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Abstract: Assume one laboratory designed a technique to produce quantum states in a given state $ ho$. The other lab wants to generate exactly the
same state and they produce states $sigma$. If we want to know how well the second lab is doing we need to characterize the distance between
$sigma$ and $ ho$ by some means,e.g. by trying to measure their fidelity, which allows us to find the Bures distance between them. The task is
simple if the given state is pure, $ ho=|psi angle langle psi|$, since then fidelity reduces to the expectation value, $F=langlepsi| sigma| psi angle$. If
$ ho$ is mixed the explicit formula for fidelity contains the trace of an absolute value of an operator which is not simple to compute nor to measure.
Therefore we provide lower and upper bounds for fidelity and propose schemes to measure them. These experimental schemes require much less
effort than the full quantum tomography of both states in question. The bounds for fidelity are called { sl sub-} and {d super-fidelity}, respectively,
due to their properties. as fidelity is multiplicative with respect to the tensor product, the sub-fidelity is sub-multiplicative, while super-fidelity is
shown to be super-multiplicative. In the case of any two states of a one qubit system the bounds are strict and all three quantities coincide. The
super-fidelity alowes us to define a modified Bures distance which for larger systems induces an alternative geometry of the space of quantum
states.
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A short visit in a quantum shop

Assume you need a quantum state p,

you go to a quantum shop, pay for it and

you get a state o instead !

How good the quantum shop is doing 7

Is the state o we bought at least e—<lose
to the state p we have ordered??

Close with respect to which metric?




o

If the desired state is pure, p = |¥)(¢

the situation Is simple:

You need to maximize the overlap (expectation value:)
F = (Ylol),

What should one do, If the ordered state p Is mixed?

How to measure the distance between p and o7
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The set My of mixed states of size N

My :={p: Hn —+ Hrnip=p",p >0, Trp=1}

e e i e

Distances in the set of quantum states

a) Hilbert-Schmidt distance, Dﬂs(p, A [Tr(p — g-)Z]l/Z
b) trace distance, Dtr(p., o) = -I-Trlp — o]

c) Bures distance, DB([% 0—) i (2 1 . \/F(Pq 0)1)1/2
where fidelity between two states reads (Uhlmann 76, Jozsa "94),

F(p, o) :=[TrlyaValP = (Try/vB oyP)’

Warning! An alternative definition of fidelity
(vnthout the square!) is sometimes used, F* = VF = Tx|,/p/7]|




Metrics in the space My of quantum states

a) Riemannian metric - related to a geodesic distance
b) monotone metric - the corresponding monotone distance Dy, does
not grow under the action of any quantum operation @,

| Dmﬂ-n(P- C") P Dn}t}n((p(P)'(p(g)) (l)J

Metric Hilbert—Schmidt Trace Bures

Is it Riemannian 7 Yes No Yes
Is It monotone 7 No Yes Yes

T heorem of Morozova and Chentsov 90

kfgepe exist infinitely many monotone Riemannian metrics on M .. zse s

- -, M 1=




Geometry of the set Quantum States depends on the
metric usecﬁ

Example: N =2 — quantum states for a one—qubit system
M3 = B3 — Bloch ball for Hilbert—Schmidt (Euclidean) metric
Mo = % S? — Uhlmann hemisphere for Bures metric

\.l

y

(one dimension supressed)
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more about these issues In:

Geometry of Quantum States

an Introduction to Quantum Entanglement

0>

|. Bengtsson and K. Zyczkowski

Cambridge University Press, 2006 (hardcover)
vsa: 05080050 Cambridge 2007 (improved version in paperback) Page 528
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Bounds between distances

a) Hilbert-Schmidt and trace distances

2

ﬁDtr(p,cr) < Dmus(p,o) < 2Dy (p,o) (2)

b) Bures and trace distances:

\/ 2— 2\/ 1-[Difp,o)F < Ds(p,o) < V2Du(p,o) (3)

implied by the inequality of Fuchs and van de Graaf (1999)
1 —/F(p,0) < Dilp,0) </1—F(p,0) =: Cp,o) 'root infidelity’
(C(p,o) also forms a distance; Gilchrist, Langford, Nielsen 2005)

conclusion: they generate the same topology

Since one distance can be estimated by the other one, if o is close to p
with respect to one distance, the other distance between them will also be
Pgﬁiagiff = Page 9/28




Bures distance — a function of fidelity, D'é = 2(1— \;’f)

Fidelity has several nice properties (Jozsa 1994)
@ Normalisation, 0 < F(p1,p2) <1
Q@ Symmetry, F(p,0) = F(p,0)
© Concavity, F(o,ap1 + (1 — a)p2) > aF(o,p1) + (1 — a)F (o, p2)
© Multiplicativity, F(p1 @ p2,p3 @ ps) = F(p1,p3) F(p2,01)
@ Unitary invariance, F(p,o) = F(UpUT™, UcUT)

Q@ Monotonicity, F(®(p), ®(c)) > F(p,o) where ® is a quantum
operation.

