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Abstract: We introduce the concept of tight POVMSs. In analogy with tight frames, these are POV Ms that are as close as possible to orthonormal
bases for the space they span. We show that tight rank-one POVMs define the exact class of optima measurements for linear tomography of
guantum states. In this setting they are equivalent to complex projective 2-designs. We also show that tight POVMs define the optimal class of
measurements on the probe state for ancilla-assisted process tomography of unital channels. In this setting they are equivalent to unitary 2-designs.
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Outline

1. States and POVMs in real Hilbert space. ie. “Bloch sphere” for qudits.

2. Informational completeness and state reconstruction.

3. Tight POVMs. “Almost” orthonormal bases for quantum states.

— complex projective designs

4. Optimal linear tomography. Tight POVMs (when they exist) describe
the exact optimal class of measurements.

— unitary designs
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States and POVMs in real Hilbert space

e States p are positive Hermitian operators on C%.
e POVMs {F(x)},.-2 are sets of positive Hermitian operators on C?.

(lets assume a finite number of outcomes | 2| < oc and a finite dimension d < ~c)

e Hermitian operators live in a real Hilbert space:
H(CY) = {4  Eud(C?) s A" = 4) =R

with Hilbert-Schmidt inner product: (A|B) = tr(A'B)
inducing a norm: Al =+/ (A|B)
and distance: |A — B

e But states have unit trace. They in fact live in an affine subspace of H:

(I|lp) =tr(p) =1
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States and POVMs in real Hilbert space

e Define the vector subspace of traceless Hermitian operators:

Ho(C?) = {A € H(C?) : tr(4) =0} =R !

e We prune a dimension by projecting into Hj:

p) — |po) =1ls|p) = |p—1/d) | states

1 o
where II;=1-— d 1) (1] ,_,><I__——HD

'A) and (A| are operator kets and bras

I is the identity superoperator: [|A) = |A)

e Distances are preserved: |[pg — aoll = ||p — 7]
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States and POVMs in real Hilbert space

e States are now embedded into a ball centered at the origin of Hy = RY 1

looll < /2=
Po _\/ d

e Pure states lie on the surface of the ball and mixed states within.

e This is of course just a fancy description of 1Z)
the Bloch-sphere representation of a qubit:

o) = 5 1X) +2 1Y) +512) ::><ij

(z,y.2) € R, 2y’ 22 <1 1Y) 1X)

e When d = 2 the embedding is bijective, but otherwise only injective,
i.e., for d > 2 not every point in the ball represents a state.
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States and POVMs in real Hilbert space

e POVMs can be embedded into H; by first rewriting them in terms of
a scalar-valued trace measure: =1t )

and positive operator-valued density (POVD): P(z) = F(z)/7(x)

— tr(P) = 1. er{r):d. ZI,—(I)P(I;}:I

(more generally, define P through the Radon-Nikodym derivative: F'(£) = [, dr(x)P(z))

e Embed the POVD elements as if they were states:

|1P) — |Ry) =1h|P)=|P—1/d)

' _®
¢ In this case the points Fy(x) are weighted by 7(x) /}Q/§<
and satisfy ~ “Q\L
"‘\-H_\ -

ZIT(T'}PD{I) — ()
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Informational completeness and state reconstruction

e Distinct p € F := span{ F'(x)}.c2 have distinct statistics p(z) = (F(x)|p), ie.
Every POVM is informationally complete with respect to the subspace It spans.

e State reconstruction then follows a standard procedure:
Define F == me—{mp(r;)(Pm| and F = (F+1p.) g
(so that FF = IIy = projector onto F)
Next define the reconstruction density | R) = F|P), which satisfies

Y T(@)|R@)(P(2)| =F Y 7(2)|P(z))(P(z)| = FF =g

({ R(x) }. is the canonical dual frame in F, with respect to T, to the operator frame { P(z) }.)

