magnetic current (and vice versa).

$$j_E = \theta(j_M)$$

where $\theta: E^{\bullet} \to E^{d+2-\bullet}$ is an isomorphism.

To define the quantum theory, need a quadratic refinement, $q(\cdot)$, of the bilinear form

7/29

$$b(x_1, x_2) = q(x_1 + x_2) - q(x_1) - q(x_2) \qquad (q(0) = 0)$$

The Center

A quadratic function is symmetric about its center. Let $\psi(x) = q(x) - q(-x)$, a linear function. Since $b(\cdot, \cdot)$ is a perfect pairing, $\psi(x) = -b(\lambda, x)$ for some λ .

$$q(\lambda) = q(0) = 0$$

The center of q is μ such that $2\mu = \lambda$. This determines μ up to 2-torsion. Can do better, but this will suffice for today's lecture.

Type I is an orientifold of IIB (with trivial action of $\Gamma = \mathbb{Z}_2$). The charge group is $KR^0(X) = KO^0(X)$. Freed and Hopkins wrote down $q(\cdot)$ and computed its center

$$-\mu = T + 22$$
 (up to codimension 8)

which is, indeed, the background charge of this orientifold. (Compare with heterotic dual.)

Objective: generalize this.

Pirsa: 08090003 Page 19/7

Differential Cohomology

 $\check{H}^q(X)$: add geometrical data to topological data in $H^q(X, \mathbb{Z})$.

Examples:

$$\circ \ \check{H}^0(X) = H^0(X, \ \mathbb{Z})$$

- o $\check{H}^1(X) = \operatorname{Maps}(X, S^1)$: circle-valued scalar, φ . $\omega = d\varphi$ closed 1-form, de Rham representative of a class in $H^1(X, \mathbb{Z})$.
- $\check{H}^2(X) = \{ \text{isom}(L, \nabla) \} : c(L) \in H^2(X, \mathbb{Z}), \text{ the first Chern class of } L. F = dA$ a de Rham representative of c(L).
- \circ $\check{H}^3(X)$: where the *B*-field in String Theory lives.
- o etc.

Exact Sequences

More generally, the differential cohomology groups, $\check{H}^q(X)$, fit into the exact sequences

$$0 \to H^{q-1}(X, \mathbb{R}/\mathbb{Z}) \to \check{H}^{q}(X) \to \Omega^{q}_{\text{closed}, \mathbb{Z}}(X) \to 0$$

$$0 \to \Omega^{q-1}(X)/\Omega^{q-1}_{\text{closed}, \mathbb{Z}}(X) \to \check{H}^{q}(X) \to H^{q}(X, \mathbb{Z}) \to 0$$
topologically trivial

N.b.: $\Omega_{\text{closed. }\mathbb{Z}}^{q-1}(X)$ is the group of gauge transformations.

Differential K-Theory

Similarly, for $\check{K}^{q}(X)$.

$$0 \to K^{q-1}(X, \mathbb{R}/\mathbb{Z}) \to \check{K}^{q}(X) \to \Omega^{q}_{\text{closed}, \mathbb{Z}}(X, R) \to 0$$

$$0 \to \Omega^{q-1}(X, R)/\Omega^{q-1}_{\text{closed}, \mathbb{Z}}(X, R) \to \check{K}^{q}(X) \to K^{q}(X) \to 0$$
RR field strength

where
$$R = K^{\bullet}(pt) = \mathbb{R}[u, u^{-1}], \deg(u) = 2$$
 and

$$0 \to K^q(X, \mathbb{R})/K^q(X) \to K^q(X, \mathbb{R}/\mathbb{Z}) \to K^{q+1}_{\mathrm{tors}}(X) \to 0$$

K Theory

Will help to have a specific model in mind.

Usually think of K^0 as represented by formal differences of vector bundles $E_0 \oplus E_1$. Instead, consider \mathbb{Z}_2 -graded vector bundles $E = E_0 \oplus E_1$ with an odd, skew-adjoint endomorphism, T (requires a Hermitian metric on E — a contractible choice).

Some applications will require $E \infty$ -dimensional and T Fredholm.

 $Cliff_n^{\pm}$ (real Clifford algebra):

$$\gamma_i \gamma_j + \gamma_j \gamma_i = \pm 2\delta_{ij}, \qquad i, j = 1, ..., n$$

 $K^{\pm n}$:

represented by a pair, (E, T), as before, carrying a left $Cliff_n^{\pm}$ action, which graded-commutes with T (the γ , are odd).

Pirsa: 08090003 Page 23/7

KR Theory

KR theory:

 $\sigma: X \mathfrak{D}$. Consider complex, \mathbb{Z}_2 -graded vector bundles, $E \to X$, s.t. σ lifts to an even, *antilinear* action on fibers, which commutes with T and with the Clifford action. K-theory of such gadgets is called KR theory.

N.b., if σ acts trivially, this is just an antilinear involution for the fibers, i.e. a real structure \Rightarrow KO theory.

Equivariant K-theory, $K_G^{\bullet}(X)$:

G acts on *X*, lifts to an *even* linear action on *E*, which commutes with *T* and with the Clifford action.

Hybrid, ${}^{\omega}K_{T}^{\bullet}(Y)$:

$$1 \to \Gamma_0 \to \Gamma \xrightarrow{\omega} \mathbb{Z}_2 \to 1$$

lift of $\gamma \in \Gamma_0$ is even-linear; lift of $\gamma \in \Gamma_1$ is even-antilinear.

$${}^{\omega}K_{\Gamma}^{\bullet}(Y) = \mathrm{KR}^{\bullet}(\mathcal{X}_{w})$$

where \mathcal{X}_w is a certain double cover of the **stack**, $\mathcal{X} = Y /\!\!/ \Gamma$.

Pirsa: 08090003 Page 24/71

Smooth Deligne-Mumford Stack (Pantev-Sharpe, Freed-Hopkins-Teleman)

Pirsa: 08090003 Page 26/71

entifolds

Smooth Deligne-Mumford Stack (Pantev-Sharpe, Freed-Hopkins-Teleman)

Groupoid: Category in which all morphisms are isomorphisms. A *group* is a groupoid with just one object.