Purification property: F(p,o) equals the maximal transition probability
between a pair of purifications of p and o, (Uhlmann 1974).

fidelity s not easy to compute and to measure
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Bounds between distances

a) Hilbert-Schmidt and trace distances

2

ﬁDtr(Psz) < Dus(p,0) < 2Dy(p,0) (2)

b) Bures and trace distances:

\/ 2— 2\/ 1 —[Di(p,o)F < Ds(p,0) < +/2Du(p,o) (3)

implied by the inequality of Fuchs and van de Graaf (1999)
1 —/F(p,0) < Du(p,0) <+/1—F(p,0) =: C(p,o) 'root infidelity’
(C(p, o) also forms a distance; Gilchrist, Langford, Nielsen 2005)

conclusion: they generate the same topology

Since one distance can be estimated by the other one, if o is close to p
with respect to one distance, the other distance between them will also be
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Bures distance — a function of fidelity, D2 = 2(1 —+/F)

Fidelity has several nice properties (Jozsa 1994)
@ Normalisation, 0 < F(p1,p2) <1
© Symmetry, F(p,0) = F(p,0)
@ Concavity, F(o,ap1 + (1 — a)p2) > aF(o,p1) + (1 — a)F (o, p2)
© Multiplicativity, F(p1 @ p2,p3 @ ps) = F(p1,03) F(p2,01)
@ Unitary invariance, F(p,o) = F(UpUT™, UcUT)

Q@ Monotonicity, F(®(p), ®(c)) > F(p,o) where ® is a quantum
operation.

Purification property: F(p,o) equals the maxaimal transition probability
between a pair of purifications of p and o, (Uhlmann 1974).

fidelity s not easy to compute and to measure
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Useful bounds for fidelity

a) trace bounds

Trpo < F(p,0) < Trlpo| = Try/p?o? (4)
b) bounds by dassical fidelities (Markham et al. 2008)
F(p',q) < F(p,0) < F(p',q"), (5)

where symbols p” and g~ denote the spectra of both states with all
eigenvalues in the increasing (decreasing) order.

c) upper bound by determinants (Miszczak et al 2008) |

F(p,oc) > Trpec+ N(N —1) {/detpdeto' = E’(p,cr) - (6) !
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How to measure the fidelity between two mixed states?

One could

@ perform full quantum tomography on both states p and o,
@ get all elements of both density matrices p; and o5,

@ and use the explicit formula F = [Tt\/p o/p]*.

This procedure 1s rather expensive:
it requires measuring 2 x (N? — 1) quantities.....

Is this measurement scheme optimal 7?7
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How to measure the fidelity between two mixed states?

One could

@ perform full quantum tomography on both states p and &,
@ get all elements of both density matrices p; and o,

o and use the explicit formula F = [Tr\/p o/p]*.

This procedure 1s rather expensive:
it requires measuring 2 x (N? — 1) quantities.....

Is this measurement scheme optimal 77

we do not know... |
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Key idea: fqibnd good bounds for fidelity,
which can be measured

main result of this work

Proof of the upper bound for fidelity:

Fp.o) < Trpo+ /(1 - Tep?)1 — Tro?) =: Glp,o)

Remark: a function of the upper bound G(p, o) was earlier analyzed by
Chen, Fu, Ungar, and Zhao (Phys. Rev. A. 2002),

— some properties of G where independently studied in a recent preprint
of Mendonga, Napolitano, Marchiolli, Foster, and Liang (June 2008).

A similar lower bound for fidelity of Uhlmann (2000)

Flp,o) = Trpo +/2[(Trpo)? — Trpopol = Ep,o)
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Sketch of the proof of the inequality F < G

For any matrix X oof size N with spectrum {Ay,..., An} one defines
elementary symmetric polinomials s»(X). For instance

2(X) = YA (7)
>
s3(X) = Y A (8)
i<j<k
The proof is based on two algebraic lemmas
Lemma 1:
2 (Vi 2r?) < 5 ( |/ dag(o) dag(a) )
Lemma 2:

= ( |/ diag(p) diaga) ) < \/(diag(p))( () = VA=)
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Properties with respect to the tensor product

Both bounds for fidelity,

E(p,o) < F(p,o) < G(p,0)

can be called sub— and super—fidelity, respectively.
@ a) sub—fidelity i1s sub—multiplicative,

E(pr ® p2.p3 @ ps) < Fl(p1.p3)F(p2.ps)
@ b) fidelity is multiplicative,

E(pr @ p2,p3 @ ps) = Flp1,p3)F(p2,p4)
@ c¢) super—fidelity is super—multiplicative,

G(pL @ p2,p3 @ ps) > Glp1,p3) G(p2.pe)

Page 18/28
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Properties of sub—fidelity E and super—fidelity G

@ Bounds: 0 < E(p,0)<1and 0 < G(p,0) <1.

@ Symmetry: E(p,c) = E(o,p) and G(p,0) = G(p, o).
@ Unitary invariance: E(p,: o) = E(UpUT,UcUT") and
G(p, o) = G(UpUT, UaU"), for any unitary operator U.

