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Abstract: | will report on some work in progress with Dan Freed and Greg Moore. In an orientifold background, D-brane charge takes values in a
certain twisted version of KR Theory. Moreover, there is a nontrivial background charge (\'tadpole\’). Up \'til now, this background charge has only
been calculated rationally -- i.e., ignoring torsion. We derive aformulafor it, over the integers. Only after \'inverting 2\', does the charge localize to
the fixed point sets of the orientifold action, and we can give a compact formula for it. This reproduces the previously known rational results, but
contains new information.
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Why Orientifold?

orbifolds: procedure for generating new string theory backgrounds from old.

¥

;as proven very useful for model building: IIB (and IIA) orientifold, “with fluxes
(KKLT et al ....).

- Evades the Gibbons-Maldacena-Nunez Theorem because orientifold
fixed-planes have negative tension, violating the SEC.

> We think we understand moduli stabilization in this context.

Key feature: orientifolds have “background” D-brane charge. On a compact space,
must be cancelled for consistency (Gauss’s Law).
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A Question

R I8t possible to cancel the background charge rationally, but not cancel it over Z?
JTE., could the uncancelled charge be pure torsion?
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Question

184t possible to cancel the background charge rationally, but not cancel it over Z?
JTEL, could the uncancelled charge be pure torsion?

Sure. But to answer the question, need to know what the background charge is
over Z.
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Sure. But to answer the question, need to know what the background charge is
over Z.
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Dan Freed and Greg Moore to rectify that.

N.b.: This is a topological question. Do not assume unbroken SUSY, or even a
solution.
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Question

I8t possible to cancel the background charge rationally, but not cancel it over Z?
WL, could the uncancelled charge be pure torsion?

Sure. But to answer the question, need to know what the background charge is
over Z.

So far, it has only ever been computed rationally (modulo torsion). Joint work with
Dan Freed and Greg Moore to rectify that.

N.b.: This is a topological question. Do not assume unbroken SUSY, or even a
solution.

Subsidiary objective: clean up a bit of the bestiary of Orientifolds.
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A Bottom Line

R 9% Background orientifold charge (or current), u (or x), takes values in twisted
™ (differential) KR theory.
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Bottom Line

#1% Background orientifold charge (or current), x (or z), takes values in twisted
™ (differential) KR theory.

2. Only after inverting 2 does the formula for the background charge localize
to the f.p.s.
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Bottom Line

. 20 Background orientifold charge (or current), x (or ), takes values in twisted
™ (differential) KR theory.

2. Only after inverting 2 does the formula for the background charge localize
to the f.p.s.

3. Taking Chern characters, can compare with existing formula in the literature

-
-

d+u'HNG= | + g

—— —_—

D-branes ortentifold

N.b.: putting the HAG term on the RHS, as is often done is morally wrong!
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Orbifolds

dsheet description

o g-model: £ 5 v

> I': discrete group of isometries of Y

> Gauge the I'-symmetry > 2 Y
e ¥ — I aprincipal r-bundle 75 | )
e ¢ : X — Y an equivariant map. =
= 3 -
* 7; is fixed-point free, so our original surface £ = £/ 7. This defines _; Y

amap¢: X — 2,where I =Y /I is a “stack”.)
> To describe states (CFT operators), allow Z to have in/out boundaries.
e Restricting to a boundary circle, S, get a principal I'-bundle, § — 5.
e These are classified by holonomy
[¥1 € Hom(mx;(S), [ ) /con
Twisted sectors = nontrivial /"-bundles S — S = conjugacy classes of I'.
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Orientifolds

Manifold, ¥, with a discrete group of isometries, I

Y W o MRS

(As aset, I’ = I';LII",, but I can be nonabelian, even if I', is abelian.) Gauge I". But,

this time, accompany y € I'; by orientation-reversal on worldsheet.

s 2 v o X oriented surface. £ — X a I'-principal bundle.
" ; orientation preserving for y € I
Yz 4 + Ty o y;fixed point free 1 1 - '
_ = orientation reversing for y € I
2 = Y

@

Again, restricting to in/out circles, get I-bundle S — S.

