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Abstract: The mathematical predictions made by scientists tell a story of the life and death of stars. <br>

Learning Outcomes. <br>

&€¢ How the Hertzsprung-Russel diagram describes the life cycle of stars. <br>

&€¢ Depending on its mass, how a star ends its life as a white dwarf star, a neutron star, or a black hole, and where super novasfit in. <br>

&€¢ How the mathematical predictions of white dwarf stars, super novas, and neutron stars are slowly verified by the advancement of the
astronomical equipment used by astronomers.
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& Stellar Energy

Two hydrogen nuclei merge to produce deuterium nucleus, a
positron,and a neutrino. Add another hydrogen and you get
helium 3 and a gamma photon (energy) Two Helium 3 merge
and produce helium 4 and two Hydrogen nuclei.
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Two hydrogen nuclei merge to produce deuterium nucleus, a
positron,and a neutrino. Add another hydrogen and you get
helium 3 and a gamma photon (energy) Two Helium 3 merge
and produce helium 4 and two Hydrogen nuclei.
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Two hydrogen nuclei merge to produce deuterium nucleus, a
positron,and a neutrino. Add another hydrogen and you get
helium 3 and a gamma photon (energy) Two Helium 3 merge
and produce helium 4 and two Hydrogen nuclei.
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Two hydrogen nuclei merge to produce deuterium nucleus, a
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Two hydrogen nuclei merge to produce deuterium nucleus, a
positron,and a neutrino. Add another hydrogen and you get
helium 3 and a gamma photon (energy) Two Helium 3 merge
and produce helium 4 and two Hydrogen nuclei.

Proton Decays Into A Neutron

== Neutron
== Proton

&




,:i& Stellar Energy
2

g‘ . Froton—-Froic _"_.f - { J3He + enera j

Two hydrogen nuclei merge to produce deuterium nucleus, a
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Two hydrogen nuclei merge to produce deuterium nucleus, a
positron,and a neutrino. Add another hydrogen and you get
helium 3 and a gamma photon (energy) Two Helium 3 merge
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positron,and a neutrino. Add another hydrogen and you get
helium 3 and a gamma photon (energy) Two Helium 3 merge
and produce helium 4 and two Hydrogen nuclei.
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Two hydrogen nuclei merge to produce deuterium nucleus, a
positron,and a neutrino. Add another hydrogen and you get
helium 3 and a gamma photon (energy) Two Helium 3 merge
and produce helium 4 and two Hydrogen nuclei.
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Two hydrogen nuclei merge to produce deuterium nucleus, a
positron,and a neutrino. Add another hydrogen and you get
helium 3 and a gamma photon (energy) Two Helium 3 merge
and produce helium 4 and two Hydrogen nuclei.
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Two hydrogen nuclei merge to produce deuterium nucleus, a
positron,and a neutrino. Add another hydrogen and you get
helium 3 and a gamma photon (energy) Two Helium 3 merge
and produce helium 4 and two Hydrogen nuclei.
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Two hydrogen nuclei merge to produce deuterium nucleus, a
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Two hydrogen nuclei merge to produce deuterium nucleus, a
positron,and a neutrino. Add another hydrogen and you get
helium 3 and a gamma photon (energy) Two Helium 3 merge
and produce helium 4 and two Hydrogen nuclei.
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Two hydrogen nuclei merge to produce deuterium nucleus, a
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CNO Cycle

- The higher the temperature, the
more important the production of
energy from the CNO.

- For Nars less than 1 solar mass
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CNO Cycle

- The higher the temperature, the
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energy from the CNO.

- For stars less than 1 solar mass
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CNO Cycle
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CNO Cycle
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CNO Cycle

- The higher the temperature, the
more important the production of
energy from the CNO.

- For stars less than 1 solar mass
proton-proton cycle dominates.
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CNO Cycle

- The higher the temperature, the
more important the production of
energy from the CNO.

- For stars less than 1 solar mass
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CNO Cycle

- The higher the temperature, the
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CNO Cycle

- The higher the temperature, the
more important the production of
energy from the CNO.

- For stars less than 1 solar mass
proton-proton cycle dominates.
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Beyond Helium

As Hydrogen is exhausted in the core of the star, Helium nuclei
merge to create Beryllium with again fuses with another Helfium
nucleus to give Carbon and then fo Oxygen then to Silicon until
we finally end up with Iron.
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Model of an Atom




Model of an Atom

. an atom consists of mainly empty space ...




Electron Degeneracy Pressure
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No two electrons (fermions) can occupy the same
position in space at the same time doing the same
thing.

Electrons are packed side
by side in a white dwarf

This prevents it from
collapsing any further
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Electron Degeneracy Pressure
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No two electrons (fermions) can occupy the same
position in space at the same time doing the same
thing.