Multiplying on the right by |p) then gives a state-reconstruction formula:
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Tight POVMs

I F
e Embedding into Hj gives a better picture: We can o
rewrite
1 states
f:fo—i—gﬁ)(ﬂ

_ -
where Fy =1l FII; = er{r![Pg('r})(Pq[rH J»«_ﬂg

: Fo -

e Notice that F decomposes into a piece fixed by the
normalization of F' (expressed as F|/) = |[)) and a
piece F, acting within Hy, an invariant subspace. It is 7, which can be adjusted.

e What might be a good choice? Let Fy .= IIg F =span{ Py(x)}.c2.

A POVM F is called tight if { Py(x)}.=2 is a tight operator frame in Fg:

T — ZITI;I‘_}|P.j.(r])(ﬁj(r)| = allg, (some a > 0)
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Tight POVMs

Frames are a generalization of bases that includes “overcomplete” sets. For
every frame { A} there is a dual frame { By} such that >, |Br)(Ax| x L

Tight frames are those with > _, |A;)(Az| ~< I and are thus a generalization
of orthonormal bases. A basis is a tight frame iff it is an orthonormal basis.

e Just like for orthonormal bases, state reconstruction for tight POVMs is trivial:

1
Po = EZ po(z)Po(x) where po(z) = 7(z)(Fo(z)|po) =p(x) — 7(2)/d

-, _ . o L .
Or lifting back into H: o— szpm VP(x) + (1 - —)Ld

a

e But we cannot choose a basis for H; since POVM normalization requires linear
dependence:

. E T(x)FPy(x) =0
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Tight rank-one POVMs

e [he constant a is a measure of the purity of the POVM:

1 1 | d—1 SRS
a—— (Zra (2)(P(x)|P(x)) — 1) < 51 where 6 .=dimF

e
a——
a-—

iff the tight POVM is also a rank-one POVM

e [Tomographic optimality will require a to take this maximum value.

e Tight POVMs are easy to construct for a chosen small enough.

But as a is increased we encounter regions inside the Bloch sphere that
correspond to nonpositive operators (if d > 2).

This makes tight rank-one POVMs very difficult to construct.

e Do tight rank-one POVMs even exist?
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Tight rank-one POVMs spanning H(Cd)

e For F = H(C%) we have a second characterization of tight rank-one POVMs:

Let 2" C CP9 ! and then set P(z) = |z)(z|.
| A rank-one POVM F(z) = 7(z)P(z) with F = H(CY) is tight if and only
|

if
d Z T(z) |2) (x| R |2) (x| = / dre |z2)(z| @ |2){z]
: re =

pd—1

ie. the outcome set .2  specifies a weighted complex projective 2-design.

From the theory of 7-designs:
e There exist 2-designs of size | 27| < (d* + 2d° + d?)/4 for all d.
e But it is necessary that |.2"| > d®>. (= dim H(CY))
1

orex Mosid |l 2-designs with | 27| = d? are equiangular: |(z|y)|* = Zis (z~u) 7 1;,;931—3,3%-
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Tight rank-one POVMs spanning H(Cd’)

e SIC-POVM: |Z'| = d*. Constructions known only for

d < 10 and d = 12,13, 19, but conjectured to exist
in all dimensions. The unique minimal tight rank-one
POVMs spanning H(C%) (when they exist).

e d+1 MUBs: |Z| = d* + d. Constructions known for

all prime-power dimensions ¢ = p™, but conjectured
not to exist in other dimensions. The unique minimal
tight rank-one POVMs spanning H(C?) that can be
implemented by orthogonal measurements (when they
exist).

e A new family of weighted 2-designs: | 27| = d? + 2d.

Construction generalizes to all d = p™ — 1, co-
vering many dimensions missed by MUBs (d =
6,10,12,15,..), and can be implemented by d + 2
orthogonal measurements. [Roy and Scott. J Math Phys.48
(2007) 072110]



Optimal linear tomography

e Suppose we want to perform tomography on a subset of states that span some
subspace H < H(C?). Assume that 7 = H' and let §' = dim H'.

Examples:

e H™ := H(C%): Contains all quantum states. §' = d>.
e H := {A € H(C?) : A is diagonal}: Contains all classical states. 6’ = d.