Pirsa: 08090003 Page 27/71

14/29

ntifolds

Smooth Deligne-Mumford Stack (Pantev-Sharpe, Freed-Hopkins-Teleman)

Groupoid: Category in which all morphisms are isomorphisms. A *group* is a groupoid with just one object.

Stack: Represented (up to some equivalence) by a special type of groupoid, \mathcal{X} .

Pirsa: 08090003 Page 28/71

14/29

Smooth Deligne-Mumford Stack (Pantev-Sharpe, Freed-Hopkins-Teleman)

Groupoid: Category in which all morphisms are isomorphisms. A *group* is a groupoid with just one object.

Stack: Represented (up to some equivalence) by a special type of groupoid, \mathcal{X} .

$$\circ \ \, \underset{\text{morphisms}}{\mathcal{X}_1} \ \, \overset{p_0}{\underset{p_1}{\Rightarrow}} \ \, \underset{\text{objects}}{\mathcal{X}_0} \ \, \text{where} \left\{ \begin{array}{c} f \\ f \in \mathcal{X}_1 \\ a \\ \end{array} \right. \quad \, \overset{f}{\underset{b}{\Rightarrow}} \quad \, \\ p_0(f) = a \quad p_1(f) = b \end{array} \right.$$

Pirsa: 08090003 Page 29/

Smooth Deligne-Mumford Stack (Pantev-Sharpe, Freed-Hopkins-Teleman)

Groupoid: Category in which all morphisms are isomorphisms. A *group* is a groupoid with just one object.

Stack: Represented (up to some equivalence) by a special type of groupoid, \mathcal{X} .

$$\mathcal{X}_1 \underset{\text{morphisms}}{\overset{p_0}{\Rightarrow}} \mathcal{X}_0 \text{ where } \begin{cases} f \in \mathcal{X}_1 \\ f \in \mathcal{X}_1 \end{cases}$$

- $\mathcal{X}_0, \mathcal{X}_1$ smooth manifolds.
- $p_{0,1}$ local diffeomorphisms. $p_0 \times p_1 : \mathcal{X}_1 \to \mathcal{X}_0 \times \mathcal{X}_0$ proper.

Smooth Deligne-Mumford Stack (Pantev-Sharpe, Freed-Hopkins-Teleman)

Groupoid: Category in which all morphisms are isomorphisms. A *group* is a groupoid with just one object.

Stack: Represented (up to some equivalence) by a special type of groupoid, \mathcal{X} .

$$\mathcal{X}_1 \underset{\text{morphisms}}{\overset{p_0}{\Rightarrow}} \mathcal{X}_0 \text{ where } \begin{cases} f \in \mathcal{X}_1 \\ f \in \mathcal{X}_1 \end{cases}$$

- $\circ \mathcal{X}_0, \mathcal{X}_1$ smooth manifolds.
- $p_{0,1}$ local diffeomorphisms. $p_0 \times p_1 : \mathcal{X}_1 \to \mathcal{X}_0 \times \mathcal{X}_0$ proper.
- Stab(x) = { $f \in \mathcal{X}_1 \mid p_1(f) = p_0(f) = x$ }.
 - Deligne-Mumford Stack: Stab(x) finite group, $\forall x \in \mathcal{X}_0$.
 - Artin Stack: relax this condition.

Pirsa: 08090003 Page 31/7⁻

1. Main example: $\mathcal{X} = Y /\!\!/ \Gamma$.

$$\mathcal{X}_0 = Y$$
, $\mathcal{X}_1 = Y \times \Gamma$ with $p_0(y, \gamma) = y$, $p_1(y, \gamma) = \gamma \cdot y$.

Isomorphism classes of objects in $Y/\!\!/\Gamma$ are the points of $Y/\!\!/\Gamma$, but the stack "remembers" stabilizer groups of points.

Pirsa: 08090003 Page 32/71

1. Main example: $\mathcal{X} = Y /\!\!/ \Gamma$.

$$\mathcal{X}_0 = Y$$
, $\mathcal{X}_1 = Y \times \Gamma$ with $p_0(y, \gamma) = y$, $p_1(y, \gamma) = \gamma \cdot y$.

Isomorphism classes of objects in $Y/\!\!/\Gamma$ are the points of $Y/\!\!/\Gamma$, but the stack "remembers" stabilizer groups of points.

2. Any manifold X is a stack, with groupoid having just the identity morphism for each $x \in X$. I.e. $\mathcal{X}_0 = \mathcal{X}_1 = X$.

Pirsa: 08090003 Page 33/71

1. Main example: $\mathcal{X} = Y /\!\!/ \Gamma$.

$$\mathcal{X}_0 = Y$$
, $\mathcal{X}_1 = Y \times \Gamma$ with $p_0(y, \gamma) = y$, $p_1(y, \gamma) = \gamma \cdot y$.

Isomorphism classes of objects in $Y/\!\!/\Gamma$ are the points of $Y/\!\!/\Gamma$, but the stack "remembers" stabilizer groups of points.

- 2. Any manifold X is a stack, with groupoid having just the identity morphism for each $x \in X$. I.e. $\mathcal{X}_0 = \mathcal{X}_1 = X$.
- 3. An equivalent groupoid is given by an open cover, $\{U_i\}$, of X. $\mathcal{X}_0 = \coprod_i U_i$, $\mathcal{X}_1 = \coprod_{i \neq j} U_{ij}$. For each point on X, on the overlap between patches, we have an extra pair of morphisms, identifying the corresponding points in each

patch. I.e.
$$U_{ij}$$
 $\bigvee_{p_1}^{p_0} U_i$ inclusions. $\bigvee_{p_1} U_j$

1. Main example: $\mathcal{X} = Y /\!\!/ \Gamma$.

$$\mathcal{X}_0 = Y$$
, $\mathcal{X}_1 = Y \times \Gamma$ with $p_0(y, \gamma) = y$, $p_1(y, \gamma) = \gamma \cdot y$.

