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Abstract: Quantum information technol ogies have recorded enormous progress within the recent fifteen years. They have developed from the early
stage of thought experiments into nowadays almost ready-to-use technology. In view of many possible applications the question of efficient analysis
and diagnostics of quantum systems appears to be crucial. The gquantum state is not an observable and as such it cannot be measured in the
traditional sense of thisword. Information encoded in a quantum state may be portrayed by various ways yielding the most complete and detailed
picture of the quantum object available. Due to the formal similarities between the quantum estimation and medical non-invasive 3D imaging, this
method is also caled quantum tomography. Many different methods of quantum tomography have been proposed and implemented for various
physical systems. Experiments are being permanently improved in order to increase our ability to unravel even the most exquisite and fragile
non-classical effects. Progress has been made not only on the detection side of tomography schemes. Mathematical algorithms too have been
improved. The original linear methods based on the inverse Radon transformation are prone to producing artifacts and have other serious drawbacks.
For example, the positivity of the reconstructed state required by quantum theory is not guaranteed. This may obviously lead to inconsistent
statistical predictions about future events. For such reasons, the simple linear methods are gradually being replaced by statistically motivated
methods, for example by Bayesian or maximum-likelihood (ML) [1,2] tomography methods.The quantification of all relevant errors is an
indispensable but often neglected part of any tomographic scheme used for quantum diagnostic purposes. The result of quantum tomography cannot
be reduced merely to finding the most likely state. What also matters is how much the other states, those being less likely ones, would be consistent
with the registered data. In this sense, also states lying in the neighborhood of the most likely state should be taken into account for making future
statistical predictions. For this purpose we introduce a novel resolution measure, which provides error bars\'\' for any inferred quantity of interest.
Thisisillustrated with an example of the diagnostics of non-classical states based on the value of the reconstructed Wigner function at the origin of
the phase space. We show that such diagnostics is meaningful only when some prior information on the measured quantum state is available. In this
sense quantum tomography based on homodyne detection is more noisy and more uncertain than widely accepted nowadays. Since the error scales
with the dimension, the choice of a proper dimension of the reconstruction space is vital for successful diagnostics of non-classical states. There are
two concurring tendencies for the choice of this dimension. When the reconstruction space is low-dimensional, the reconstruction noise is kept low,
however there may not be enough free parameters left for fitting of a possibly high-dimensional true state. In the case of high-dimensional
reconstruction space, the danger of missing important components of the true state is smaller, however the reconstruction errors may easily exceed
acceptable levels. These issues will be discussed in the context of penalization and constraints for maximizing the likelihood [3]. The steps
described above are the necessary prerequisites for the programme of objective tomography, where all the conclusions should be derived on the
basis of registered data without any additional assumptions. New resolution measure based on the Fisher information matrix may be adopted for
designing optimized tomography schemes with resolution tuned to a particular purpose. Quantum state tomography may serve as a paradigm for
estimating of more complex objects, for example process tomography. [1] Z. Hradil, Phys. Rev. A 55, R1561 (1997). [2] Z. Hradil, D. Mogilevtsev,
and J.Rehacek, Phys. Rev. Lett. 96, 230401 (2006). [3] J.Rehacek, D. Mogilevtsev and Z. Hradil, New J. Phys 8. April, 043022 (2008)
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Qutline

‘Motivation: Inversion problems

-‘Elements of quantum mechanics, estimation and
objective MaxLik tomography

-Diagnostics of inferred variables

‘Example of homodyne tomography

‘Penalized MaxLik and Schwarz info

‘Resource analysis: What is feasible?
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Linear inverse problems

Tomography = linear inverse problems with constraints
IJ - zk Cjk LLk

detected mean values | =12, .M
reconstructed signal Ly k=12,_N

Over-determined problems M>
Well defined problems M
Under-determined problems M«




Resources for homodyne tomography

« About 10° detected events
* Due to the redundancy of non-orthogonal projections
about 104 events are independent

- Density matrix might be estimated up to the
dimension 100 12!

- If reconstruction is done on 10 dim subspace, only
1% of the potential is used 21?