Set |1.) = V1/n3Y", |k) @ |k), the maximally entangled state in C* = C" @ C",
ie. @ = n=, and consider entanglement-assisted process tomography in terms of
state tomography on the output state (& © 7 )(|v.) (10.]):

o H™ := {A € H(C?) : tri(A) = tr2(A) = tr(A)I/d}: Contains all output states
for the process tomography of unital channels. 8’ = (nZ—1)?+1 =(d—1)2+1.

o H% := {A = H(CY) : try(A) = tr(A)I/d}: Contains all output states for the
e casdpOCESS tomography of general channels. 6’ = n?(n? — 1) + 1 =d(d — 1) & ls



Optimal linear tomography

e We need the POVM F to span a space that includes H' as a subspace: F > H'.

e Assume a linear state-reconstruction formula valid for all p = H':
P Z_rp(fmﬁ?’(.r) = ZI(F(ﬁ)Ip)Q"(r} — Z;(r1(P(41=)|,,;,)Qr(‘1,}

where we can assume Q'(r) = H' without loss of generality.

e This means Q' is a dual frame in H' to the projected frame |P/(z)) = ITy|P(x)):

Z T(2)|Q () W P(z)| = Iy

=

e T[here are generally many different choices for the dual frame. Our first task will
be to show that the canonical dual is optimal.

i

e Note that although P > 0 we generally have P’ # 0. Assuming F = H' above
Prea%%ould thus neglect this possibility. Tegs e



Optimal linear tomography

e Suppose we are given /N copies of an unknown state p, and we perform

measurements on each copy, all described by the same POVM F', and with
outcomes ;.. ... YN .

e Take the linear tomographic estimate of p:

b gl

o

Mm

5
]
'_I.
e
-z

Il
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Optimal linear tomography

o Now define an average error, where the average is taken over some set & — U(d),
of possible orientations () between the state and measuring instrument, with the
property that Ec OAO" =tr(A)I/d:

eTT 5y ( ,O) — CJ];{F *5'1‘1'( O;} OT )

1 / r 2
- 12 Z. @0 @@IQ @) - (6

Examples:

o H™ = H(CY): Take & = U(d). Then Ex UAUT = tr(A)I/d by Schur's lemma.

e H: Take & = set of d! permutation matrices P. Then Ep PAPT = tr(A)l/d
for any diagonal A.

e H" H*": Take & = U(n) = U(n), the set of local orientations [’ between the
system and measuring instrument and local orientations V" between the system
rrsa:ososged ancilla. Then Eir (U 2 V) A(U @ V)T = tr(A)I/d by Schur's lemnvaewsss



Optimal linear tomography

e We now want to prove our main result:

Theorem. For all POVMs F' spanning a space F > H' (where I € H'), and
for all duals @',

WOOL | W )
e . ip) = — -+ —dirlg
U Nd\ d-1 .

with equality if and only if F' is a tight rank-one POVM spanning F = H’
and Q" = R (the canonical dual).

Pirsa: 08080035 Page 19/35



Optimal linear tomography

Proof step 1:

e We first minimize the quantity Z r)(Q'(x)|Q'(x)) over all duals Q'

satisfying Z 7(2)|Q'(2))(P’'(x)| = Il while keeping the POVM fixed:

|
Lemma 1. For all duals @’

> @Q@IQ () = Y T(x)(R(2)|R (2))

with equality if and only if Q' = R’ where R’ is the canonical dual.

e The canonical dual in H is |R’) := F'|P’) where F' = (F' + Iy, ) Ty with
F Z (z)|P'(z))(P'(2)| = Mgy F Mgy

. D MR @I =FY s WP @IF =FFF —F
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Optimal linear tomography

Proof of Lemma 1. Let D' = Q" — R’ which satisfies

> T@)(D'(@)|R(@@) =) T{;M(Q’(I)]R"(I))—Zr z) (R (z)| R (x))