Isomorphism classes of objects in $Y/\!\!/\Gamma$ are the points of $Y/\!\!/\Gamma$, but the stack "remembers" stabilizer groups of points.

- 2. Any manifold X is a stack, with groupoid having just the identity morphism for each $x \in X$. I.e. $\mathcal{X}_0 = \mathcal{X}_1 = X$.
- 3. An equivalent groupoid is given by an open cover, $\{U_i\}$, of X. $\mathcal{X}_0 = \coprod_i U_i$, $\mathcal{X}_1 = \coprod_{i \neq j} U_{ij}$. For each point on X, on the overlap between patches, we have an extra pair of morphisms, identifying the corresponding points in each

patch. I.e.
$$U_{ij}$$
 inclusions. $\bigvee_{p_1}^{p_0} U_j$

Key property: a map $M \stackrel{\phi}{\to} Y /\!\!/ \Gamma$ "is" an equivariant map $P \stackrel{\phi}{\to} Y$, where $P \to M$ is a Γ -principal bundle.

Simplicial Space

Motivated by example 3, define simplicial space

$$\dots \mathcal{X}_3 \stackrel{\Rightarrow}{\rightrightarrows} \mathcal{X}_2 \stackrel{\Rightarrow}{\rightrightarrows} \mathcal{X}_1 \stackrel{\Rightarrow}{\rightrightarrows} \mathcal{X}_0$$

where the points of \mathcal{X}_n are *n*-simplices generated by *n*-composable morphisms

A Vector Bundle on \mathcal{X} :

- A vector bundle, $E \to \mathcal{X}_0$.
- Isomorphism, $\theta: p_0^*(E) \xrightarrow{\sim} p_1^*(E)$ on \mathcal{X}_1 .
- Compatibility condition on \mathcal{X}_2 . (For example 3, this is the cocycle condition.)

Cohomology

Can define cohomology, K-theory, ... on stacks.

$$H^j(Y/\!\!/\Gamma) = H^j_\Gamma(Y)$$

- \circ $H^1_{\Gamma}(Y, \mathbb{Z}/2)$ classifies double covers $\hat{Y} \to Y$, with a lift of Γ action to \hat{Y} .
- $w_1(Y//\Gamma) = w_1^{eq}(Y)$ measures whether Y is orientable, and Γ preserves an orientation.
- $w_2(Y//\Gamma) = w_2^{eq}(Y)$ measures whether Y admits a spin structure, with a spin action of Γ .

$$K(Y/\!\!/\Gamma) = K_{\Gamma}(Y)$$

For orientifolds, we need the slightly more exotic ${}^{\omega}K_{\Gamma}(Y)$.

Pirsa: 08090003 Page 37/10

18/29

• Double cover: $\mathcal{X}_w \to \mathcal{X}$, for $w \in H^1(\mathcal{X}, \mathbb{Z}/2)$. If $\mathcal{X} = Y/\!\!/ \Gamma$, $\mathcal{X}_w = Y/\!\!/ \Gamma_0$.

- Double cover: $\mathcal{X}_w \to \mathcal{X}$, for $w \in H^1(\mathcal{X}, \mathbb{Z}/2)$. If $\mathcal{X} = Y/\!\!/ \Gamma$, $\mathcal{X}_w = Y/\!\!/ \Gamma_0$.
- \circ A *B*-field, $\check{B} \in \check{E}^3(\mathcal{X})$, where

twisted coefs

$$0 \to \check{H}^{3}(\mathcal{X}, \tilde{\mathbb{Z}}) \to \check{E}^{3}(\mathcal{X}) \to H^{1}(\mathcal{X}, \mathbb{Z}/2) \to 0$$

and \mathbb{Z} indicates coefficients twisted by the double cover $\mathcal{X}_w \to \mathcal{X}$. Topologically, $[\check{B}] = (h, a)$.

 $h \in H^3(\mathcal{X}, \mathbb{Z})$ is cohomology class of H. $a \in H^1(\mathcal{X}, \mathbb{Z}/2)$ tells you when $(-1)^{F_L}$ accompanies $\gamma \in \Gamma$ in the worldsheet theory.

- Double cover: $\mathcal{X}_w \to \mathcal{X}$, for $w \in H^1(\mathcal{X}, \mathbb{Z}/2)$. If $\mathcal{X} = Y/\!\!/ \Gamma$, $\mathcal{X}_w = Y/\!\!/ \Gamma_0$.
- o A *B*-field, $\check{B} \in \check{E}^3(\mathcal{X})$, where

twisted coefs

$$0 \to \check{H}^{3}(\mathcal{X}, \tilde{\mathbb{Z}}) \to \check{E}^{3}(\mathcal{X}) \to H^{1}(\mathcal{X}, \mathbb{Z}/2) \to 0$$

and \mathbb{Z} indicates coefficients twisted by the double cover $\mathcal{X}_w \to \mathcal{X}$. Topologically, $[\check{B}] = (h, a)$.

 $h \in H^3(\mathcal{X}, \mathbb{Z})$ is cohomology class of H. $a \in H^1(\mathcal{X}, \mathbb{Z}/2)$ tells you when $(-1)^{F_L}$ accompanies $\gamma \in \Gamma$ in the worldsheet theory.

• "Twisted Spin structure" (t = 0 for IIB, t = 1 for IIA)

$$w_1(\mathcal{X}) = tw$$

 $w_2(\mathcal{X}) = tw^2 + aw$

where $a \in H^1(\mathcal{X}, \mathbb{Z}/2)$ is part of the *B*-field.