Electrons are packed side
by side in a white dwarf

This prevents it from
collapsing any further
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No two electrons (fermions) can occupy the same
position in space at the same time doing the same
thing.

Electrons are packed side
by side in a white dwarf
This prevents it from
collapsing any further
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Electron Degeneracy Pressure

= h*
N=— Nr;'
SGmEmng

h=6.6261x10"
G =6.6726x107"
m, =9.1094x10~"
m,=1.6726x10""
M =1.989x10*
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Path to being a White Dwarf

Outer layers driven off Quter layers become
sy radiation pressure B
Star expands shell of expanding gas.

into red giant as
hydrogen in its
core is used up.

Shell tinally dissipates,

- . With no fuel available for

Low mass star like the :
S Bl B it to burn, core star cools,
, & becomes a white dwart.

7 solar mass star now reduced to about 207% of its
original mass
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* Helium exhausted, core collapses until density forces
electrons to leave their orbits around the atomic
nuclei.
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Properties of White Dwarfs

= Helium exhausted, core collapses until density forces
electrons to leave their orbits around the atomic
nuclei. '

= _..are found in the centers of planetary nebula.

= _..have masses less than the Chandrasekhar mass
(1.4 Solar Masses).




White Dwarf Properties

..have diameters about the same as the Earth’s.
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..have diameters about the same as the Earth’s.
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Ring Nebula




Cat’s eye nebula




Spirograph Nebula







Eskimo Nebula
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Eskimo Nebula
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Chandrasekhar limit

= The maximum mass of a white
dwarf is 1.4 solar masses .




Chandrasekhar limit

The maximum mass of a white
dwarf is 1.4 solar masses

Above this, even electron degeneracy
pressure cannot counterbalance gravity




Chandrasekhar limit

The maximum mass of a white
dwarf is 1.4 solar masses

Above this, even electron degeneracy
pressure cannot counterbalance gravity

What is the fate of a star more
massive than this?




Supernova Remnant

In the death of a high-mass star (<40 Solar mass),
the core is converted to neutrons and collapses
catastraophically.

The collapse and rebound creates a supernova.
But what happens to the neutrens already at the
very center of the core?

The central core is Ieft behind as a small, dense,
sphere of neutrons - a neutron star.



Type 1a Super Nova

k
wWhite
Dwart
Companion
»
Star
Accretion
Ring

. Thermonuciear

White runaway in
entire star

Dwart

Not of interest to black hole cosmologists, but type la’s are great yard sticks
in determining distances




Type II Supernovae: Birth of a neutron star

[

- The core survives and is prevented from collapsing any
further by neutron degeneracy pressure

- These are what we are interested in.

-*—-:— — KN

Deuiron star

rod owant

) |

Core Impilosion — Supernaova Explaosion ——— Supernova Remnant




Neutron Star Facts

A giant ball of neutrons.

Mass : at least 1.4 x mass of

the Sun.

Temperature 1 million degrees

and cooling.
Diameter: 20 km!
Density: 108 kg/m?3
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Neutron Star Facts

A giant ball of neutrons.

Mass : at least 1.4 x mass of

the Sun.

Temperature 1 million degrees

and cooling.
Diameter: 20 km!
Density: 10*® kg/m?3
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Neutron Star Facts

A giant ball of neutrons.

Mass : at least 1.4 x mass of

the Sun.

Temperature 1 million degrees

and cooling.
Diameter: 20 km!
Density: 108 kg/m?3
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Neutron Star Facts

Sossibie
solid core

A giant ball of neutrons.
Mass : at least 1.4 x mass of

the Sun. )
:GII:‘JI'::;.E
Temperature 1 million degrees
and cooling. O Shaien
20 km

Diameter: 20 km!
Density: 108 kg/m?3
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Neutron Star Facts

A giant ball of neutrons. e

Mass : at least 1.4 x mass of

the Sun. Solid crust

Temperature 1 million degrees e
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Neutron Star Facts

A giant ball of neutrons. o

Mass : at |least 1.4 x mass of

the Sun. Solid crust

Temperature 1 million degrees i
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Neutron Star Facts

Sossibie
solid core

A giant ball of neutrons.
Mass : at least 1.4 x mass of

the Sun. i
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Temperature 1 million degrees :

and cooling. G S
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Density: 108 kg/m?3
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Neutron Star Facts

A giant ball of neutrons.

