Title: Quantum Mechanics 15 - The Mathematics of Electron Spin

Date: Aug 10, 2008 02:00 PM

URL: http://pirsa.org/08080090

Abstract: Development of a successful mathematical model of spin.

 tr>

Learning Outcomes:

• A review of the mathematics of vectors.

 $\hat{a} \in \phi$ Applying the experimental results of QM-14 to construct a mathematical model of an electron spinning in any direction as a certain superposition of the spin up and spin down states.

 superposition of the spin up and spin down states.

• Discovering that this mathematical model predicts that an electron does not return to its original state when rotated once (through 360 degrees) – it must be rotated twice (through 720 degrees). A discussion of experimental tests of this remarkable prediction.

Pirsa: 08080090 Page 1/90

The Mathematics of 211

Pirsa: 08080090 Page 2/90

The Mathematics of Spin

Pirsa: 08080090 Page 3/90

The Mathematics of Spin Spin seems to be a VECTOR:

Pirsa: 08080090 Page 4/90

The Mathematics of Spin Spin Spin seems to be a VECTOR:

Pirsa: 08080090 Page 6/90

Unit basis vectors: 🔾 , 🗘

Pirsa: 08080090 Page 7/90

Pirsa: 08080090 Page 9/90

Pirsa: 08080090 Page 10/90

Pirsa: 08080090 Page 11/90

Pirsa: 08080090 Page 12/90

Pirsa: 08080090

Page 13/90

Unit basis vectors: 2, 7 Any vector: V = ax + by(Length)²: $|V|^2 = a^2 + b^2$ Unit vector: $1 = a^2 + b^2$ Thus: $a = \cos \theta$, $b = \sin \theta$ And: $V = \cos \theta + \sin \theta$

Unit basis vectors: 2, 7 Any vector: V = ax + by $(\text{Length})^2: |V|^2 = a^2 + b^2$ Unit vector: $1 = a^2 + b^2$ Thus: $a = \cos \theta$, $b = \sin \theta$ And: $V = \cos \theta + \sin \theta$

Pirsa: 08080090

Page 15/90

Unit basis vectors: 2, 9 Any vector: V = ax + by $(\text{Length})^2: |V|^2 = a^2 + b^2$ Unit vector: $1 = a^2 + b^2$ Thus: $a = \cos \theta$, $b = \sin \theta$

Pirsa: 08080090 Page 17/90

$$\theta = 0$$
:

Pirsa: 08080090 Page 18/90

$$\theta = 0$$
:

$$\theta = 90$$
:

$$\theta = 0$$
:

$$\vec{v} = \hat{x}$$

$$\theta = 90$$
:

$$\vec{v} = \hat{y}$$

$$\theta = 45$$
:

$$\theta = 0$$
:

$$\vec{v} = \hat{x}$$

$$\theta = 90$$
:

$$\vec{v} = \hat{y}$$

$$\theta = 45$$
:

$$\sqrt{\frac{1}{2}} = \frac{1}{2} + \frac{1}{2}$$

$$\theta = 0$$
:

$$\vec{\mathsf{v}} = \hat{\mathsf{x}}$$

$$\theta = 90$$
:

$$\vec{v} = \hat{y}$$

$$\theta = 45$$
:

$$\frac{1}{2} + b^2 = \left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^2 = 1$$

Pirsa: 08080090 Page 23/90

Analogue of unit basis vectors: 2, 7?

Pirsa: 08080090 Page 24/90

Analogue of unit basis vectors: 2, 7?

1: "Quantization" of spin suggests:

Analogue of unit basis vectors: 2, 7?

1: "Quantization" of spin suggests:

Analogue of unit basis vectors: \hat{x} , \hat{y} ?

1: "Quantization" of spin suggests:

Analogue of unit basis vectors: \hat{x} , \hat{y} ?

1: "Quantization" of spin suggests:

2: Probability suggests a natural interpretation for: $1 = a^2 + b^2$

2: Probability suggests a natural interpretation for: $1 = a^2 + b^2$

2: Probability suggests a natural interpretation for: $1 = a^2 + b^2$

Pirsa: 08080090 Page 36/90

Pirsa: 08080090 Page 37/90

Pirsa: 08080090 Page 44/90

Pirsa: 08080090 Page 45/90

Question:

$$-y = (?) + (?)$$

Question:

$$\int_{-\infty}^{\infty} -y = \cos \frac{\theta}{2} + \sin \frac{\theta}{2}$$

$$\frac{\theta = 60}{2} \int_{-\infty}^{\infty} -y = \frac{3}{2} + \frac{1}{2} \downarrow$$

$$-y = \cos \frac{\theta}{2} + \sin \frac{\theta}{2}$$

$$\frac{\theta = 60}{2}$$

$$-y = \frac{3}{2} + \frac{1}{2}$$

Result:
$$x = \cos \frac{\theta}{2} + \sin \frac{\theta}{2}$$

E.g.:
$$\theta = 60$$
 $\int_{x}^{x} -y = \frac{3}{2} + \frac{1}{2} + \frac{1}$

Result:
$$y = \cos \frac{\theta}{2} + \sin \frac{\theta}{2}$$

E.g.: $y = \frac{3}{2} + \frac{1}{2}$

$$(\frac{3}{2})^2 = 75\%$$
 $(\frac{1}{2})^2 = 25\%$

mathematical models successful

$$\int_{x}^{z} -y = \cos \frac{\theta}{2} + \sin \frac{\theta}{2}$$

Pirsa: 08080090 Page 58/90

$$\int_{x}^{z} -y = \cos \frac{\theta}{2} + \sin \frac{\theta}{2}$$

Does the mathematics predict anything nteresting we have m

Page 59/90

$$\int_{x}^{z} -y = \cos \frac{\theta}{2} + \sin \frac{\theta}{2}$$

Does the mathematics predict anything nteresting we have not thought of yet?

Pirsa: 08080090 Page 60/90

$$\int_{x}^{z} -y = \cos \frac{\theta}{2} + \sin \frac{\theta}{2}$$

Does the mathematics predict anything nteresting we have not thought of yet?

The power of mathematics in the

$$\int_{x}^{z} -y = \cos \frac{\theta}{2} + \sin \frac{\theta}{2}$$

Does the mathematics predict anything nteresting we have not thought of yet?

The power of mathematics in the process of science

Pirsa: 08080090 Page 71/90

The Myst

Pirsa: 08080090 Page 72/90

The Mysteri

Pirsa: 08080090 Page 73/90

The Mysterious Min & > ~

Pirsa: 08080090 Page 74/90

Pirsa: 08080090 Page 75/90

$$\theta = 0$$
: $\rightarrow -$

$$\theta = 0$$
: $- = 1$
 $\theta = 360$: $- = -1$

Pirsa: 08080090 Page 77/90

$$\theta = 0$$
:
 $\theta = 360$:
 $\theta = 720$:

Pirsa: 08080090

$$\theta = 0$$
:
 $\theta = 360$:
 $\theta = 720$:

: Can be observed experimentally

Pirsa: 08080090