- Z m(2)(Q'(z)|F'|P'(z)) — Tr[F]
== Tl [}‘_IHHI] == TI [f-]
9

Then

> T@Q@IQ@) =) T(@)(R(2)|R( )+Z z)(R'(z)|D'(z))
+Y . T(@)(D'(2)|R (= )+Z r(z)(D'(z)| D' (x))
=Y T@)(R(2)|R(x )+Z D'(z)|D'(x))
> ) (x)(R(2)|R (2))

Jith equality if and only if D' = 0. % ona)

Pirsa:




Optimal linear tomography

Proof step 2:

r

e Now minimize the quantity Z T(z) (R (z)|R'(x)) = Tr[F'] over all POVMs:

' Lemma 2. For all POVMs F spanning a space F > H’

with equality if and only if

d—1

| f—:j::f)"—l

1
My, + - 1) ]

' ie. Fis a tight rank-one POVM spanning F = H’'.

e Here H,, := ITo H'. Recall that we assumed I < H' and defined 6" = dim H'.

o MosolOte that equality requires F = H', meaning P’ = P, R’ = R, etc. page 22135



Optimal linear tomography

Pirsa: 08080035

Proof of Lemma 2. Since F > H' the positive superoperator 7' = Iy F Iy
has exactly 6’ = dim H' nonzero eigenvalues: A;. \s. .. .. Ay > 0.

But one eigenvalue is fixed at unity, \; = 1 say, since we assumed / < H' and
POVM normalization requires F|I) = |I): F'|I) =1y FIlw|I) = |I).

5’
The remaining satisfy Z Ae =Tr[F]—1<Tr[F]—1<d—1 (1)

k=2
given that Tr[F'] = Tr[Ily F ] < Tr[F] with equality iff F = H', and
Ir[F] =) m(z)(P(z)|P(x)) < >__7(x) = d with equality iff P is rank-1.

Under (1), Tr[F'] = l+z takes its minimum of 1 +(8"'—1)%/(d—1)
k=2"
iff \o =--- =Xy =(d—1)/(§" —1), requiring (1) to take its maximum and,

moreover, requiring a tight rank-1 POVM spanning H: 7, = F) = 5,, : LS | 49
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Optimal linear tomography

e Lemma 1 and 2 thus give our main result:

Theorem. For all POVMs F' spanning a space F > H' (where I = H')

1 /1)
Nd\ d-—1

EET i p) = E e OpO") > +1 —dtr{p’ })
oco

for all duals @', with equality if and only if £ is a tight rank-one POVM
' spanning F = H and Q' = R (the canonical dual).

e This theorem is unchanged if we replace err,,(p) with the worst-case error:

Corollary. For all POVMs F' spanning a space F > H' (where [ = H')

ITwel(p) up err(OpO') > Ry 1 —dtr(p?)
eIl (p) == sup err(Og > — +-3 - dits
e T T Nd\ d—1 4

for all duals @', with equality if and only if F' is a tight rank-one POVM
spanning F = H' and @' = R (the canonical dual).

Pirsa: 0808003
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Optimal linear tomography

e Tight rank-one POVMs in fact achieve the optimal error rate independent of O:

: L ]_ ({j‘! B ]_}2 ; B ]
i e i . 2
EII[O,OO}_N{{( 71 = = dtltp))
Examples:
i : I
e H" —H(C9): ' =d* = err= - (a!2 +d—1— tr{,r;rz})

: 1 )
e H: 9 =d = er= = (1 —tr(p?))  (which vanishes for pure states)

o -

) : | 2
o B=-§ — (d — I}Z—i— 1 = err= = ({fz —:3d—|—3—t1‘(p‘2))

i

- (d* —d + 1/d — tx(p?))

o™ & _—dld 1)1l = exr— =
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Optimal linear tomography

e Lemma 1 and 2 thus give our main result:

| Theorem. For all POVMs F' spanning a space F > H' (where I < H')

(6 —1)°
a4

1
= B err(0pO’) >
errtn): err(OpO') N

+1—d t-l‘(pz })
(__) o

for all duals @', with equality if and only if /' is a tight rank-one POVM
spanning F = H' and Q" = R (the canonical dual).