Von Neumann Measurement and its
generalization

Signal: density matrix p > 0

Probability in Quantum Mechanics:
p;= Tr(pA))
Measurement: elements of positive-
valued operator measure (POVM)
- j2 0

Relation of completeness3; A; =1

Over/un-completeness 2, A; =62 0

&=y .\ Ll 16=

Zj G1/2 Aj G2 = 16
Gongept of objective tomography
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Geometry: overlap of states




Maximum Likelihood Estimation (1922)

Sir Ronald Aylmer Fisher, FRS (17 February 1890 - 29 July 1962)
http://digital.library.adelaide.edu.au/coll/special /fisher/papers.himl

‘Maximum Likelihood (MaxLik) principle is

not a rule that requires justification: Bet
Always On the Highest Chancel
‘Numerous applications in signal analysis,
optics, geophysics, nuclear physics,...

-A. Witten, The application of ML
estimator to tunnel detection, Inverse
Problems 7(1991), 495.

‘MaxLik analysis= pea plant experiment
of 6. Mendel was contrived (too good to
be true, statistically © )
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Maximum Likelihood Tomography

‘Likelihood £ quantifies the degree of belief in
certain hypothesis under the condition of the given
data.

‘MaxLik principle selects the most likely
configuration

*Information is updated according to the Bayes rule
prior probability = posterior probability

P(pID) = P(Dlp) p(p) [p(D)]?
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Generic reconstruction scheme

Log-likelihood for generic measurement

log £ =2 N;log p; / (2« pi)

(probabilities are mutually normalized)

Equivalent formulation: estimation of parameters with

Poissonian probabilities and unknown mean
(constrained MaxLik by Fermi)

log £ =2 ;Njlog(p;) -2 2;p;




Easy derivation

Differentiate formally the Log-likelihood with the constraint

log £(p) = Z; N;log pj(p) - A Tr(p) /3P
2 N/pi(e) (A [K<I-A3|k><I1=0  /p
2 N/pi(P) Aip=Ap fTrp=1
Rp=p
Equivalently p= RpR

R=%; (f/ Tr(pA)) A

(Log)-likelihood is convex functional over the convex manifold of
density matrices = convex optimization
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MaxLik interpretation
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'MaxLik in terms of Quantum Mechanics

Fluctuations in the k-th channel
(Ag)? = Tr(pAyY [1- Tr(pAY]

All the observations cannot be equally trusted!
MaxLik estimation in 3 steps:
1. Re-define POVM elements A, = p, A,

2. Postulate mean values p, Tr(pA,) = f,
3. Postulate the closure relation

2, A, = 1
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Why the optimal estimation
must be nonlinear:

-Various projections are counted

with different accuracy.

*Accuracy depends on the
unknewn quantum state.

*Optimal estimation strategy
must re-interpret the registered
data and estimate the state
simultaneously.

-Optimal estimation should be
nonlinear. MaxLik is doing this.

Pirsal

08080038
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Diagnostics

*MaxLik reconstruction characterizes the estimated state
as random variable with Gaussian posterior distribution

Any prediction based on fomography e.g. fidelity, Wigner

function at origin, etc. is uncertain

Q= <«Qom = AQ
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Quantum state = set of M= d?-1 parameters
€; .. generator basis

p= Qo/d+ZFrp 2, pM-= Qo/d"'ZIF’iMLﬂi,

Relative coordinate ri=p-pM-, r=(rg,r, .. Pyg)
Posterior (multi-normal) distribution

Pe(r)= (2m)" M2 (detF)2 exp(-3 rfFr )
Fisher information matrix, P = Z; p;
ij = N2 Zi I/Nl bl"J [pl/P] br'k [pJ/P]

Performance measure linear in quantum state

z = Tr(Zp)
Wigner function at origin  Z= 3, (-1)" |[n><n|

FIdE.ll'l'y L= |q"1'rue;>< Wirie |
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- Expansion in fixed operator basis

£= Xz |z (. 5. 7))
- Experimental uncertainty

(Az)? = <z|F-*|z>

- Statistics of inferred variable

z =TrZpw) * {<zIF1|z>}2

- Experimental uncertainty relations

(Aa)® (Ab)? > |<alF-*|b>|?
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- Expansion in fixed operator basis

2= Y. =0 | -G % . 7y,)
- Experimental uncertainty

(Az)? = <z|F-*|z>

- Statistics of inferred variable

z =TrZpw) * {<zIF1|z>}72

- Experimental uncertainty relations
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Several examples