Pirsa: 08090003 Page 41/7

Mother Of All Type I/II Theories

Choose $\mathcal{X} = X$ and w = 0. ($\mathcal{X}_w \to \mathcal{X}$ trivial double-cover.) Then $\begin{cases} t = 0 & \Rightarrow \text{Type IIB} \\ t = 1 & \Rightarrow \text{Type IIA} \end{cases}$

Choice of a gives $2^{\dim(H^1(X,\mathbb{Z}/2))}$ theories, with

$$S' = \begin{cases} S \otimes L(a), & \text{Type IIB} \\ S^{\text{op}} \otimes L(a), & \text{Type IIA} \end{cases}, \text{ where } w_1(L) = a.$$

- Choose $\mathcal{X} = X \times (\text{pt}/\!\!/ \mathbb{Z}_2)$ and $w = \alpha$, where $\alpha \in H^1(\mathcal{X}, \mathbb{Z}/2)$ is the "universal" element, pulled back from $\text{pt}/\!\!/ \mathbb{Z}_2$ ($\mathcal{X}_w = X$). \exists twisted spin structure $\Rightarrow t = 0$ and $a = 0 \Rightarrow \text{Type I}$.
- Choose $\mathcal{X} = \mathbb{R}^{10-n} \times (\mathbb{R}^n /\!\!/ \mathbb{Z}_2)$, reflection on n dimensions. $w = \alpha$. $T\mathcal{X} = 1^{\oplus (10-n)} \oplus L(\alpha)^{\oplus n} \Rightarrow w_1(\mathcal{X}) = n\alpha, w_2(\mathcal{X}) = \binom{n}{2}\alpha^2$.

Twisted spin str:
$$w_1(\mathcal{X}) = tw$$

$$w_2(\mathcal{X}) = tw^2 + aw$$

$$\Rightarrow \begin{cases} t = n \pmod{2} \\ a = \begin{cases} 0 & n = 0,3 \\ \alpha & n = 1,2 \end{cases} \pmod{4}$$

o etc. ...

- Double cover: $\mathcal{X}_w \to \mathcal{X}$, for $w \in H^1(\mathcal{X}, \mathbb{Z}/2)$. If $\mathcal{X} = Y/\!\!/ \Gamma$, $\mathcal{X}_w = Y/\!\!/ \Gamma_0$.
- o A *B*-field, $\check{B} \in \check{E}^3(\mathcal{X})$, where

$$0 \to \check{H}^{3}(\mathcal{X}, \tilde{\mathbb{Z}}) \to \check{E}^{3}(\mathcal{X}) \to H^{1}(\mathcal{X}, \mathbb{Z}/2) \to 0$$

and \mathbb{Z} indicates coefficients twisted by the double cover $\mathcal{X}_w \to \mathcal{X}$. Topologically, $[\check{B}] = (h, a)$.

 $h \in H^3(\mathcal{X}, \mathbb{Z})$ is cohomology class of H. $a \in H^1(\mathcal{X}, \mathbb{Z}/2)$ tells you when $(-1)^{F_L}$ accompanies $\gamma \in \Gamma$ in the worldsheet theory.

• "Twisted Spin structure" (t = 0 for IIB, t = 1 for IIA)

$$w_1(\mathcal{X}) = tw$$

 $w_2(\mathcal{X}) = tw^2 + aw$

where $a \in H^1(\mathcal{X}, \mathbb{Z}/2)$ is part of the *B*-field.

Pirsa: 08090003 Page 43/7

Mother Of All Type I/II Theories

Choose $\mathcal{X} = X$ and w = 0. ($\mathcal{X}_w \to \mathcal{X}$ trivial double-cover.) Then $\begin{cases} t = 0 & \Rightarrow \text{Type IIB} \\ t = 1 & \Rightarrow \text{Type IIA} \end{cases}$

Choice of a gives $2^{\dim(H^1(X,\mathbb{Z}/2))}$ theories, with

$$S' = \begin{cases} S \otimes L(a), & \text{Type IIB} \\ S^{\text{op}} \otimes L(a), & \text{Type IIA} \end{cases}, \text{ where } w_1(L) = a.$$

- Choose $\mathcal{X} = X \times (\text{pt}/\!\!/ \mathbb{Z}_2)$ and $w = \alpha$, where $\alpha \in H^1(\mathcal{X}, \mathbb{Z}/2)$ is the "universal" element, pulled back from $\text{pt}/\!\!/ \mathbb{Z}_2$ ($\mathcal{X}_w = X$). \exists twisted spin structure $\Rightarrow t = 0$ and $a = 0 \Rightarrow \text{Type I}$.
- Choose $\mathcal{X} = \mathbb{R}^{10-n} \times (\mathbb{R}^n /\!\!/ \mathbb{Z}_2)$, reflection on n dimensions. $w = \alpha$. $T\mathcal{X} = 1^{\oplus (10-n)} \oplus L(\alpha)^{\oplus n} \Rightarrow w_1(\mathcal{X}) = n\alpha, w_2(\mathcal{X}) = \binom{n}{2}\alpha^2$.

Twisted spin str:
$$w_1(\mathcal{X}) = tw$$

$$w_2(\mathcal{X}) = tw^2 + aw$$

$$\Rightarrow \begin{cases} t = n \pmod{2} \\ a = \begin{cases} 0 & n = 0,3 \\ \alpha & n = 1,2 \end{cases} \pmod{4}$$

o etc. ...

- Double cover: $\mathcal{X}_w \to \mathcal{X}$, for $w \in H^1(\mathcal{X}, \mathbb{Z}/2)$. If $\mathcal{X} = Y/\!\!/ \Gamma$, $\mathcal{X}_w = Y/\!\!/ \Gamma_0$.
- o A *B*-field, $\check{B} \in \check{E}^3(\mathcal{X})$, where

twisted coefs

$$0 \to \check{H}^{3}(\mathcal{X}, \tilde{\mathbb{Z}}) \to \check{E}^{3}(\mathcal{X}) \to H^{1}(\mathcal{X}, \mathbb{Z}/2) \to 0$$

and \mathbb{Z} indicates coefficients twisted by the double cover $\mathcal{X}_w \to \mathcal{X}$. Topologically, $[\check{B}] = (h, a)$.

