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Why do we want to test
quantum apparatus?

Suppose you wish to buy a component for
BB84 quantum cryptography, e.g. a source.

Why should you trust this component?

Pirsa: 08080046




Why not?
What if what we really have is implementing
the following?

Pirsa: 08080046




Why not?
What if what we really have is implementing
the following?

00

Pirsa: 08080046




Why not?
What if what we really have is implementing
the following?

01

Pirsa: 08080046  Page 15/154




Why not?
What if what we really have is implementing
the following?

10

Pirsa: 08080046




Why not?
What if what we really have is implementing
the following?

11

Pirsa: 08080046




Why not?
What if what we really have is implementing
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Smolin. © Experimental Quantum Cryptography.” J. Cryptol.
5 No. 1, 3-28 (1992).

Why not?
What if what we really have is impl
the following?

irsa: 08080046 IThe apparatos osed W perform the :':pégél.l.'gll554_ rvplceerphy
penmeent (2 Ihe entine TRGErans, (91 dgiaieid ew of Alioe

“side-channel




g -
=Tl o BT o T Y N N YN =l iaa /i W e e Talils Matiaa ]

(D
(D

C. H. Bennett, F. Bessett. G. Brassard. L. Salvail. and J.
Smolin. © Experimental Quantum Cryptography.” J. Cryptol.
5 No. 1, 3-28 (1992).

Why not?
What if what we really have is impl
the following?
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We need to make our assumptions and
testing procedures explicit.

We also don’t want to rely on some other

untrusted apparatus (e.g. in order to
“just” do tomography).
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A model of quantum computation where the
computerdoes a tomography of some of its
components
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Mayers and Yao devised a scheme for “self’-
testing sources for the purposes of QKD.




Mayers and Yao devised a scheme for “self’-
testing sources for the purposes of QKD.

EPR




Mayers and Yao devised a scheme for “self’-
testing sources for the purposes of QKD.

EPR




Mayers and Yao devised a scheme for “self’-
testing sources for the purposes of QKD.

d P®+P™ =TI

Pﬂ:!ﬂ +P51|:f3 :I
me4_|_P31tf4 :I

EPR

Pirsa: 08080046




the statistics are consistent with |@)=|00)+(11) then
e output of the sources is locally unitarily equivalent to
State containing ‘(p) and the projections are
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However, the results are not “‘robust”. The results hold
exactly if the statistics are satisfied exactly.

Any realistic application will need to be robust.

\ssuming robustness) This might be the only way,

using only these assumptions, to verifiably securely.
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/) The dimension of the physical systems
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(classical) history of their past to future
gates in hidden degrees of freedom. Thus
each gate knows the history of its input
qubit(s), and can recognize when its history

IS no longer part of a test.
Hint: Every circuit we would wish to run

needs to also be part of a test.
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“‘conspiracy test”

[f 51 = Gl*, then this should recreate two
EPR pairs.
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Some technical points

Our procedure is only good for verifying
gates and states with real coefficients.
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Some technical points

Our procedure is only good for verifying
gates and states with real coefficients.

NB We are not assuming that our gates or
states only have real coefficients.

We are merely saying that we do not have a
procedure in the case of non-real
coefficients.
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Some technical points

OQur procedure is only good for verifying
gates and states with real coefficients.

This is not for lack of trying. There is a
fundamental reason for this:

complex bit can be simulated by 2 real bits (see
.g. Rudolph and Grover quant-ph/0210187,; non-
)cal version given in a few minutes). But the two
ystems are not “equivalent” according to our

otion of equivalence. E.q. inner products are not
reserved 000 0 e




Other technical points

Qur tools include defining a notion of
‘simulation” and “equivalence”.
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Other technical points

Qur tools include defining a notion of
‘simulation” and “equivalence”.

Underthe nght conditions, simulation
Implies equivalence, and we are able to get

our main results.
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Precise statement of our main
result

_et T1 , Tz o Tk - U(zn ) (acting on a constant

wmber of qubits each)

xe{01}" e>0,vy>0
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from the distrnibution that comes from the
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camputational basis. 00 s
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result

if CircuitTest(T',T%,---. T* x,£.7)
accepts, then with probability 1—0O(y) the
outcome probability distribution of the circuit
is at total variation distance O((k +n)e"®)
from the distnbution that comes from the
measurementof TkTk1.. .T2T1’ x) in the
computational basis.
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The problem with imaginary
amplitudes

Pirsa: 08080046 Page 128/154




Precise statement of our main
result

if CircuitTest(T!,T%,---. T* x,£.7)
accepts, then with probability 1 —0O(y) the
outcome probability distribution of the circuit
is at total variation distance O((k +n)s"'®)
from the distribution that comes from the
measurementof TkTk1.. .T2T1| x> in the
computational basis.