Claim: reduction of structure group of S from I" to .

No fixed point free orientation-reversing map from §' — §' =

Or(Z =X /I') = X /T, and Or(S) = SLLS. Restricting to one copy of S gives explicit
reduction of str group.
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Abelian Gauge Theory

5 elds in String Theory: an exotic type of abelian gauge theory.
i-ecall electromagnetism.
5 J, EHLYX), J € HLX).
> Electromagnetic field trivializes these: dF = j,, dx=F = j,.
> In quantum theory, need Dirac quantization condition.

RR field: replace de Rham cohomology by generalized cohomology theory, E*. X

Dirac condition: integrality of bilinear form
- | X
b(-, ) : E°xE® = H“(S)
S
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Self-Duality

-dual theory, electric current determines magnetic current (and vice versa).

j;;' = 90*.{)

where 8 : E®* — E47-~* is an isomorphism.

To define the quantum theory, need a quadratic refinement, g( - ), of the bilinear

form

b(xy, x2) = g(x1 + x2) — q(x1) — g(x2)
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The Center

Aquadratic function is symmetric about its center. Let w(x) = g(x) — g(—x), a linear
fiinction. Since b( -, -) is a perfect pairing, w(x) = —b(4, x) for some 4.

q(2)=¢q(0)=0

The center of g is x such that 24 = 4. This determines x up to 2-torsion. Can do
better, but this will suffice for today’s lecture.

Type 1 is an orientifold of IIB (with trivial action of I' = Z,). The charge group is
KR"(X) = KO"(X). Freed and Hopkins wrote down g( - ) and computed its center

-u=T+22 (up to codimension 8)

which is, indeed, the background charge of this orientifold. (Compare with
heterotic dual.)

Objective: generalize this.
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Differential Cohomology

X ): add geometrical data to topological data in HY(X, Z).

- |
> H (X) = Maps(X, §'): circle-valued scalar, ¢. @ = dg closed 1-form, de
Rham representative of a class in H'(X, Z).

)

H (X) = {isom(L, V)}: c(L) € H*(X. Z), the first Chern class of L. F = dA
a de Rham representative of ¢(L).

H ';(X ): where the B-field in String Theory lives.
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Exact Sequences

Miore generally, the differential cohomology groups, H '(X), fit into the exact

sequernces
flat
0 HI (X,R/IZ) = H'X) > Q%  (X)=0

0 — Q97" (X)/ Q400 ;0 = H'(X) » HY(X, Z) - 0

s il
topologically trivial

N.b.: Q7" . ,(X) is the group of gauge transformations.
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Differential K-Theory

Similarly, for K X5

CUITEDLS
.

05K (X, R/Z)>K'X) > Q7  (X,R) =0

iOSCU, &

0 - Q4 \(X, R/ (X, R) - K'(X) > KYX) = 0

L. "
.

RR held strength

where R = K*(pt) = R[u, u~'], deg(u) = 2 and

0 - KX, R)/K%X) - KYX,R/Z) - K2 (X) = 0
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K Theory

elp to have a specific model in mind.

‘Usually think of K° as represented by formal differences of vector bundles E,OE;.
Instead, consider Z,-graded vector bundles E = E;, & E; with an odd, skew-adjoint
endomorphism, 7 (requires a Hermitian metric on £ — a contractible choice).

Some applications will require £ co-dimensional and T Fredholm.

Cliff = (real Clifford algebra):

?7?.’ +}':" s ::l'fjr-r L, _,f:‘ 17 PP
1"1:;.?:

represented by a pair, (E, T), as before, carrying a left Cliff = action, which
graded-commutes with T (the 7. are odd).
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theory:
= o : X9. Consider complex, Z,-graded vector bundles, E — X, s.t. ¢ lifts to an

even, antilinear action on fibers, which commutes with 7 and with the
Clifford action. K-theory of such gadgets is called KR theory.

N.b., if ¢ acts trivially, this is just an antilinear involution for the fibers, i.e. a real
structure = KO theory.