 $h \in H^3(\mathcal{X}, \mathbb{Z})$ is cohomology class of H. $a \in H^1(\mathcal{X}, \mathbb{Z}/2)$ tells you when $(-1)^{F_L}$ accompanies $\gamma \in \Gamma$ in the worldsheet theory.

• "Twisted Spin structure" (t = 0 for IIB, t = 1 for IIA)

$$w_1(\mathcal{X}) = tw$$

 $w_2(\mathcal{X}) = tw^2 + aw$

where $a \in H^1(\mathcal{X}, \mathbb{Z}/2)$ is part of the *B*-field.

Pirsa: 08090003 Page 45/7

Mother Of All Type I/II Theories

Choose $\mathcal{X} = X$ and w = 0. ($\mathcal{X}_w \to \mathcal{X}$ trivial double-cover.) Then $\begin{cases} t = 0 & \Rightarrow \text{Type IIB} \\ t = 1 & \Rightarrow \text{Type IIA} \end{cases}$

Choice of a gives $2^{\dim(H^1(X,\mathbb{Z}/2))}$ theories, with

$$S' = \begin{cases} S \otimes L(a), & \text{Type IIB} \\ S^{\text{op}} \otimes L(a), & \text{Type IIA} \end{cases}, \text{ where } w_1(L) = a.$$

- Choose $\mathcal{X} = X \times (\text{pt}/\!\!/ \mathbb{Z}_2)$ and $w = \alpha$, where $\alpha \in H^1(\mathcal{X}, \mathbb{Z}/2)$ is the "universal" element, pulled back from $\text{pt}/\!\!/ \mathbb{Z}_2$ ($\mathcal{X}_w = X$). \exists twisted spin structure $\Rightarrow t = 0$ and $a = 0 \Rightarrow \text{Type I}$.
- Choose $\mathcal{X} = \mathbb{R}^{10-n} \times (\mathbb{R}^n /\!\!/ \mathbb{Z}_2)$, reflection on n dimensions. $w = \alpha$. $T\mathcal{X} = 1^{\oplus (10-n)} \oplus L(\alpha)^{\oplus n} \Rightarrow w_1(\mathcal{X}) = n\alpha, w_2(\mathcal{X}) = \binom{n}{2}\alpha^2$.

Twisted spin str:
$$w_1(\mathcal{X}) = tw$$

$$w_2(\mathcal{X}) = tw^2 + aw$$

$$\Rightarrow \begin{cases} t = n \pmod{2} \\ a = \begin{cases} 0 & n = 0,3 \\ \alpha & n = 1,2 \end{cases} \pmod{4}$$

o etc. ...

- Double cover: $\mathcal{X}_w \to \mathcal{X}$, for $w \in H^1(\mathcal{X}, \mathbb{Z}/2)$. If $\mathcal{X} = Y/\!\!/ \Gamma$, $\mathcal{X}_w = Y/\!\!/ \Gamma_0$.
- o A *B*-field, $\check{B} \in \check{E}^3(\mathcal{X})$, where

twisted coefs

$$0 \to \check{H}^{3}(\mathcal{X}, \tilde{\mathbb{Z}}) \to \check{E}^{3}(\mathcal{X}) \to H^{1}(\mathcal{X}, \mathbb{Z}/2) \to 0$$

and $\tilde{\mathbb{Z}}$ indicates coefficients twisted by the double cover $\mathcal{X}_w \to \mathcal{X}$. Topologically, $[\check{B}] = (h, a)$.

 $h \in H^3(\mathcal{X}, \mathbb{Z})$ is cohomology class of H. $a \in H^1(\mathcal{X}, \mathbb{Z}/2)$ tells you when $(-1)^{F_L}$ accompanies $\gamma \in \Gamma$ in the worldsheet theory.

• "Twisted Spin structure" (t = 0 for IIB, t = 1 for IIA)

$$w_1(\mathcal{X}) = tw$$

 $w_2(\mathcal{X}) = tw^2 + aw$

where $a \in H^1(\mathcal{X}, \mathbb{Z}/2)$ is part of the *B*-field.

Pirsa: 08090003 Page 47/7

Mother Of All Type I/II Theories

Choose $\mathcal{X} = X$ and w = 0. ($\mathcal{X}_w \to \mathcal{X}$ trivial double-cover.) Then $\begin{cases} t = 0 & \Rightarrow \text{Type IIB} \\ t = 1 & \Rightarrow \text{Type IIA} \end{cases}$

Choice of a gives $2^{\dim(H^1(X,\mathbb{Z}/2))}$ theories, with

$$S' = \begin{cases} S \otimes L(a), & \text{Type IIB} \\ S^{\text{op}} \otimes L(a), & \text{Type IIA} \end{cases}, \text{ where } w_1(L) = a.$$

- Choose $\mathcal{X} = X \times (\text{pt}/\!\!/ \mathbb{Z}_2)$ and $w = \alpha$, where $\alpha \in H^1(\mathcal{X}, \mathbb{Z}/2)$ is the "universal" element, pulled back from $\text{pt}/\!\!/ \mathbb{Z}_2$ ($\mathcal{X}_w = X$). \exists twisted spin structure $\Rightarrow t = 0$ and $a = 0 \Rightarrow \text{Type I}$.
- Choose $\mathcal{X} = \mathbb{R}^{10-n} \times (\mathbb{R}^n /\!\!/ \mathbb{Z}_2)$, reflection on n dimensions. $w = \alpha$. $T\mathcal{X} = 1^{\oplus (10-n)} \oplus L(\alpha)^{\oplus n} \Rightarrow w_1(\mathcal{X}) = n\alpha, w_2(\mathcal{X}) = \binom{n}{2}\alpha^2$.

Twisted spin str:
$$w_1(\mathcal{X}) = tw$$

$$w_2(\mathcal{X}) = tw^2 + aw$$

$$\Rightarrow \begin{cases} t = n \pmod{2} \\ a = \begin{cases} 0 & n = 0,3 \\ \alpha & n = 1,2 \end{cases} \pmod{4}$$

o etc. ...