Ol —log

The number of expennmentsis in [ kn n
A e a

111111111




The problem with imaginary
amplitudes

Pirsa: 08080046 Page 130/154




The problem with imaginary
amplitudes

Pirsa: 08080046




The problem with imaginary
amplitudes

Pirsa: 08080046 Page 132/154




The problem with imaginary
amplitudes

0) «>|0)}0)

Pirsa: 08080046 Page 133/154




The problem with imaginary
amplitudes

e
i0)<>|0)|1)
1)«>{1)0)

i1) > [1)1)

Pirsa: 08080046



The problem with imaginary
amplitudes

0) <>|0)|0)
i0) <>[0)]1)
)<>[1)j0

)
i1) > [1)1)

Pirsa: 08080046 Page 135/154



The problem with imaginary
amplitudes

Pirsa: 08080046 Page 136/154




The problem with imaginary
amplitudes

Pirsa: 08080046 Page 137/154



The problem with imaginary
amplitudes

‘ 1% 4 ...xﬂ> <> ‘ 2 s >‘ 0>

1)

z‘ xlxz...xﬂ> = |x1x2.-.xn>
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Test against this conspiracy?
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Test against this conspiracy?

0)
1)

Note that the “extra” hidden qubit is required to
be at any location that applies a non-real gate.

‘xlxz...xﬂ> PN ‘ xlxz...xn>

Z‘ xlxz...xﬂ> <7 lxlxz.-.xh,>
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Note that the “extra” hidden qubit is required to
be at any location that applies a non-real gate.

XXX, ) > [ X0, X,)

TN

z‘ xlxz...xﬂ> = |x1x2.-.xﬁ>

BUT, this violates our locality assumption.
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Test against this conspiracy?

0)
1)

Note that the “extra” hidden qubit is required to
be at any location that applies a non-real gate.

XXX, ) > [ 0,.X,)

o

Z‘ xlxz...xﬂ> <> |x1xz.-.xn>

BUT, this violates our locality assumption.
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A “local” conspiracy with m. Mckague

also independently found by Pironio/Navascues/etc.)

xlxz...xn> xlxz...xﬁ> 0>

i xlxz...xﬂ> < xlxz._.xn> 1>
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A “local” conspiracy with m. Mckague

also independently found by Pironio/Navascues/etc.)

xlxz...xn> xlxz...xn> 0>

i xlxz...xﬁ> - xlxz.-.xﬁ> 1>

Ve replace the extra qubit with n qubits in the
ntangled state:
h(y)/

0)= D> (1) 2|yp->.)

h(y) even
A(y)1/

S— ‘1>= Z(_l) xz‘ylyz---yn>

Erf .. % .27




What does this conspiracy
mean?

lo “black-box” test with our assumptions will be
ble to verify a set of states/operations/
1easurements are unitarily equivalent to some
on-real states/operations/ measurements.
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Some open problems and future
directions

IApply these techniques to actual
experiments (e.qg. with poor photon
detectors). Modify as needed.
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Some open problems and future
directions

Apply these techniques to actual
experiments (e.q. with poor photon
detectors). Modify as needed.

\Can we improve the asymptotics?
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Some open problems and future
directions

IApply these techniques to actual
experniments (e.qg. with poor photon
detectors). Modify as needed.

\Can we improve the asymptotics?

|\Relationship to “device-independent”
security proofs (Acin et al. quant-ph/0702152) ?
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Multi-prover interactive
proof paradigm

rover 2

Classical _
verifier
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proof paradigm
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Classical
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Some open problems and future

directions

IApply these techniques to actual
expernments (e.qg. with poor photon
detectors). Modify as needed.

\Can we improve the asymptotics?

|Relationship to “device-independent”
security proofs (Acin et al. quant-ph/0702152) ?
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Some open problems and future
directions

IApply these techniques to actual
experiments (e.qg. with poor photon
detectors). Modify as needed.

\Can we improve the asymptotics?

|Relationship to “device-independent”
security proofs (Acin et al. quant-ph/0702152) ?
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Some open problems and future
directions

Apply these techniques to actual
experiments (e.g. with poor photon
detectors). Modify as needed.

\Can we improve the asymptotics?

|Relationship to “device-independent”
security proofs (Acin et al. quant-ph/0702152)?
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