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X representation
« Parametrized by operator base: {El > fo e ED;z }
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% 1s hermitian and positive defined.
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« Required for deciding on error correcting codes.

» Trace preserving:

Has large number of parameters D* = 2*N.
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X representation
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« Required for deciding on error correcting codes.

Has large number of parameters D* = 2*N,




Some interesting questions.

« Can experiments directly access x elements?

« Is it possible to estimate these elements
efficiently? (good scaling with the number of
qubits?)

« Can experiments efficiently determine which of all
coefficients are 'Tmportant™? (or wether a subset 1s

important?




Some interesting questions.

« Can experiments directly access ¢ elements?

o Is it possible to estimate these elements
efficiently? (good scaling with the number of
qubits?)

« Can experiments efficiently determine which of all
coefficients are 'Tmportant™? (or wether a subset 1s

important?

ANSWER: Ygs (estimation with fixed, D-independent, precision)




Quantum process tomography

« SQPT: Direct access to A coetficients ( “transition
matrix elements). Inefficient for accessing
representation.

« DCQD: Efficient access to diagonal %

Is not selective for other coefficients.
Requires N clean ancilla qubits.
« SCNQP: Based on A map symmetrization.
Efficient access to limited number of

important ¥ parameter groups
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Quantum process tomography

« SQPT: Direct access to A coefficients ( “transition
matrix elements). Inefficient for accessing
representation.

« DCQD: Efficient access to diagonal

Is not selective for other coefficients.
Requires N clean ancilla qubits.
« SCNQP: Based on A map symmetrization.
Efficient access to limited number of
important ¥ parameter groups

(all acronyms are ARC-aproved)




Operator basis

« We could use Pauli operators (or any other basis)

P(] = Fa— X F—F Pg 1
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« We take: EO e Icﬁ N




Average Fidelity

. The average fidelity for a map A: survival

probability averaged over all pure states:

F(A) = /<u AQ 9@ |) | 9)d | ¥)

« Key: All x_  coefficient can be related to average

fidelity of a channel.
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Average Fidelity

. The average fidelity for a map A: survival

probability averaged over all pure states:

I2AINE /<u A(l )W) | ¥)d | Y

e Key: All %

-
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_coefficient can be related to average

fidelity of a channel.




Average Fidelity

« The average fidelity for a map A: survival

probability averaged over all pure states:

F(A) = @1 AQ 9@ D) [4)d] )

« Key: All % _ _ coefficient can be related to average

fidelity of a channel.




> o;
How? Simple argument leads to X, ,
» Useful 1dentity
‘ . v o tr(A)tr(B) +tr(AB,
/~f1* AU B Yvdiv) = ASILAC) ! )
| - | D(D +1)

J.M. Renes et. al. Journal of Mathematical Physics 45, 2171 (2004)

« Combine 1t with the channel chi-representation
FiN) /1 ALY (Y ) L )d ) )
« Use that operator basis 1s orthonormal

- Dxo0,0+1
F(A) = 220




Average Fidelity

. The average fidelity for a map A: survival

probability averaged over all pure states:

F) = [@IAQ9)@ ) | 9)d |9

« Key: All % _ _ coefficient can be related to average

fidelity of a channel.




> Q;
How? Simple argument leads to Xo.o
» Useful identity
" |  tr(A)tr(B) ~tr(AB
| | ' D(D + 1)

J.M. Renes et. al. Journal of Mathematical Physics 45, 2171 (2004)

« Combine 1t with the channel chi-representation
FLA) — /1 ALY (Y ) | v)d ) )
» Use that operator basis 1s orthonormal

Dxo0+1
FtA) — D+




Other diagonal ) _ _ coefficients

« Other x  are obtamnable from the fidelity of

modified maps A_.

| D Xm,m T 1

F(Am) = ;
D+1

« A_may be readily implemented through the

successive application of Aand E .

Am(p) = Ef A(p) Em



Quantum circuit

« More formally, the quantum circuit for measuring

fidelity 1s written as:

Fof 1'\ 'Ii- fy F | -'L _.)
L (:' ‘l. 1-".- ; S — | emmmmmssesAnEes E P 5
P RAET @ Em. /7&![‘

« To implement this we need to compute the average

over all pure states ¢ (use 2-design S...)
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Quantum circuit
« More formally, the quantum circuit for measuring

fidelity 1s written as:

L odo\ 2oty | E ok >

« To implement this we need to compute the average

over all pure states 3 (use 2-design S...)