- Double cover: $\mathcal{X}_w \to \mathcal{X}$, for $w \in H^1(\mathcal{X}, \mathbb{Z}/2)$. If $\mathcal{X} = Y/\!\!/ \Gamma$, $\mathcal{X}_w = Y/\!\!/ \Gamma_0$.
- o A *B*-field, $\check{B} \in \check{E}^3(\mathcal{X})$, where

twisted coefs

$$0 \to \check{H}^{3}(\mathcal{X}, \tilde{\mathbb{Z}}) \to \check{E}^{3}(\mathcal{X}) \to H^{1}(\mathcal{X}, \mathbb{Z}/2) \to 0$$

and \mathbb{Z} indicates coefficients twisted by the double cover $\mathcal{X}_w \to \mathcal{X}$. Topologically, $[\check{B}] = (h, a)$.

 $h \in H^3(\mathcal{X}, \mathbb{Z})$ is cohomology class of H. $a \in H^1(\mathcal{X}, \mathbb{Z}/2)$ tells you when $(-1)^{F_L}$ accompanies $\gamma \in \Gamma$ in the worldsheet theory.

• "Twisted Spin structure" (t = 0 for IIB, t = 1 for IIA)

$$w_1(\mathcal{X}) = tw$$

 $w_2(\mathcal{X}) = tw^2 + aw$

where $a \in H^1(\mathcal{X}, \mathbb{Z}/2)$ is part of the *B*-field.

Pirsa: 08090003 Page 49/7

Mother Of All Type I/II Theories

Choose $\mathcal{X} = X$ and w = 0. ($\mathcal{X}_w \to \mathcal{X}$ trivial double-cover.) Then $\begin{cases} t = 0 & \Rightarrow \text{Type IIB} \\ t = 1 & \Rightarrow \text{Type IIA} \end{cases}$

Choice of a gives $2^{\dim(H^1(X,\mathbb{Z}/2))}$ theories, with

$$S' = \begin{cases} S \otimes L(a), & \text{Type IIB} \\ S^{\text{op}} \otimes L(a), & \text{Type IIA} \end{cases}, \text{ where } w_1(L) = a.$$

- Choose $\mathcal{X} = X \times (\text{pt}/\!\!/ \mathbb{Z}_2)$ and $w = \alpha$, where $\alpha \in H^1(\mathcal{X}, \mathbb{Z}/2)$ is the "universal" element, pulled back from $\text{pt}/\!\!/ \mathbb{Z}_2$ ($\mathcal{X}_w = X$). \exists twisted spin structure $\Rightarrow t = 0$ and $a = 0 \Rightarrow \text{Type I}$.
- Choose $\mathcal{X} = \mathbb{R}^{10-n} \times (\mathbb{R}^n /\!\!/ \mathbb{Z}_2)$, reflection on n dimensions. $w = \alpha$. $T\mathcal{X} = 1^{\oplus (10-n)} \oplus L(\alpha)^{\oplus n} \Rightarrow w_1(\mathcal{X}) = n\alpha, w_2(\mathcal{X}) = \binom{n}{2}\alpha^2$.

o etc. ...

Twisting KR

We wrote $[\check{B}]$ as a pair, (h, a). But addition law in the group $E^3(\mathcal{X})$ is

$$(h_1, a_1) + (h_2, a_2) = (h_1 + h_2 + \tilde{\beta}(a_1 \cup a_2), a_1 + a_2)$$

where $\tilde{\beta}: H^2(\mathcal{X}, \mathbb{Z}/2) \to H^3(\mathcal{X}, \tilde{\mathbb{Z}})$ is the twisted Bockstein associated to $0 \to \tilde{\mathbb{Z}} \stackrel{\times 2}{\to} \tilde{\mathbb{Z}} \to \mathbb{Z}/2 \to 0$

As in ordinary Type II, turning on a nontrivial B-field twists the K-Theory where D-brane charge lives. In our case, we want a twisting of $\check{KR}^{i}(\mathcal{X}_{w})$ by $\check{B} \in \check{E}^{3}(\mathcal{X})$.

The quadratic refinement uses the fact that, for $x \in \check{KR}^{t+\check{B}}(\mathcal{X}_w)$, $u^{-t}x\bar{x} \in \check{KO}^{\check{t}}(\mathcal{X})$ where

$$\check{\tau} \simeq \check{B} + \overline{\check{B}} + t\alpha^2$$

is a twisting of KO. (This isomorphism requires a twisted spin structure.)

We'll frequently write $KO(\mathcal{X}) = KO_{\mathbb{Z}_2}(\mathcal{X}_w)$.

Page 51/71

Specialize

At this point, will specialize to $\mathcal{X} = X /\!\!/ \mathbb{Z}_2$, an ordinary manifold with involution. I.e., $\Gamma = \mathbb{Z}_2$, with generator σ .

Let *F* be f.p.s. of σ (could be all of *X*, or could be empty).

A priori:

 σ orientation-preserving \Rightarrow codim(F) = even.

 σ orientation-reversing \Rightarrow codim(F) = odd.

In fact:

 \exists twisted spin structure \Rightarrow codim(F) well-defined mod (4).

Accompany σ by reversal of orientation on worldsheet.

There are "universal" twistings pulled back from $H^3(\operatorname{pt}/\!\!/\mathbb{Z}_2, \mathbb{Z}) \rtimes H^1(\operatorname{pt}/\!\!/\mathbb{Z}_2, \mathbb{Z}_2)$. Depending on $\operatorname{codim}(F) \mod 4$, only 2 of 4 are compatible with a twisted spin structure, and lead to Op^{\pm} .