Equivariant K-theory, K (X):

G acts on X, lifts to an even linear action on E, which commutes with 7 and

with the Clifford action.
Hybrid, “K 7 (Y):

b o g b T sl a1
lift of y € I, is even-linear; lift of y € I'; is even-antilinear.

where &, is a certain double cover of the stack, X =Y //TI.
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A Stacks

¥ooth Deligne-Mumford Stack (Pantev-Sharpe, Freed-Hopkins-Teleman)
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Stacks

yoth Deligne-Mumford Stack (Pantev-Sharpe, Freed-Hopkins-Teleman)

Groupoid: Category in which all morphisms are isomorphisms. A group is a
groupoid with just one object.
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oth Deligne-Mumford Stack (Pantev-Sharpe, Freed-Hopkins-Teleman)

Groupoid: Category in which all morphisms are isomorphisms. A group is a
groupoid with just one object.

Stack: Represented (up to some equivalence) by a special type of groupoid, 2.
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oth Deligne-Mumford Stack (Pantev-Sharpe, Freed-Hopkins-Teleman)

‘Groupoid: Category in which all morphisms are isomorphisms. A group is a
groupoid with just one object.

Stack: Represented (up to some equivalence) by a special type of groupoid, 2.

-

| Po fed, /_+\.
L = I, where/{ e b

morplusms 71 objects

po(f)=a p,(f)=b
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T

groupoid with just one object.

' -
r

, Py FEZ &
T, = 2, where/ a b

morphisms 71 objects

(PN =a p(fHH=b
> Iy, L smooth manifolds.

> py, local diffeomorphisms. pyxp, : & = LyxZ,, proper.
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groupoid with just one object.

i -
f

o, f e /—+\.

L = I, where/{ i b

morphisms /1 objects
PN =a pi(f)=b

c Iy, I smooth manifolds.
> p,, local diffeomorphisms. p,xp, : & = LyxZ, proper.
2 Stab(x) = [.f €X' | gdf) =pslf) = x):

e Deligne-Mumford Stack: Stab(x) finite group, ¥V x € Z,,.
e Artin Stack: relax this condition.

Pirsa: 08090003

oth Deligne-Mumford Stack (Pantev-Sharpe, Freed-Hopkins-Teleman)

‘Groupoid: Category in which all morphisms are isomorphisms. A group is a

Stack: Represented (up to some equivalence) by a special type of groupoid, Z.

Page 31/71




Examples

&1 Main example: T =Y /T.
e Lo=Y, 2, =Y with py,(y, )=y P, ) =7".
Isomorphism classes of objects in Y /I" are the points of Y /I, but the

stack “remembers” stabilizer groups of points.
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Examples

-)d. Main example: Z =Y JT.
To=Y,Z) =YxI with ps(y, 7) =% 010 V) =7+ Y.
Isomorphism classes of objects in Y /I are the points of Y /I", but the
stack “remembers” stabilizer groups of points.

2. Any manifold X is a stack, with groupoid having just the identity morphism
foreachxe X.le. Zy=2, = X.
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Examples

2 Main example: ' =Y /T
e Zo=Y,Z, =YxIwith py(y, V) =y, pyO0, ) =7-.
Isomorphism classes of objects in ¥ /I are the points of Y /I", but the

stack “remembers” stabilizer groups of points.

2. Any manifold X is a stack, with groupoid having just the identity morphism
foreachxe X.le. L=, = X.

3. An equivalent groupoid is given by an open cover, {U;},of X. ) = []. U,
T = H.—;_.- U, ;. For each point on X, on the overlap between patches, we have
an extra pair of morphisms, identifying the corresponding points in each

/U
patch. Le. U;; inclusions.
N\ U
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Examples

9 Main example: ' =Y /T.
e To=Y, T, =Yx[ with py(y. )=y, p(y. 1) =7-».
Isomorphism classes of objects in ¥ /I are the points of Y /I", but the

stack “remembers” stabilizer groups of points.