-Phase estimation

-Spin and entangled spin state fomography

- Transmission tomography

‘Reconstruction of photocount statistics
*Image reconstruction

-Vortex beam analysis

‘Quantification of entanglement

Operational quantum information
‘Reconstruction of neutron wave packet

*Full reconstruction based on on/off detection
-Reconstruction of CP maps

‘Reconstruction based on homodyne detection
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Simulation of realistic homodyne
| tomography

Standard setup used for detection of negative
Wigner function

6 phase cuts in phase space, efficiency v=0,8
1,2 .10° detected events
ML estimation using 1000 iterations

Simulation repeated 1000 times
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Reconstruction of Wigner function

» rotated quadratures

= \/E lae™% +ate®], 2,0 = :Z [6e%8 —ate®?]

smarginal distributions for Pz(xg)

P
-
 Homodyne measurement / '\




Homodyne tomography: field
of view given by G

N8|
_—
2

20 100

0 16 N a0 44 a0 i m 20
m

Rationale behind: Projections into rotated "quadrature
eigenstates” are not sufficiently resolving. The delimited
oo Hj|bert space is always too large for data fitting. Page 26137



MaxLik reconstruction

)

(a)
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Diagnostics of Wigner at

origin
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Fingerprint or footprint?
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Simple arguments: estimation

of the width of sinc?x

0.4

probability / relative frequency
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’ T T - I

1 /(\\ 5 samples
3 : (x) =081

1 Af\ 15 samples
: Fi % (?{2> = 1.98

(x) =791

Page 30/37



Why errors cannot be sometimes simulated:

“Classical” example: Assume the statistics of variable s

estimated on the basis of N trials
s = (1/N) Z; x2

Singular Statistics: p(x) = 1/m sinc2x
‘s“"‘rhe;ur'y: . but
<S>.p ~NY2 | <s?>,,, ~N32  and
SNR ~ N4

"Quantum” example:
P, = (1-1/n)|0><0| + 1/n |n><n]|
<n> = | independent of n
but
<k p k> =0 for any k and n going to <e
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probability / relative frequency
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Simple arguments: estimation
of the width of sinc®x

0.4

0

| T [ - I
1 /(\\ 5 sanmles
- x) =081
' — ﬂ-./ i \a -
- 0
] | I I
3 / 15 samples
B x }—— 1.98
-IU
T . I
A ]: 100 samples
3 | | (x) =791
= [ e |! |

-10 0 10
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Why errors cannot be sometimes simulated:

“Classical” example: Assume the statistics of variable s

estimated on the basis of N trials
s = (1/N) I; x?

Singular Statistics: p(x) = 1/x sinc2x
‘5>Thaur'y= o but
<S>, ~NYZ | <s%5,,, ~N¥2  and
SNR ~ N4

"Quantum” example:
P, = (1-1/n)|0><0| + 1/n |n><n]|
<n> = | independent of n
but
<k p k> =0 for any k and n going to <e
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Penalized MaxLik estimation

Hint: Normalize the Likelihood. The normalization term is
state independent but dimension dependent!

Modified Schwarz information
Ius=log £(p) - M log N + 5 M log(2m) - 5 log detF

M ... dimension of estimated variable (density matrix)
N ... dimension of data set (# of POVM elements)

Some numerical simulations show that relatively small
dimension M is sufficient for successful data fitting.
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Resource analysis

To control the quantum system means to control all
relevant errors....

-Pure state in dimension d: 2d -1 real parameters
Estimation is not a convex problem...

-Density matrix d?-1 real parameters
Fisher info matrix: 3(d*-1)(d? -2) real parameters

-CP maps: d? (d*- 1) real parameters
Fisher info matrix for CP maps: $d? (d*- 1)(d* - d? -1) redl
parameters

Quantum computation with 5 gbits: d = 2° = 32
Quantum state: ~ 103 parameters

Fisher info: ~ 10° parameters

CP maps: ~ 10° parameters

"Fisher info of CP maps: ~ 10!2 parameters
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MaxLik tomo in few steps

-Specify quantum measurement

‘Find field of view given by G operator
-Solve MaxLik equation

‘Find Fisher information matrix

‘Find spread of desired inferred variable
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