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Abstract: IVll survey recent results from quantum computing theory showing that,if one just wishes to learn enough about a quantum state to
predictthe outcomes of most measurements that will actually be made, then itoften suffices to perform exponentially fewer measurements than
wouldbe needed in quantum state tomography. IVIl then describe the resultsof a numerical simulation of the new quantum state learning
approach.The latter isjoint work with Eyal Dechter.
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What is a quantum state?

A “state of the world™? A “state of knowledge™?

Whatever else it Is, should at least be a useful

hypothesis that encapsulates previous observations
and lets us predict future ones

How “useful” is a hypothesis that takes 10°°° pbits even
to write down?

Seems to bolster the arguments of quantum

computing skeptics who think quantum mechanics will
break down in the “large N [imit’
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Really we’re talking about Hume’s
Problem of Induction...

You see 500 ravens. Every one is black. Why does
that give you any grounds whatsoever for expecting the
next raven to be black?

RAPLRAPR
ALPP

The answer, according to computational learning
theory: In practice, we always restrict attention to some
class of hypotheses vastly smaller than the class of all
logitally concelvable hypotheses




Probably Approximately Correct
(PAC) Learning

Set S called the sample space
Probability distribution D over S
Class C of hypotheses: functions from S to {0,1}

Unknown function feC

Goal: Given x,,..., X drawn independently from D,
together with f(x,),... ,f(x. ), output a hypothesis heC

such that
Prla(x)=f(x)]21-e.

-..ith probability at least 1-6 over x,,... X

m



L=
_',

-
N\

Valiant 1984: If the hypothesis class C is finite, then any
hypothesis consistent with

Oll x
m=0| —lo
£ gc’i

random samples will also be consistent with a 1-¢
fraction of future data, with probability at least 1-6 over
the choice of samples
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Occam’s Razor Theorem

Valiant 1984: If the hypothesis class C is finite, then any
hypothesis consistent with

1 C
m = O(—log - J
E O

random samples will also be consistent with a 1-¢
fraction of future data, with probability at least 1-6 over
the choice of samples

“Compression implies prediction”
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Occam’s Razor Theorem

V7" Butthe number “thesis class C is finite, then any

of quantum
states is infinite! 1 k

‘ — e
/ / And even If we

discretize, it's still
doubly exponential in
the number of qubits! 7

random samples will al
fraction of future data.
the choice of samples
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A Hint of What’s Possible...

Theorem [A. 2004]: Any n-qubit quantum state
can be “simulated” using O(n log n log m) classical
bits, where m Is the number of (binary)

measurements whose outcomes we care about.
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Let E=(E,,...,E,,) be two-outcome POVMs on an n-
qubit state p. Then given (classical descriptions of)
E and p, we can produce a classical string of

5[nlogn -logm]

2
&

bits, from which Tr(E,p) can be estimated to within
~agditive error € given any E, (without knowing p).
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Proof idea: Start with the
maximally mixed state as your
hypothesis, then find a “Darwinian
training set” of measurements
within {E,,... ,E_} such that
postselecting on their outcomes

Improves the hyp

measure

Let E=(E
qubit stat

E and p,

othesis
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Quantum Occam’s Razor Theorem
[A. 2006]

Let p be an n-qubit state, and let D be a distribution over
two-outcome measurements.

Suppose we draw measurements E,,... E_ Independently
from D, and then find a hypothesis state o that minimizes

i (Tr(EfO-)_bI' )2 (bi = outcome of Ei)
=

Then Pr ITe(Eo)-Tr(Ep) < 7|=1-¢

with probability at least 1-6 over E,,... ,E_, provided

¢ 7 = |
m=>— 1 log +log— | (C aconstant)
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Quantum Occam’s Razor Theorem
[A. 2006]

Let p be an n-qubit state, and let D be a distribution over
two-outcome measurements.

Suppose we draw measurements E,,... E_ Independently
from D, and then find a hypothesis state o that minimizes

i (Tr(EiO-)_b;‘ ): (bi = outcome of Ei)
1

Then Pr ITe(Eo)-Tr(Ep) < 7|=1-¢

with probability at least 1-6 over E,,... .E_, provided

C 7 = |
m>—_ | _lop +log— | (C aconstant)
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Quantum Occam’s Razor Theorem
[A. 2006]

Let p be an n-qubit state, and let D be a distribution over
two-outcome measurements.

Suppose we draw measurements E..... .E_ independently

from D, an Proof builds on results on quantum minimizes
random access codes due to
Ambainis et al. and Nayak, and on
learning of real-valued concept
Then Pr| classes due to Alon et al. and
e Bartlett and Long
with probability at least 1-6 over E,,... &, provided

me of E)

C 7 o 1 |
m > ; —log" —+log— | (C aconstant)
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Generalization to process
tomography?
No!