2. Any manifold X is a stack, with groupoid having just the identity morphism
foreachxe X.le. 2=, = X.

3. An equivalent groupoid is given by an open cover, {U;}, of X. Z, = [], U,
L — ]_['_.*__,. U;;. For each point on X, on the overlap between patches, we have
an extra pair of morphisms, identifying the corresponding points in each

patch. Le. U;; inclusions.
N\ U

Key property: a map M Sy /I “is” an equivariant map P 5y ,where P - Misa
I-principal bundle.
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Simplicial Space

vated by example 3, define simplicial space
I3, 3T,3T,

where the points of 2, are n-simplices generated by n-composable morphisms

A Vector Bundle on 2:

o A vector bundle, E - Z,.
> Isomorphism, 8 : p;(E) = p/(E)on Z .
> Compatibility condition on Z'5. (For example 3, this is the cocycle

condition.)
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Cohomology

define cohomology, K-theory, ... on stacks.
H (Y /I = H(Y)

> HL(Y, Z/2) classifies double covers Y — Y, with a lift of I" action to Y.

> wi (Y /I = w,(Y) measures whether Y is orientable, and I" preserves an

orientation.

> wH(Y/I) = w3*(Y) measures whether ¥ admits a spin structure, with a
spin action of I".

K(Y/T)=Kr(Y)

For orientifolds, we need the slightly more exotic “K Kig)

Pirsa: 08090003
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4 Orientifold: Spacetime Data

3
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Orientifold: Spacetime Data

“

$®Double cover: &, - 2, forwe H (XL, Z/2). UL =Y )r, I, =Y/ I.
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Orientifold: Spacetime Data

J® Double cover: &, - X, forwe H'(ZX, Z2/2). U X =Y I, X .. =Y ) T.

> A B-field, Be E : (Z), where

Iwisied coels

gl Ny
0 H(Z,Z)> E (@) > H\(Z, Z/2) > 0
and Z indicates coefficients twisted by the double cover 2, — .
Topologically, [B] = (A, a).
h e H(Z, Z) is cohomology class of H.
ae€ H (Z, Z/2) tells you when (-1)“t accompanies y € I in the
worldsheet theory.
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Orientifold: Spacetime Data

| ouble cover: &, - X, forwe H(Z, Z2/). X =Y, X, =Y )T,.
S o

> A B-field, B € £ (Z), where

Iwisted coels

o

@ 3

0 H(Z,Z)>E (@) > H\(Z, Z/2) > 0
and Z indicates coefficients twisted by the double cover 2, — .
Topologically, [B] = (h, a).
h € H(Z, Z) is cohomology class of H.

ae€ H (Z, Z/2) tells you when (—1)“t accompanies y € I in the
worldsheet theory.

> “Twisted Spin structure” (¢r = 0 for IIB, r = 1 for [1IA)
wi(Z) =tw
Wity = tw” + aw
wherea € H'(Z, Z/2) is part of the B-field.
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Mother Of All Type I/II Theories

¥ hoose £ = X and w = 0. (2, — Z trivial double-cover.) Then
£ 2 {r:[} = Type IIB

=1 = TypellA
Choice of a gives 24
" S® L(a). Type IIB

] see ® L(a), Type 1A

X.£/2) theories, with

, where w,(L) = a.

> Choose & = Xx(pt//Z>) and w = a, wherea € H'(Z, Z/2) is the
“universal” element, pulled back from pt/Z, (2, = X).
3 twisted spin structure = =0 and e = 0 = Type L.

> Choose & = R'"~""x(R"//Z,), reflection on n dimensions. w = a.

TZ =199 @ L(@)®" = wi(X) = na, wo(T) = (3)a’.