@ Concavity: for any states p;,p> and o and any 2 € [0,1] the
following is true

E(o,ap1 + (1 — a)p2 > aE(a,p1) + (1 — 3)E(a, p2),

G(o, ap1 + (1 —a)p2 = aG(a, p1) + (1 — 2)G(a, p2),
@ Geometry: Super—fidelity G induces

a) modified root infidelity, Dg(o,p) = /1 — G(o,p)
a) modified Bures length, Dy(o,p) = arccosG(a,p)

@ Equivalence for one qubit system:
For N = 2 the equality holds, E(p, o) = F(p,o) = G(p, o).
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Consider a family of mixed quantum states
pa=al)(¥| + (1 —a)l/N.

and the maximally mixed state p. := [/N. Simple calculation gives

2

Fau.) = %(\/(N—l)aﬁ—l#-(N—l)\/l —a)

1 1 E —

EGnp) = 5+ (1-5) YN —Dar D=2

Glpnmpe) = 5 + (1 i, i) ¥

N
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Figure: Comparison of sub—fidelity E, alternative lower bound E” based on
determinants, fidelity F and super—fidelity G for N =2,3,4 and 5.
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Measurement of sub— and superfidelity

Trick wath trace of the SWAP operator

Identity of Werner holds for any operators A and B

TrAB = TrV(A® B)

where the SWAP operator V satisfies Vx) @ |y) = |y) @ |x).

Hence to compute Trp? it is enough to take two copies of this state and to
measure TrV(p @ p). Ekert, Alves, Oi, HorodeckiZ, Kwek (2002).
Analogously to measure Trp* we need k copies of p.

Advantages of sub— and superfidelity

Super—fidelity G i1s a function of traces:

Trpo and purities Trp? and Tro2.
Subfidelity £ is a function of traces: Trpo and Tropop.
For each quantity one needs not more than pairs (for G)
or quadruples of states (for E)!
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Measuremenw¥ of super—fidelity G

Since the subfidelity reads

G(p,0) = TrVp@c++/1-TrVp@pV1l—-TrVo®c

it 1s enough to measure expectation value of the SWAP operator V
for three pairs of states: {p,c},{p,p} and {o,c}.

Measurement of sub—fidelity £

Quadruples of states are needed. One may use a programmable network.
Depending on the ‘program state” |W5) different quantities necessary to
obtain E are produced by a single measurement of the operator J;:

(1) Trpo if [W12) = |0}]0),

(ii) Trpopo if [W12) = [1)[0),
(iii) 3 (Trpopo — (Trpo)?) if [Wi2) = (|0}I1) + [1)[0))/ V2 (Bell state).
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Programable network to masureme sub—fidelity £

* »>
i - o)
o —x : Tt -
e | .
10) HH—1=} - -—— H { M
e | i
o xp -
a * I
e
o I. -

Figure: Programmable network acting on two pairs of the states investigated p
and o, two control qubits (initially in the ground state |0)) and a two—qubit
program state |W>). Symbol M represents the measurement of the J-
component of the lower control qubit, which provides all quantities necessary to
get the sub—fidelity E.
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Measuremenw¥ of super—fidelity G

Since the subfidelity reads

G(p,o) = TrVp®@c+/1-TrVpR@pV1l—-TrVo®c

it 1s enough to measure expectation value of the SWAP operator V
for three pairs of states: {p,c},{p,p} and {o,c}.

Measurement of sub—fidelity £

Quadruples of states are needed. One may use a programmable network.
Depending on the ‘program state” |W,3) different quantities necessary to
obtain E are produced by a single measurement of the operator J;:

(i) Trpo if [Wi2) = [0}]0),
(ii) Trpope if [W12) = |1)[0),
(i) § (Trpope — (TrpoP) i [Wi2) = (J0)[1) + [1)[0))/VZ (Bel state).
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Programable network to masureme sub—fidelity £

T - -
REipen: | SO
|0) 1 X} E +- - 3 - -
0) —{=} + il- e H M
p - *
a * I
g
3 ] I

Figure: Programmable network acting on two pairs of the states investigated p
and o, two control qubits (initially in the ground state |0)) and a two—qubit
program state |W5). Symbol M represents the measurement of the J-
component of the lower control qubit, which provides all quantities necessary to
get the sub—fidelity E.
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Concluding Remarks

@ Geometry of the set of quantum states:
depends on the metric used.
@ The standard distances (Hilbert-Schmidt, trace, Bures)
generate the same topology.
@ Bures distance is induced by the mimimal Riemannian monotone
metric and it is related to distinguishability between states.

It is a function of fidelity, F = [TI\/\/ﬁ 0‘\/5]2,

which in general 1s not easy to compute and to measure.
@ We find both bounds for fidelity, E < F < G, where

a) sub—fidelity E(p,c) = Trpo + /2[(Trpe)? — Trpopo]
is sub—multiplicative, while

b) super—fidelity G(p,0) = Trpo + /(1 — Trp?)(1 — Tro?)
Is super—multiplicative

Both quantities £ and G can be experimentally measured in an
set—up involving a few copies of both states investigated for an
Pirsa: oaosooarbi-trary Size O-F the SyStElTL Page 27/28
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Figure: Comparison of sub—fidelity E, alternative lower bound E” based on
determinants, fidelity F and super—fidelity G for N =2,3,4 and 5.
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