Suppose U|x)=(-1)™|x), for some random Boolean
function f:{0,1}"—=>{0,1}

Then the values of f(x) constitute 2" independently
accessible bits to be learned about

Yet each measurement provides at most n of the
bits, by Holevo's Theorem

Hence, no analogue of my learning theorem is going
ptsosmbe true Page 36/66
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Extension to k-outcome
measurements?

Sure, Iif we increase the number of sample
measurements m by a poly(k) factor

Note that there's no hope of learning to simulate
2"-outcome measurements (i.e. measurements on
all n qubits) after poly(n) sample measurements
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How do we actually find ¢?

Let b,,...,b_, be the binary outcomes of measurements
E..

Then choose a hypothesis state o to minimize

m

S (Te(E,0)-b,)

=1

m

This Is a convex programming problem, which can be
solved in time polynomial in the Hilbert space
dimension N=2"

In general, we can't hope for better than this—for
Lasic computational complexity reasons
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Extension to k-outcome
measurements?
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Custom Convex Programming Method
[E. Hazan, 2008]

< f(0)=2.(Te(E0)-b)

SetS, =I/N
Fort=0to =
Compute smallest eigenvector v, of V{(S,)
Compute step size o, that minimizes f(S.+o(v,v,"-S,))

Set S, = S; + a (V-5
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Custom Convex Programming Method
[E. Hazan, 2008]

Let f(g)= ,2:: (Tr(E,0)-b,)

Set S, =I/N

Fort:=0 to «
Compute smallest eigenvector v, of V{(S,)
Compute step size o, that minimizes f(S.+o (v, v,"-S,))
Set S, = S; + a(V\V,™-S,)

Theorem (Hazan): This algorithm returns an s-optimal
sofertion after only log(m)/s? iterations.



Implementation
[A. & Dechter 2008]

We implemented Hazan's algorithm in MATLAB

Code available on request

Using MIT's computing cluster, we then did

numerical simulations to check experimentally that
the learning theorem is true
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Experiments We Ran

1. Classical States (sanity check). States have
form p=|x)(x|, measurements check if it" bit is 1
or O, distribution over measurements Is uniform.
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Experiments We Ran

1. Classical States (sanity check). States have
form p=|x)(x|, measurements check if it" bit is 1
or O, distribution over measurements Is uniform.

2. Linear Cluster States. States are n qubits,
prepared by starting with [+)-" and then applying
conditional phase (P|xy)=(-1)¥|xy)) to each
neighboring pair. Measurements check three
randomly-chosen neighboring qubits, in a basis
like {{0)]+)[0),[1)[+)|1),]0)]-)|1)}. Acceptance
probability is always 7.

Pirsa:
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3. Z," Subgroup States. Let H be a subgroup of
G=Z," of order 2"-1. States p=|H)(H| are equal
superpositions over H. There's a measurement
E, for each element geG, which checks whether

geH:
E - I + iUg + lU;

£
-

27" 4 4

where U, |h)=|gh) for all heG. E, accepts with
probability 1 if geH, or 2 if geH.

Inspired by [Watrous 2000]; meant to showcase
pretty-good tomography with non-commuting
measurements.
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Measurement Complexity of n

=—#—7 2"n Subgroups
= Linear Cluster States
—ir—Classical n-bit String

number of measurements (m)
t

10 -

un

number of qubits (n)
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Number of Measurements (m)

Measurement Complexity of 1/gamma

50

30

- NRNRNNOREA

epsilon=.2
delta=.2
n=2 |

== Random Qubit 1/gamma |
=—&—Z Subgroup 1/gamma

D:
Firsas



p% Open Problems p“@

Pirsa: 08080036



Lo
%,

p% Open Problems p“@

Find more convincing applications of our
learning theorem

Pirsa: 08080036



Lo
%,

p“@ Open Problems p“*

Find more convincing applications of our
learning theorem

Find special classes of states for which learning
can be done using computation time
polynomial in the number of qubits

Pirsa: 08080036



L #)
%,

p% Open Problems p“«

Find more convincing applications of our
learning theorem

Find special classes of states for which learning
can be done using computation time
polynomial in the number of qubits

Improve the parameters of the learning theorem

Pirsa: 08080036



4
%

p% Open Problems p“e

Find more convincing applications of our
learning theorem

Find special classes of states for which learning
can be done using computation time
polynomial in the number of qubits

Improve the parameters of the learning theorem
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Number of Measurements (m)
]

Measurement Complexity of 1/gamma
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nnnnnnnnn

epsilon=.2
delta=.2
n=2

=@—Random Qubit 1/gamma
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