-~

By t =n(mod?2)
. ) HJE{._TZ‘) = Iw
Twisted spin str: . = < 0 n=03
w(L) =1tw-+aw g = { 5 (mod 4)
a n=.1.z

R = o AP
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Orientifold: Spacetime Data

oublecover: ¥, - X, forwe H'(ZL. Z/2).f I = =Y T
.*3 bl i 4 - HAX. ZINHY =Y I X Y /I,

> A B-field, B € E (Z), where

Iwisled Coels

et S—

w3

0 H (X, Z) > E () > H(Z, Z12) >0
and Z indicates coefficients twisted by the double cover &, — .
Topologically, [B] = (A, a).
h € H(Z, Z) is cohomology class of H.

a€ H\(Z, Z/2) tells you when (—1)“t accompanies y € I in the
worldsheet theory.

> “Twisted Spin structure” (¢t = 0 for IIB, r = | for IIA)
wi(Z) =tw
WazlZ) = tw* + aw
wherea € H'(Z, Z/2) is part of the B-field.
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Mother Of All Type I/II Theories

_ oose I =Xandw=0.(Z, - I trm ouble-cover. en
> 4 d (Z. — Z trivial doubl ) Th
__, {r:[} = Type IIB

t=1 = TypellA
Choice of a gives 2™
" S® L(a), TypellB

] see ® L(a), Type 1A

X.£/2) theories, with

, where w,(L) = a.

> Choose & = Xx(pt//Z>) and w = a, wherea € H'(Z, Z/2) is the
“universal” element, pulled back from pt/Z- (2, = X).
3 twisted spin structure = =0anda = 0 = Type L.

> Choose & = R'V="%x(R"/Z; ), reflection on n dimensions. w = a.

TE = 18097 @ L(@)®" = wi(T) = na, wy(T) = (5)a>.

By t =n(mod?2)
. ) LﬁI{I) =Iw
Twisted spin str: - = < 0 n=03
wa(L) =tw-+aw a = { {2 (mod 4)
a n=12

230 - { oI
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Orientifold: Spacetime Data

oublecover: I, - I, forwe H'(Z,Z!/). U IT =Y )T, X, =Y T,.

3°

T

> A B-field, B € E " (Z), where

Iwisted coels

g

i 8

0= H (X, Z) > E (2) - H(Z, Z12) >0
and Z indicates coefficients twisted by the double cover 2, — .
Topologically, [B] = (h, a).
h € H(Z, Z) is cohomology class of H.

ae€ H\(Z, Z/2) tells you when (—1)“t accompanies y € I in the
worldsheet theory.

> “Twisted Spin structure” (+ = O for IIB, = 1 for I[IA)
wi(Z) =1rw
Wiy = tw* + aw
where a € H'(Z, Z/2) is part of the B-field.
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Mother Of All Type I/II Theories

= hoose £ = X and w =0. (2, = Z trivial double-cover.) Then
£ 2 {I:U = Type [IB

Choice of a gives 24
" S5®L(a), TypellB
" | s*®L@, Typella

X.£/2) theories, with

, where w,(L) = a.

> Choose & = Xx(pt//Z-) and w = a, wherea € H'(Z, Z/2) is the
“universal” element, pulled back from pt /7. (T, = X).
3 twisted spin structure = =0anda = 0 = Type L.

> Choose & = }R]“"”x{'R”,,-;‘fZ;), reflection on n dimensions. w = a.

TZ =1%09"" @ L(@)®" = wi(Z) = na, wy(T) = (5)a’.

-~

By t =n(mod2)
. ) HFE{.IZ‘) =Iw
Twisted spin str: " = < 0 n=03
wa(L) =tw-+aw a = { (mod 4)
a n=.1..24

- - o oA

Pirsa: 08090003 Page 46/71




Orientifold: Spacetime Data

3@ Double cover: &, - 2, forwe H\(Z, Z2/12). XX =Y)r, X, =Y /T,.
S 2

> A B-field, B € E*(Z), where

Iwisted coels

e —

w 3

0 H(Z. Z) > E ()~ H\T, Zi2) >0
and Z indicates coefficients twisted by the double cover Z,, — .
Topologically, [B] = (A, a).
h e H(Z, Z) is cohomology class of H.
ae€ H\(Z, Z/2) tells you when (—1)“t accompanies y € I in the
worldsheet theory.