e T[his theorem is unchanged if we replace err,,(p) with the worst-case error:

Corollary. For all POVMs F' spanning a space F > H' (where [ = H')

eIy () up err(OpO') > Nty 1 —dtr(p?)
ITwe(p) = sup err(OpOT) > — +1 —dtx(
B e~ Nd\ d—1 ¥

for all duals @', with equality if and only if F' is a tight rank-one POVM
Plrsalmoogspannlng F = H' and Q" = R (the canonical dual).
|
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Optimal linear tomography

e Tight rank-one POVMs in fact achieve the optimal error rate independent of O:

& ]_ ({5’ - ]_}2 oy
(O Y e ol 72
err(OpO') Nd( 7 3 +1—dtr(p ))
Examples:
i : | IR :
e H" —H(C?):§ =d®° = emr=—(+d—1—1tx(p))

N

i 1 o
e H: §'=d = err= = (1 —tr(p?®))  (which vanishes for pure states)

i

i : 1
e H: ' =(d—1)*+1 = emrr=

+ (@* —3d +3 —tx(p%)

1

«HE-F did 111 = ex— (& di1/d u(p)

<4
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When do tight rank-one POV Ms exist?

e We already know that tight rank-one POVMs spanning H™" = H(C%) are equi-
valent to weighted complex projective 2-designs. These exist in every dimension.

e Tight rank-one POVMs spanning H! are trivial. In this case 4’ = d and our
definition becomes

d—1
F=) m@IP@)(P()| = 5— IHWVF|UU[

— My + = 1) (7]
= HH::l

which means this type of tight rank-one POVM also corresponds to a tight frame
for H®! (along with Hf‘;l by definition). An orthonormal basis will do the job:

Alex) —lesilex), 7lex)=1. X —{es.....ca}

e What about tight rank-one POVMSs spanning H"" and H>“?

Pirsa: 08080035 Page 28/35




Tight rank-one POVMs spanning H™

e For F' = H" we again have a second characterization:

Let 2" C U(n) and then set P(U) = (U @ I)|.) (¥.|(U @ I)T (d = n?),
which parametrizes the (normalized) rank-one members of H™ in terms of

unitary matrices.
A rank-one POVM F(U) = 7(U)P(U) with F = H" is tight if and only if

1 . . R . 5
— T(UYUQU U U! :f dUUQUU'RQU!
I d F_; U(n)

ie. the outcome set Z  specifies a weighted unitary 2-design.

From the theory of U(n) t-designs:

e There exist 2-designs with | 27| < (d* — 6d° +25d% —28d + 16) /4 for all d = n?.

e But it is necessary that | 27| > d? —2d +2. (=dimH"™)
Page 29/35

@ The only 2-designs with |.2°| = d® — 2d + 2 are equiangular.



Tight rank-one POV Ms spanning H™

e H" /U(n) versions of SIC-POVMs?: | Z| =d? —2d +2 = n* — 2n? + 2 will
require equiangularity:
te(U'V)2 =1 — L oealllV LV c &

ne—1

Such designs (when they exist) specify the unique minimal tight rank-one POVMs
spanning H"". They do not exist in dimension n = 2.

e H" /U(n) versions of MUBs?: | 2’| = d* — d = n* — n?. These are (maximal)
sets of nZ — 1 mutually unbiased unitary-operator bases (MUUBs):
tr(UV)|* =1 for U and V taken from different bases

Constructions are known for n = 2.3,5,7, 11 [Chau, 2005] and specify (when
they exist) the unique minimal tight rank-one POVMs spanning H"" that can be
implemented by orthogonal measurements.

e Clifford group designs: |.2"| = n(d* —d) = n® —n>. The projective Clifford group
is a 2-design that exists for all prime-powers n = p™.

rire @eiPpen problem: Find a family of U(n) 2-designs with the optimal size O(Feeposs



Tight rank-one POVMs spanning H**

e We know that H2 := {A € H(CY) : try(A) = tr(A)I/d} contains H" := {A
H(C9) : tr1(A) =tra(A) = tr(A)I/d)} as a proper vector subspace: H"® < H2®.