Pirsa: 08090003 Page 52/7

Integration

Integration in equivariant KO-theory given by Dirac Index (for families).

$$\int_X : KO_{\mathbb{Z}_2}^n(\mathbb{X}) \to KO_{\mathbb{Z}_2}^{n-\dim X}(S)$$

 $\downarrow X$

I'll take a shortcut: consider 12-manifold (2-parameter family). So we map $KO_{\mathbb{Z}_2}^0 \to KO_{\mathbb{Z}_2}^{-12}(pt) = KO^{-4}(pt) \otimes RO(\mathbb{Z}_2) = \mathbb{Z} \oplus \varepsilon \mathbb{Z}$

Quadratic Refinement

Let $x \in KR^{0+r}(X)$ (IIB) or $x \in KR^{1+r}(X)$ (IIA). Can lift $x\overline{x}$ (or $u^{-1}x\overline{x}$) to $KO_{\mathbb{Z}_2}^0(X)$. Then we integrate over a 12-manifold, and pick off the coefficient of ϵ in the result.

$$q(x) = \left(\int_{X} x \overline{x} \right) \Big|_{\epsilon}$$

The center (or, rather, twice the center) can be computed from

$$\psi(x) = q(x) - q(\pi x) = \left(\left. \int_{\mathbb{X}} ((x\overline{x})_+ - (\pi x \overline{\pi x})_+) \right) \right|_{\epsilon}$$

23/29

Localization

After inverting 2, the formula for $\psi(x)$ localizes to the f.p.s, F

$$\psi(x) = \int_{F}^{\text{KO}[1/2]} \frac{2\psi_2(x|_F)}{\Delta(\nu)}$$

where $\Delta(\nu)$ is the spinor bundle of the normal bundle, and $\psi_2(V) = \operatorname{Sym}^2 V \ominus \wedge^2 V$ is the Adams operation.

In KO[1/2], ψ_2 has an inverse, $\psi_{1/2}$, with which we can write

$$\psi(x) = 2 \int_{F}^{KO} \psi_{2} \left(\frac{x|_{F}}{\psi_{1/2}(\Delta(\nu))} \right)$$

1. Use splitting principle and the fact that ψ_2 is a ring homomorphism. $\psi_2(L) = L^2$. Let L = 1 + x, with x nilpotent. (Note: only powers of 2 in the denominators!)

$$\psi_{1/2}(L) = (1+x)^{1/2} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 - \dots$$

Cannibalistic Class

The Bott Cannibalistic Class is the KO analogue of the Wu class

$$\int_{M}^{KO[1/2]} \psi_{2}(y) = \int_{M}^{KO[1/2]} y \cup \rho(M)$$

It can be written as (at least, for *M* even-dim and spin)

$$\rho(M) = \prod_{i=1}^{\dim(M)/2} \left(l_i^{1/4} \oplus l_i^{-1/4} \right) = \psi_{1/2}(\Delta(M))$$

where we used the splitting principle

$$TM \otimes \mathbb{C} = \bigoplus_{i=1}^{\dim(M)/2} (l_i \bigoplus l_i^{-1})$$

Pirsa: 08090003 Page 56/71

Localization

After inverting 2, the formula for $\psi(x)$ localizes to the f.p.s, F

$$\psi(x) = \int_{F}^{\text{KO}[1/2]} \frac{2\psi_2(x|_F)}{\Delta(\nu)}$$

where $\Delta(\nu)$ is the spinor bundle of the normal bundle, and $\psi_2(V) = \operatorname{Sym}^2 V \ominus \wedge^2 V$ is the Adams operation.

In KO[1/2], ψ_2 has an inverse, $\psi_{1/2}$, with which we can write

$$\psi(x) = 2 \int_{F}^{KO} \psi_{2} \left(\frac{x|_{F}}{\psi_{1/2}(\Delta(\nu))} \right)$$

1. Use splitting principle and the fact that ψ_2 is a ring homomorphism. $\psi_2(L) = L^2$. Let L = 1 + x, with x nilpotent. (Note: only powers of 2 in the denominators!)

$$\psi_{1/2}(L) = (1+x)^{1/2} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 - \dots$$

Cannibalistic Class

The Bott Cannibalistic Class is the KO analogue of the Wu class

$$\int_{M}^{KO[1/2]} \psi_{2}(y) = \int_{M}^{KO[1/2]} y \cup \rho(M)$$

It can be written as (at least, for M even-dim and spin)

$$\rho(M) = \prod_{i=1}^{\dim(M)/2} \left(l_i^{1/4} \oplus l_i^{-1/4} \right) = \psi_{1/2}(\Delta(M))$$

where we used the splitting principle

$$TM \otimes \mathbb{C} = \bigoplus_{i=1}^{\dim(M)/2} (l_i \bigoplus l_i^{-1})$$

Pirsa: 08090003 Page 58/71

The Background Charge (After Inverting 2)

Using this, we can finally write $(i: F \hookrightarrow X)$

$$\mu = i_* \mu_F, \qquad \mu_F = -\psi_{1/2} \left(\frac{\Delta(F)}{\Delta(\nu)} \right)$$

Note that, even though, in the derivation I presented, I assumed that F was spin, the ratio, $\Delta(F)/\Delta(\nu)$, makes sense even when neither the numerator nor the denominator makes sense separately (say, because F is only $Spin_{\mathbb{C}}$).

To compare with the existing formulæ we take Chern characters. The coupling to the RR "connection" is

$$\int_{X} C \wedge \operatorname{Ch}(\mu) \sqrt{\hat{A}(X)} = \int_{F} i^{*} C \wedge \frac{\operatorname{Ch}(\mu_{F}) i^{*} \sqrt{\hat{A}(X)}}{\hat{A}(\nu)}$$

$$= \int_{F} i^{*} C \wedge \operatorname{Ch}(\mu_{F}) \sqrt{\frac{\hat{A}(F)}{\hat{A}(\nu)}}$$

Scruca-Serone

It's now a very pretty little computation¹, using the splitting principle, to check that this is

$$-2^{5-\operatorname{codim}(F)} \int_{F} i^{*} C \wedge \sqrt{\frac{L(R_{F}/4)}{L(R_{\nu}/4)}}$$

which agrees with the standard formulæ that you find in the physics literature.