> “Twisted Spin structure” (¢ = 0 for IIB, r = 1 for IIA)
wile) =1tw
wi(Z) =tw’ +aw
where a € H'(Z, Z/2) is part of the B-field.
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Mother Of All Type I/1I Theories

_ oose Z = Xand w =0. (2, = Z trivial double-cover.) Then
¥
£ = {I =0 = TypellB

r=1 = TypellA
Choice of a gives 24
g’ 5® L(ﬂ}, T}rpe 1B

| S ®L(a), TypellA

X, Z12%)

theories, with

, where w,(L) = a.

> Choose & = Xx(pt//Z>)and w = a, wherea € H'(Z, Z/2) is the
“universal” element, pulled back from pt/Z- (2, = X).
3 twisted spin structure = =0anda = 0 = Type L.

> Choose & = R!"~"x(R"//Z,), reflection on n dimensions. w = a.

TZ =19 @ L(@)®" = wi(2) = na, wo(T) = (5)a’.

B t =n(mod2)
. ) H?I{Jr) = IW
Twisted spin str: - = < 0 n=03
wao(ZL) =tw-+aw a = { [ (mod 4)
a n=12

- = 5 oA
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Orientifold: Spacetime Data

‘3@ Double cover: ', - 2, forwe H(Z, Z2/2). ¥ X =Y I, X, =Y /T,.

> A B-field, B € £ (Z), where

Iwisted coels

e S

v 3

0> H(Z,Z)>E (@) > H\(Z, Z/2) > 0
and Z indicates coefficients twisted by the double cover Z,, — .
Topologically, [B] = (h, a).
h € H(Z, Z) is cohomology class of H.
ae€ H\(Z, Z/2) tells you when (—1)“t accompanies y € I in the
worldsheet theory.

> “Twisted Spin structure” (¢ = 0 for [IB, 7 = 1 for IIA)

wi(Z) =tw

wi(Z) = tw* + aw
where a € H'(Z, Z/2) is part of the B-field.
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Mother Of All Type I/II Theories

3 hoose £ = X and w =0. (2, = Z trivial double-cover.) Then
£ 2 {I:U = Type [IB

=1 = TypellA
Choice of a gives 24
" S® L(a). Type IIB

I ® L(a), Type lIA

(X, Z/2))

theories, with

, where w,(L) = a.

> Choose & = Xx(pt//Z>) and w = a, wherea € H'(Z, Z/2) is the
“universal” element, pulled back from pt/Z, (2, = X).
3 twisted spin structure =7 =0and e = 0 = Type L.

> Choose & = R'Y="x(R"//Z,), reflection on n dimensions. w = a.

TZ =190 @ L(@)®" = wi(2) = na, wo(T) = (5)a’.

-

By t =n(mod?2)
. ) wz{i") =Iw
Twisted spin str: N = < 0 n=03
wa(L) =tw-+aw a = { {2 (mod 4)
a n=1.2

2= & A
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Twisting KR

Lﬁwrote [B]as a pair, (k. a). But addition law in the group E°(X) is
(hy, a1) + (hy, az) = (hy + hx + B(ﬂ;Uﬂz)- a, +as)

where f: H*(Z, Z/2) - H*(Z. Z) is the twisted Bockstein associated to

O Z 57 >ZI2-50

As in ordinary Type II, turning on a nontrivial B-field twists the K-Theory where
w I - - _1|

D-brane charge lives. In our case, we want a twisting of KR (Z',,) by B € E ().

. - t+ 8 ) - T
The quadratic refinement uses the fact that, forx e KR (Z,), u "xx¥ € KO ()
where

-

t~B+B+ta’
is a twisting of KO. (This isomorphism reguires a twisted spin structure.)
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Specialize

Athis point, will specialize to = X /Z,, an ordinary manifold with involution.
I'e., I = Z,, with generator o.

Let F be f.p.s. of o (could be all of X, or could be empty).

A priori:
o orientation-preserving = codim(F) = even.
o orientation-reversing = codim(F) = odd.

In fact:

3 twisted spin structure = codim(F) well-defined mod (4).