But all rank-one members of H®*® are also members of H". They are the
maximally entangled states: A ~ (U @ I)|¢a) (.| (U @ I)'.

Thus there is no way to span H*® with the rank-one members of H*°. We can,
at most, span only the subspace H"".

e T[ight rank-one POVMs spanning H*" do not exist:

1
N

eIT.v(p) > (d2 —d+1/d— tr[’p"z))
e Bisio, Chiribella, D'Ariano, Facchini, and Perinotti [arXiv:0806.1172] have re-
cently derived the tight bound:

1 . — _. _. .
erTav(p) = ~ (-:1’.2 +(2v2—-3)d+ (5 —4v2)+2(vV2—-1)/d — tl'(p"})
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Summary and open problems

Tight POVMS are a natural choice for “orthonormal bases” for quantum states.

When they exist, tight rank-one POVMs describe the most robust measurements
against statistical error for linear tomography.

What is the exact class of optimal measurements for general channels? What
are the simplest members of this class?

Tight POVMs are likely to remain good choices for tomography when the linear
tomographic estimate of the state is replaced by something more sophisticated,
or when the Hilbert-Schmidt distance is replaced by something more appropriate,
at least in the limit of large numbers of measurements. But how good?

Within the class of tight POVMs, there will still be better choices. Eg. t-designs.
What can be proven?
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Tight rank-one POVMs spanning H**

e We know that H®® := {A € H(C?) : tr;(A) = tr(A)I/d} contains H" := {A €
H(CY) : tr1(A) =tra(A) = tr(A)I/d} as a proper vector subspace: H" < H2®.

But all rank-one members of H®*® are also members of H". They are the
maximally entangled states: A ~ (U @ I)|¢a) (W | (U @ I)'.

Thus there is no way to span H*® with the rank-one members of H*°. We can,
at most, span only the subspace H"".

e Tight rank-one POVMs spanning H*" do not exist:

eTTay(p) > ! ({fz —d—+1/d — tr( pﬂ))

N

e Bisio, Chiribella, D'Ariano, Facchini, and Perinotti [arXiv:0806.1172] have re-
cently derived the tight bound:

1, _ i . )
eTTay(p) = (dz +(2v2 —3)d + (5 —4V2) + 2(V2 —1)/d — tr(p'-})
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Summary and open problems

o Tight POVMS are a natural choice for “orthonormal bases” for quantum states.

e When they exist, tight rank-one POVMs describe the most robust measurements
against statistical error for linear tomography.

e What is the exact class of optimal measurements for general channels? What
are the simplest members of this class?

o [ight POVMs are likely to remain good choices for tomography when the linear
tomographic estimate of the state is replaced by something more sophisticated,
or when the Hilbert-Schmidt distance is replaced by something more appropriate,
at least in the limit of large numbers of measurements. But how good?

o Within the class of tight POVMs, there will still be better choices. Eg. 7-designs.
What can be proven?
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Tight rank-one POVMs spanning H**

e We know that H® := {A € H(C?) : try(A) = tr(A)I/d} contains H™ = {A €
H(CY) : tr1(A) =tra(A) = tr(A)I/d} as a proper vector subspace: H"® < H2®.

But all rank-one members of H®*® are also members of H". They are the
maximally entangled states: A < (U @ I)|Y.)(W.|(U @ I)'.

Thus there is no way to span H*® with the rank-one members of H*°. We can,
at most, span only the subspace H"".

e T[ight rank-one POVMs spanning H*® do not exist:

1 = .
eITav(p) > ({f' —d+1/d — EF(P"})

N
e Bisio, Chiribella, D’Ariano, Facchini, and Perinotti [arXiv:0806.1172] have re-
cently derived the tight bound:

14, i il . L
erra(p) > (.:-F +(2vV2 —3)d+ (5 —4v2) +2(vV2 —1)/d — tl'(;}"})
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