1. You'll need the characteristic polynomials $\hat{A}(R) = \prod \frac{x_i/2}{\sinh(x_i/2)}$ and $L(R) = \prod \frac{x_i}{\tanh(x_i)}$.

So What?

After inverting 2, I presented you with a pretty nice, computable formula for the background charge

$$\mu = -i_* \left(\psi_{1/2} \left(\frac{\Delta(F)}{\Delta(\nu)} \right) \right)$$

Though we've lost 2-torsion, there are still interesting examples (with 3-torsion, etc) where one can compute this explicitly.

Can be generalized to cases with non-torsion flux ($H \neq 0$ rationally). "RR flux" is not a separate issue. From our point of view:

- You *prescribe* H (which determines what twisted KR theory we need).
- You compute μ.
- o You prescribe j.
- If $\mu + j$ is trivial in the relevant twisted KR group, then you can **solve** for the RR field. Multiple solutions \Leftrightarrow "choices of RR flux"
- If it's nontrivial, then no solution for G (over \mathbb{Z} !). The background is $P_{irsa: 08090003}$ inconsistent.

Page 61/71

As

Pirsa: 08090003 Page 62/71

itifolds

So What?

After inverting 2, I presented you with a pretty nice, computable formula for the background charge

$$\mu = -i_* \left(\psi_{1/2} \left(\frac{\Delta(F)}{\Delta(\nu)} \right) \right)$$

Though we've lost 2-torsion, there are still interesting examples (with 3-torsion, etc) where one can compute this explicitly.

Can be generalized to cases with non-torsion flux ($H \neq 0$ rationally). "RR flux" is not a separate issue. From our point of view:

- You *prescribe* H (which determines what twisted KR theory we need).
- You compute μ.
- o You prescribe j.
- If $\mu + j$ is trivial in the relevant twisted KR group, then you can **solve** for the RR field. Multiple solutions \Leftrightarrow "choices of RR flux"
- If it's nontrivial, then no solution for G (over \mathbb{Z} !). The background is $P_{IISA: OBO90003}$ inconsistent.

Page 63/71

As I

Pirsa: 08090003 Page 64/71

ntifolds

So What?

After inverting 2, I presented you with a pretty nice, computable formula for the background charge

$$\mu = -i_* \left(\psi_{1/2} \left(\frac{\Delta(F)}{\Delta(\nu)} \right) \right)$$

Though we've lost 2-torsion, there are still interesting examples (with 3-torsion, etc) where one can compute this explicitly.

Can be generalized to cases with non-torsion flux ($H \neq 0$ rationally). "RR flux" is not a separate issue. From our point of view:

- You *prescribe* H (which determines what twisted KR theory we need).
- You compute μ.
- o You prescribe j.
- If $\mu + j$ is trivial in the relevant twisted KR group, then you can **solve** for the RR field. Multiple solutions \Leftrightarrow "choices of RR flux"
- If it's nontrivial, then no solution for G (over \mathbb{Z} !). The background is $P_{IISA: OBO90003}$ inconsistent.

Page 65/71

As I

Pirsa: 08090003 Page 66/71

29/29

tifolds

As I alluded, these consideration may, in fact, rule out some previously proposed string backgrounds.

Pirsa: 08090003 Page 67/71

ntifolds

As I alluded, these consideration may, in fact, rule out some previously proposed string backgrounds.

If not, it certainly should be considered as a *check* on newly proposed ones.

Pirsa: 08090003 Page 68/71

ntifolds 29/29

As I alluded, these consideration may, in fact, rule out some previously proposed string backgrounds.

If not, it certainly should be considered as a *check* on newly proposed ones.

There are a number of variations on the basic orientifold construction $(Op^+, \tilde{Op}^-, \tilde{Op}^+, \dots)$ to which we should extend our results

Pirsa: 08090003 Page 69/7

29/29

As I alluded, these consideration may, in fact, rule out some previously proposed string backgrounds.

If not, it certainly should be considered as a *check* on newly proposed ones.

There are a number of variations on the basic orientifold construction $(Op^+, \tilde{Op}^-, \tilde{Op}^+, \dots)$ to which we should extend our results

The rubric of twisted (differential) KR-theory seems to be a powerful organizing principle for this bestiary of orientifolds. Perhaps you'll find some of the ideas to be useful in other contexts as well.

Pirsa: 08090003 Page 70/7

29/29

Orientifolds

Manifold, Y, with a discrete group of isometries, Γ .

$$1 \to \Gamma_0 \to \Gamma \xrightarrow{\omega} \mathbb{Z}_2 \to 1$$

(As a set, $\Gamma = \Gamma_0 \coprod \Gamma_1$, but Γ can be nonabelian, even if Γ_0 , is abelian.) Gauge Γ . But, this time, accompany $\gamma \in \Gamma_1$ by orientation-reversal on worldsheet.

$$\tilde{\Sigma} \xrightarrow{\tilde{\phi}} Y \qquad \circ \tilde{\Sigma} \text{ oriented surface. } \tilde{\Sigma} \to \Sigma \text{ a } \Gamma\text{-principal bundle.}$$

$$\gamma_{\tilde{\Sigma}} \downarrow \qquad \downarrow \qquad \gamma_{Y} \qquad \circ \gamma_{\tilde{\Sigma}} \text{ fixed point free } \begin{cases} \text{ orientation preserving for } \gamma \in \Gamma_{0} \\ \text{ orientation reversing for } \gamma \in \Gamma_{1} \end{cases}$$

$$\tilde{\Sigma} \xrightarrow{\tilde{\phi}} Y \qquad \text{Again, restricting to in/out circles, get } \Gamma\text{-bundle } \tilde{S} \to S.$$

Claim: reduction of structure group of \tilde{S} from Γ to Γ_0 .

No fixed point free orientation-reversing map from $S^1 \to S^1 \Rightarrow$ $Or(\Sigma = \tilde{\Sigma}/\Gamma) = \tilde{\Sigma}/\Gamma_0$ and $Or(S) = S \coprod S$. Restricting to one copy of S gives explicit reduction of str group.