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Abstract: We present a novel quantum tomographic reconstruction method based on Bayesian inference via the Kaman filter update equations. The
method not only yields the maximum likelihood/optimal Bayesian reconstruction, but also a covariance matrix expressing the measurement
uncertainties in a complete way. From this covariance matrix the error bars on any derived quantity can be easily calculated. This is a first step
towards the broader goal of devising an omnibus reconstruction method that could be adapted to any tomographic setup with little effort and that
treats measurement uncertainties in a statistically well-founded way. We restrict ourselves to the important subclass of tomography based on
measurements with discrete outcomes (as opposed to continuous ones), and we also ignore any measurement imperfections (dark counts, less than
unit detector efficiency, etc.), which will be treated in further work. We illustrate the general theory on two real tomography experiments of
quantum optical information processing el ements.

Pirsa: 08080033 Page 1/35



Roval Holloway

I like them “the sunny side up”
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Goals

e Tomographic reconstruction, with error bars
e As always: reconstruction must be physical
e Fast method, even for large systems

e Statistically sound; avoid “zero-eigenvalue problem”
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Methods

e Proper Bayesian inference

e Approximation of tomographic process by a linear-Gaussian model,
e and use the Kalman filter update equations.

e What it gives us is NOT the maximum likelihood solution...

e ... but a confidence region centered around a mean value.

e The MaxLik solution is in the CR, burt is not the mean value.
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The tomographic process

e Consider state tomography: a state is measured \V times using some POVM I1'*

e State p

probabilities p —— frequencies f

e First step is linear: p; = Tr[pll' h]

e Second step is the quantum noise process: depending on setup a multinomial,
or a Poisson process F' ~ Mm( V. p).

e This process is performed for different POVMs (hence: tomography)
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Bayesian Inference

e From the “forward” process p p ¥,
e infer the statistics “backwards”: f p p

e using Bayes’ rule:

posterior PDF  Likelihood function prior PDF
flplf) ~x flflp) : flp)

Proportionality factor follows by normalising the posterior
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Bayesian Inference

e For the first tomographic “slice” (first POVM),
assume a flat prior (unknown state):

posterior PDF  Likelihood function
flplf) < f(flp)

e For the next slices (next POVMSs),
posterior is prior for next slice

FOIFY, F9 )< fF(F*DNp) x  flolFD,--)
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In practice...

e Bayesian inference is simple in theory, but practice tells otherwise
e We will proceed in two steps:

o First Bayesian inversion of the quantum noise process p — f

e Then Bayesian inversion of the linear (POVM) mapping p P
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First Bayesian Inversion Step

e Here we want to avoid the “zero-eigenvalue problem™:
e From f; = (0 we shouldn’t conclude p; = 0.

e Having made NV out of |V safe airplane journeys does not prevent your next

flight from crashing
e

e One of the first statistics problems to be treated properly; bv.
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Pierre-Simon, Marquis de Laplace

1774: “Mémoire sur la probabilité des causes par les évenements”
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Laplace’s rule of succession

e Suppose [ out of \V flights crash, what is the probability that vour next flight
crashes?

e ... and based on that information alone
e Laplace’s answer: “rule of succession”

f+1

N +2

p=

e Both outcomes, crash and no crash, get one additional count: a pseudocount
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First Bayesian Inversion Step

e In modern Bayesian language:

e Forward process: p — f: F ~ Mtm(N.p)

e The likelihood function is f( f|p) = {;L \pit. .. [_):P;Lz

e With a flat prior, this gives a posterior PDF f(p| f) x ;;{L o pl'?;f

e Normalise over the simplex p;, > 0, > . p, = 1: multiplyby (V +d —1)\.
e Yields the Dirichlet distribution: P|F ~ Dirichlet{ f).

e Higher-dimensional generalisation of the Beta distribution.

£
3

e Its mean: u( P | F) = E:L! as found by Laplace!
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First Bayesian Inversion Step

e Note: the mode (position of maximum = MaxLik solution) of the Dirichlet is at
fIN.
e We prefer the mean over the mode because

“the mean of a posterior can be thought of as being more representative
[than its mode] as it takes into account the skewness of the PDFE.”
— D. Sivia
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Second Bayesian Inversion Step

e Inversion of linear part of the measurement process p p

e Problems: p may be high-dimensional, and how do you efficiently represent

products of Dirichlets over quantum state space?

e Our proposal: approximate the Dirichlet by a Gaussian, with same mean and
covariance.

e This turns the tomography process into a linear-Gaussian model, allowing the
use of Kalman filtering
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R.E. Kalman

1960: “A New Approach to Linear Filtering and Prediction Problems”
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Linear Gaussian Models

e Consider the position of Apollo-13 in space...

e Dynamic model: state x(7), obeys a linear ODE, with an additional Gaussian
perturbation term

x=(t + At) =U=(t) + N(0.X)

e Measurement of state (telemetry) also linear, and also with a Gaussian pertur-
bation term

z(t) = Hz(t) + N(0.6)

e We only need the measurement part, as the state is (supposedly) static

e Dynamical part becomes necessary in case of drift (work in progress).
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Kalman filter update equations

e For linear-Gaussian models, all PDFs are Gaussians, determined by their first
and second order moments

e Bayesian inference equations simplify, giving the
Kalman filter update equations:

K =YXH'HSH +6)!
p = pt+K(z— Hp)
¥y =¥ K

e Here, K is the so-called Kalman gain factor, # and ¥ are the prior moments of
the state PDF, and ;' and Y’ are the moments of the updated, posterior PDF.

e The inputs are the measurement data: the moments z and 6,

e while H defines the measurement itself.
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KF Tomographic Reconstruction

e In our setting, z is given by the mean of Dirichlet( f) and © by its covariance
maflrix.

e The state p is represented by a Hilbert space representative

e The measurement matrix ¥ is the matrix representing the linear mapping

p — pr = Tr[pll¥].
e As prior PDF, take a Gaussian with large covariances, approximating a flat prior
e The measurement results f for each POVM (tomographic slice) can then be

incorporated by applying the Kalman update equations with the appropriate
moments.
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And, does this work in practice?
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A Demo

e We have implemented the KF method for reconstructing tomography data of an
optical POVM (data courtesy 1. Walmsley)

e The POVM consists of 9 elements I1'*/, each element represented by a diagonal
matrix of size 4 = 100. The matrix elements correspond to photon numbers.

e Tomography input states are coherent states with varying power |a|”.

e Per power setting, NV = 33034 light pulses were sent through the POVM, and the
frequencies of the outcomes were recorded: f;,:=0.... .8 with }_ f, = V.
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A Demo
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Restriction Procedure (2D)
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Final POVM reconstruction

it
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Final POVM reconstruction
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Final POVM reconstruction
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Final POVM reconstruction
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Restriction Procedure (2D)
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KF Demo

e Kalman Filtering vields a Gaussian PDF over “POVM space”, with a mean value
it and a covariance matrix Y.

e We’'ll plot the mean value for POVM element I1'”, in function of photon number,

e and the diagonal elements of the covariance matrix for that POVM element, as
error bars.

e These diagonal elements are the variances of the marginal PDFs of T[” thus
we neglect the correlations.

e We'll show this after every KF update step.

e You will note the unphysicality of the solution; pls suspend your disbelief for a
minute
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Frequencies
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Conclusion

Let’s fight Global Warming with clever use
of Kalman Filtering!