Accompany o by reversal of orientation on worldsheet.

There are “universal” twistings pulled back from H*(pt/Z,. Z)XH ' (pt)/Z-., Z>).
Depending on codim(F) mod 4, only 2 of 4 are compatible with a twisted spin
structure, and lead to Op=.

Pirsa: 08090003
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Integration

ggration in equivariant KO-theory given by Dirac Index (for families). X
[ oz 0 - KOZ#mx(s) b
X = =2

I'll take a shortcut: consider 12-manifold (2-parameter family). So we map
KOY — KO:'*(pt) = KO~ (pt) ®RO(Z;,) = ZPeZ
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Quadratic Refinement

_ e KR"*7(X) (IIB) or x € KR! *7(X) (IIA). Can lift xx (or « ~!x¥) to KO" (X).
Let .

Then we integrate over a 12-manifold, and pick off the coefficient of € in the result.

q(x) = (I_ xX)|

[

The center (or, rather, twice the center) can be computed from

w(x) = g(x) — q(x) = ( J (6F) . ~(2x7%) )

E
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Localization

Affer inverting 2, the formula for w(x) localizes to the f.p.s, F

| RO 2y (x | )
w(x) =
; a(v)

where A(v) is the spinor bundle of the normal bundle, and y(V) = Sym~ VoAV is
the Adams operation.

In KO[1/2], w, has an inverse, v, ,, with which we can write

KO Xl
wix) = 2[ W, ( - )
e \y L (A)

1. Use splitting principle and the fact that y- is a ring homomorphism.

wo(L) = L*. Let L = 1 + x, with x nilpotent. (Note: only powers of 2 in the
denominators!)

— (14—l let i L3
yi,2(L) =(1+x) =14 SX = X - =X

Pirsa: 08090003
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Cannibalistic Class

' '&E_Bﬂtt Cannibalistic Class is the KO analogue of the Wu class

KO[1/2] KO[1/2]
J Ww,(y) = J‘ yUup(M)
M ' M

It can be written as (at least, for M even-dim and spin)

dim( M /2

pMy= TJI (el ") =y, . (AM))

where we used the splitting principle
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Localization

After inverting 2, the formula for y(x) localizes to the f.p.s, F

w(x) =

i A(v)

where A(v) is the spinor bundle of the normal bundle, and y,(V) = Sym~ VoAV is
the Adams operation.

In KO[1/2], w, has an inverse, v, ., with which we can write

( ’!‘-KU ( x| g
P \Wp(AW)

1. Use splitting principle and the fact that y- is a ring homomorphism.

wy(L) = L-. Let L = 1 + x, with x nilpotent. (Note: only powers of 2 in the
denominators!)

. « 1172 1 1
w (L) =(1+x)"=1+1x— X o =
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Cannibalistic Class

‘ '*E_Bott Cannibalistic Class is the KO analogue of the Wu class

KO[1/2] KO[1/2]
J w,(y) = J YUp(M)
M ) M

It can be written as (at least, for M even-dim and spin)

dim( M) /2

pMy= TI (L") = (a0n)
where we used the splitting principle

™M®C=eo """ el
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The Background Charge (After Inverting 2)

Using this, we can finally write (i : F < X)

‘ A(F)
— (N - - = == 4
Sl ( A(m)

Note that, even though, in the derivation I presented, I assumed that F was spin,
the ratio, A(F)/ A(v), makes sense even when neither the numerator nor the
denominator makes sense separately (say, because F is only Spin,-).

To compare with the existing formula we take Chern characters. The coupling to
the RR “connection” is

Chipup)i~ \ A(X)

[ C ACh( P‘) HX — O .
X A(v)

= [ i"CACh(k,)
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Scruca-Serone

now a very pretty little computation, using the splitting principle, to check that

A [ [L(Ry14)
_2_ —eodumd £ ) :

VL[R [ 4)

which agrees with the standard formulz that you find in the physics literature.