Mass : at least 1.4 x mass of

the Sun.
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Neutron Star Facts

A giant ball of neutrons. coronsems
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Neutron Star Facts

Sossible
solid core

A giant ball of neutrons.
Mass : at least 1.4 x mass of

the Sun. o
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Neutron Star Facts

Sossibie
salid core

A giant ball of neutrons.
Mass : at least 1.4 x mass of

thE Sun- Solid crust

Temperature 1 million degrees

and cooling. T Pt
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Neutron Star Facts

A giant ball of neutrons.

Mass : at least 1.4 x mass of

the Sun.
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Neutron Star Facts

A giant ball of neutrons.

Mass : at least 1.4 x mass of
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Neutron Star Facts

Sossibie
salid core

A giant ball of neutrons.
Mass : at least 1.4 x mass of

the Sun . =0l Crus

Temperature 1 million degrees i

and cooling. TS Dl
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Neutron Star Facts

A giant ball of neutrons.

Mass : at least 1.4 x mass of

the Sun.

Temperature 1 million degrees

and cooling.
Diameter: 20 km!
Density: 10'® kg/m?3
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A giant ball of neutrons.

Mass : at least 1.4 x mass of
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A giant ball of neutrons.

Mass : at least 1.4 x mass of
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A giant ball of neutrons.
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Sossible
salid core

A giant ball of neutrons.
Mass : at least 1.4 x mass of
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A giant ball of neutrons.

Mass : at least 1.4 x mass of

the Sun.

Temperature 1 million degrees

and cooling.
Diameter: 20 km!
Density: 108 kg/m?3

A <1}
g e L 8

|

. ~f thie matter
| 12 1l L

L - |

'.l|-|

—
el B

...I Ilf

()
Ll

..Ij —

- b L LS )

Day: 1 — 0.001 seconds!
Magnetic fields as strong as

the Sun, but in the space of a3

City.

Sossible
solid core

‘\\ Diameter

~ 20 km

Meutron
supertiud intenor




Neutron Star Facts

A giant ball of neutrons. o
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Fossibie
salid core

A giant ball of neutrons.
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Sossible
solid core
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Sossible
salid core

A giant ball of neutrons.
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Snssible
salid core

A giant ball of neutrons.
Mass : at least 1.4 x mass of

the Sun. .
":cu:ﬂl-::r.m
Temperature 1 million degrees |
and cooling. e Shten
~ 20 km

Diameter: 20 km!
Density: 108 kg/m?3

r De o this matter
el e e - 1 - s el

Meutron
superthed intenor

W
(]
&)

A

o IO
'| !

400 billion tons

Day: 1 — 0.001 seconds!

Magnetic fields as strong as
the Sun, but in the space of 3
city.

wr

i

11




Neutron Star Facts

A giant ball of neutrons.

Mass : at least 1.4 x mass of

the Sun.

Temperature 1 million degrees

and cooling.
Diameter: 20 km!

Day: 1 — 0.001 seconds!
Magnetic fields as strong as

the Sun, but in the space of 3

City.

Meutron
supertiud intenor




Neutron Star Facts

A giant ball of neutrons.

Mass : at least 1.4 x mass of

the Sun.

Temperature 1 million degrees

and cooling.
Diameter: 20 km!
Density: 108 kg/m?3

= ey o 3 N
= Ul b [ |

il
.'_..

W
|
|I'|_|

=

400 Dbillion tons

Day: 1 — 0.001 seconds!
Magnetic fields as strong as

()
Ll

the Sun, but in the space of a

City.

Sossible
salid core

Meutron
superthod intenor




Neutron Star Facts

Sossibie
salid core

A giant ball of neutrons.
Mass : at least 1.4 x mass of

thE SL.II"I. Solid crust

Temperature 1 million degrees B

and cooling. P Bt
~ 20 km

Diameter: 20 km!
Density: 10'® kg/m?3

Meutron
supertiud intenor

. e R
— | | = Ir P ey
el e -t i - | - il

1¥)]
'.l|-|

hs 400 billion tons

(&
N

Day: 1 — 0.001 seconds!

Magnetic fields as strong as
the Sun, but in the space of a3
city.




Neutron Star Facts

A giant ball of neutrons.

Mass : at least 1.4 x mass of

the Sun.

Temperature 1 million degrees

and cooling.
Diameter: 20 km!
Density: 108 kg/m?3

~
— b ~ Fhae Pt

']

Y

A p ’ - £ i
(g e 8 L I LU Ol LS IdLLEld

-+

0 billion tons

Day: 1 — 0.001 seconds!
Magnetic fields as strong as

1
£ 3 &

wr

b

()

the Sun, but in the space of a

City.