What about off diagonal ¥,

« They are more. Many more (~ D?).

« How could we measure them?

; - ot D\m n T+ t(5m n
(| MET PLE.) | %) — ' .
-/\ | ( m= ¥ ) ‘ > D n 1

» Need a different strategy.

« Need an extra resource (one clean qubit)




A circuit for off-diagonal p SN
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A circuit for off-diagonal y S

E abok Fails &1 ] |
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« X polarization of ancilla 1s measured conditional to

survival on main system.




A circuit for off-diagonal p ST
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« X polarization of ancilla 1s measured conditional to

survival on main system.
« Observable averaged over y determines Re(y_ ).

2
P,



A circuit for off-diagonal P o
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« X polarization of ancilla 1s measured conditional to

survival on main system.
« Observable averaged over y determines Re(y_ ).

« Simlarly, Y polarization encodes Im(y_ ).




A circuit for off-diagonal e
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X polarization of ancilla 1s measured conditional to

survival on main system.

Observable averaged over y determines Re(y_m‘n).
Similarly, Y polarization encodes Im(y_ ).
OK, BUT STILL ONE NEEDS TO AVERAGE OVER

ALL STATES y. HOW?




A circuit for off-diagonal p o
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« X polarization of ancilla 1s measured conditional to

survival on main system.
« Observable averaged over y determines Re(y_ ).

« Similarly, Y polarization encodes Im(}y_ ).




A circuit for off-diagonal p A
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X polarization of ancil
survival on main system.

Observable averaged over y determines Re(y_ ).
Similarly, Y polarization encodes Im(y_ ).

OK, BUT STILL ONE NEEDS TO AVERAGE OVER
ALL STATES y. HOW?

A

la 1s measured conditional to



Average over states: use 2-design

e Sisa2-design iff

/ (A1) (| Blv)dlv) =
5 2 WA WIBIY)

« Any degree 2 expression in bras and kets may be evaluated as
an average over S (finite set).

—
-

o In particular, fidelities are averages over S




Still have too many states!

 2-design have at least |S| = 4N states.

» This makes i1t impractical
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Still have too many states!
 2-design have at least |S| = 4N states.

» This makes 1t impractical
However: to determine the average with
fixed precision we can randomly sample

 Randomly select state from S.

Feed 1t in the corresponding circuits. Average.




Still have too many states!
 2-design have at least |S| = 4N states.

» This makes 1t impractical
However: to determine the average with
fixed precision we can randomly sample
 Randomly select state from S.
Feed i1t in the corresponding circuits. Average.
Nice things about 2-designs?

o Continuous to discrete.
. Efficient O(N?) constructions exist 2-design states.

« Approx state 2-designs (via approx unitary 2-d)




Measuring fidelity

V)Y |

@ J7] Q}MO ;

Yes = 1
F j D\m.m + 1 Average results
(i 'm) = —

D+ 1 over M realizations.




Selective Efficient

Quantum Process Tomography

o« M: number of experiments to determine parameter with

!(
L

precision € and probability p 1s such that
e O(N-) Quantum gates required.

o O(N-) Classical processing required.

Same scheme allowing efficient estimation
of ANY yx _ _coefficient.




A related strategy: measure not only
survival probabilities (also transitions)

Suppose we can generate the 2-design
corresponding to the D+1 MUBSs associated

with the operator basis E n (Pauli’s).
Measure |vg 1 ){¥B.x _®41 /7{\]B 'k !

Each result contributes to the computation of D

diagonal chi-matrix elements.
Efficiently find 1f a diagonal chi 1s above some
threshold
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A related strategy: measure not only
survival probabilities (also transitions)

Suppose we can generate the 2-design
corresponding to the D+1 MUBSs associated

with the operator basis E n (Pauli’s).

Each result contributes to the computation of D

) [ : :
diagonal chi-matrix elements.
Efficiently find 1f a diagonal chi 1s above some
threshold




A quantum optical implementation

(C.Shmiegelow and J.P.P unpublished)

N NHE

En=meneslll . 1o gbits in one photon (hyper-

entanglement).

« Preparation and readout in D+1=5

MUBs 1s simple.

o« Channel characterization ““eftficient”.
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A quantum optical implementation

(C.Shmiegelow and J.P.P unpublished)

N NHE

« Two gbits in one photon (hyper-

entanglement).

« Preparation and readout in D+1=5

MUBs 1s simple.

« Channel characterization “etficient”.
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