1. You'll need the characteristic polynomials A(R) = I1 r—‘ and
LR =TI

tanh(x,)
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So What?

r inverting 2, I presented you with a pretty nice, computable formula for the

ound charge
. A(F)
= —i, .
’ <wl"(d{v)))

Though we've lost 2-torsion, there are still interesting examples (with 3-torsion,
etc) where one can compute this explicitly.

Can be generalized to cases with non-torsion flux (4 # 0 rationally). “RR flux” is

not a separate issue. From our point of view:
> You prescribe H (which determines what twisted KR theory we need).
© You compute u.
> You prescribe _,-‘

o If u + jis trivial in the relevant twisted KR group, then you can solve for
the RR field. Multiple solutions <> “choices of RR flux”

> If it’s nontrivial, then no solution for G (over Z!). The background is
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A Destructive String Theory
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So What?

r inverting 2, I presented you with a pretty nice, computable formula for the

ound charge
i A(F)
= —i. y
’ <wl"(df_v)))

Though we've lost 2-torsion, there are still interesting examples (with 3-torsion,
etc) where one can compute this explicitly.

Can be generalized to cases with non-torsion flux (A # 0 rationally). “RR flux” is

not a separate issue. From our point of view:
c You prescribe H (which determines what twisted KR theory we need).

° You compute u.

> You prescribe j.

> If u + j is trivial in the relevant twisted KR group, then you can solve for
the RR field. Multiple solutions <> “choices of RR flux”

> If it’s nontrivial, then no solution for G (over Z!). The background is
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4 Destructive String Theory
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So What?

r inverting 2, I presented you with a pretty nice, computable formula for the

w A(F)
P <w1“:(a{u)))

Though we've lost 2-torsion, there are still interesting examples (with 3-torsion,
etc) where one can compute this explicitly.

Can be generalized to cases with non-torsion flux (A # 0 rationally). “RR flux” is

not a separate issue. From our point of view:
c You prescribe H (which determines what twisted KR theory we need).
° You compute u.

> You prescribe j.

> If 4 + jis trivial in the relevant twisted KR group, then you can solve for
the RR field. Multiple solutions <> “choices of RR flux”

> If it’s nontrivial, then no solution for G (over Z!). The background is
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A Destructive String Theory
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Destructive String Theory

A1 alluded, these consideration may, in fact, rule out some previously proposed

sanng backgrounds.
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Destructive String Theory

alluded, these consideration may, in fact, rule out some previously proposed

string backgrounds.

If not, it certainly should be considered as a check on newly proposed ones.
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Destructive String Theory

_ alluded, these consideration may, in fact, rule out some previously proposed
saring backgrounds.

If not, it certainly should be considered as a check on newly proposed ones.

There are a number of variations on the basic orientifold construction
(Op=.0p ,Op , ...) to which we should extend our results
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Destructive String Theory

. alluded, these consideration may, in fact, rule out some previously proposed
seming backgrounds.

If not, it certainly should be considered as a check on newly proposed ones.

There are a number of variations on the basic orientifold construction
(Op*,0p ,Op , ...) to which we should extend our results

The rubric of twisted (differential) KR-theory seems to be a powerful organizing
principle for this bestiary of orientifolds. Perhaps you'll find some of the ideas to be
useful in other contexts as well.

Pirsa: 08090003 Page 70/71




Orientifolds

Manifold, ¥, with a discrete group of isometries, I".

I S g f S

3
(As aset, I’ = I[',LII";, but I" can be nonabelian, even if I, is abelian.) Gauge I". But,

this time, accompany y € I'; by orientation-reversal on worldsheet.

;5 2% vy o X oriented surface. Z — X a ["-principal bundle.
: : ; ornentation preserving for y € [
7z L 7y o y;fixed point free 1 1 - , gq 4
= onentation reversing tfor y € I

Again, restricting to in/out circles, get I-bundle S — .
Claim: reduction of structure group of S from I" to .

No fixed point free orientation-reversing map from §' — §' =

Or(Z =X/I') = X /T, and Or(S) = SLLS. Restricting to one copy of S gives explicit
reduction of str group.
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