Sossibie
solid core

Meutron
superthod intenor




Neutron Star Facts

Fossibie
sold cora

A giant ball of neutrons.
Mass : at least 1.4 x mass of

thE SL.II"I. Saolid crus
Temperature 1 million degrees
and cooling. TN St

Diameter: 20 km!
Density: 108 kg/m?3

A — 1T e Aaf Hh
i Ay el — LT - |

Meutron
supeartiod intenor

]

IS iatiel

e = il__. T R ——
gns suUu o 1C LONS
-

Day: 1 — 0.001 seconds!

Magnetic fields as strong as
the Sun, but in the space of a
city.




Neutron Star Facts

Sossibie
salid core

A giant ball of neutrons.
Mass : at least 1.4 x mass of

thE Sun- Solid crust
=1l -1 km
Temperature 1 million degrees
and cooling. i PSS
! ~ 20 km

Diameter: 20 km!
Density: 108 kg/m?3

\ sugar cube of this matter

Fudh gl e AR 1l - |

Meutron
superthod intenor

ns 400 Dilllon tons

Day: 1 — 0.001 seconds!

Magnetic fields as strong as
the Sun, but in the space of a
city.




Neutron Star Facts
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Neutron Star Facts

Sossibie
salid core

A giant ball of neutrons.
Mass : at least 1.4 X mass of
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Neutron Star Facts

Sossibie
solid core

A giant ball of neutrons.
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Sossibie
solid core

A giant ball of neutrons.
Mass : at least 1.4 x mass of

thE SL.IrL Solid crust
Temperature 1 million degrees i
and cooling. W Shaien

~ 20 km

Diameter: 20 km!
Density: 108 kg/m?3

Meutron
supertiod intenor

|

~
- 4 s -Nall —.—._S raatar
A e N =t I - i e b b i

A =1
ri 2 -

'.l|-|

| oy

L&

Day: 1 — 0.001 seconds!

Magnetic fields as strong as
the Sun, but in the space of a
city.

0 «
Ll




Neutron Star Facts

Sossibie
salid core

A giant ball of neutrons.
Mass : at least 1.4 x mass of

the Sun. y
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Neutron Star Facts

Sossible
solid core

A giant ball of neutrons.
Mass : at least 1.4 x mass of

the Sun.
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Neutron Star Facts

A giant ball of neutrons. s
Mass : at least 1.4 X mass of
the Sun. Solid crust
Temperature 1 million degrees g
and cooling. e SPPREEOE
Diameter: 20 km! - o
Density: 10*® kg/m?3 <upmrtiae tanr

A sugar cube of this matter

weighs 400 billion tons
Day: 1 — 0.001 seconds!
Magnetic fields as strong as

the Sun, but in the space of a
city.
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Pulsars

= Discovered by Bell and
Hewish in 1968
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Pulsars

= Discovered by Bell and
Hewish in 1968

= Stands for pulsating stars,
since they emit regular pulses
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Pulsars

= Discovered by Bell and
Hewish in 1968

= Stands for pulsating stars,
since they emit regular pulses

= Now known to be spinning neutron
stars
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Crab Nebula Pulsar
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Crab Nebula Pulsar




Mass

Low mass stars

¢Less than 8 Mg on Main Sequence
* «Become White Dwarf (< 1.4 Mgy)
Electron Degeneracy Pressure
High Mass Stars
*Less than 40 Mg on Main Sequence

*Become Neutron Stars (1.4 Mg < M <3 Mg)

Neutron Degeneracy
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Recall electron degeneracy pressure for white dwarfs.

For white dwarfs, maximum mass of
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Recall electron degeneracy pressure for white dwarfs.
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or white dwarfs, maximum mass of 1
= For neutron stars, maximum mass -

= What happens ifba high-mass star is SO big that its
central core is bigger than this?
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Neutron stars are held up by

Recall electron degeneracy pressure for white dwarfs.
For white dwarfs, maximum mass of
For neutron stars, maximum mass -
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central core is bigger than this?
What happens when gravity is stronger than even
neutron degeneracy pressure?
How dense can something get?



What Next

Neutron stars are held up by

1

Recall electron degeneracy pressure for white dwarfs.
For white dwarfs, maximum mass of

For neutron stars, maximum mass -

What happens if a high-mass star is SO big that its

central core is bigger than this?

What happens when gravity is stronger than even

neutron degeneracy pressure?

How dense can something get?

How strong can the force of gravity be?



What Next

Neutron stars are held up by

Recall electron degeneracy pressure for white dwarfs.
For white dwarfs, maximum mass of
For neutron stars, maximum mass -
What happens if a high-mass star is SO big that its
central core is bigger than this?
What happens when gravity is stronger than even
neutron degeneracy pressure?
How dense can something get?
How strong can the force of gravity be?
What if the escape velocity is faster than light?



Black Hole
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= The star collapses to EF - ~ N
form a Black Hole. ’ >




