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Abstract: The speculation that Dark Energy can be explained by the backreaction of present inhomogeneities on the evolution of the background
cosmology has been increasingly debated in the recent literature. We demonstrate quantitively that the backreaction of linear perturbations on the
Friedmann equations is small but is nevertheless non-vanishing. This indicates the need for an improved averaging procedure capable of averaging
tensor quantities in a generally covariant way. We present an averaging process which decomposes the metric into Vielbeins selected employing a
variational principle, and parallel-transports them to a single point at which they can be averaged. The functionality of the process is discussed in
specific 2-d examples, and its application to 3-surfaces and metric recovery in cosmology is outlined.
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Introduction

@ Universe is homogeneous and isotropic on large scales
— Use exact solution to Einstein equations (FLRW metric) to
model the universe
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@ Universe is homogeneous and isotropic on large scales
— Use exact solution to Einstein equations (FLRW metric) to
model the universe
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Use exact solution to Einstein equations (FLRW metric) to
model the universe

@ CMB is isotropic with only small anisotropies
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Describe by linear perturbations about the FLRW solution

@ Astronomical observations (galaxy clustering and motions,

gravitational lensing, CMB, type la supernovae, Lyman «,
etc.)

— ACDM model with 76% dark energy, 20% dark matter, and
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— |s dark energy the backreaction of the generation and evolution of
Prea 022  inhomogeneities on the evolution of the background Cosmology 7™
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The Averaging Problem

@ Standard Cosmology based on
Gpv({&nu}) = 8nG { T,uu> + A {gpu:}
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The Averaging Problem

@ Standard Cosmology based on
GHV({g,uI-’>) = 87 G ( T,uv> + A {gpu>
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The Averaging Problem

@ Standard Cosmology based on
Gpv({gpv}) = 381G i T,uu> + A {gpv}
@ Einstein equations are nonlinear

(G,uu (g,uu)}‘ + G,uv ( <g,t£1f})
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The Averaging Problem

@ Standard Cosmology based on
GullZn) ) —SmC {1} | N,
@ Einstein equations are nonlinear

{: G‘u;j (gpp )f # G,LLL’ ( <g,uv} )

— We are using the wrong metric to describe the universe!

Pirsa: 08080029

- .
Conclusions

Page 14/90



Introduction Averaging Problem Perturbation Theory Generally Covariant Averaging _onclusions

The Averaging Problem

@ Standard Cosmology based on
Collze)) —8aG(T,. | A=)
@ Einstein equations are nonlinear

{ Hy(g#y)} # pr({gﬁﬂ})

— We are using the wrong metric to describe the universe!

@ Correct equations
(Guv(gur)) =87G (Tw) + N{guv)

for some average (A) in a domain D
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The Averaging Problem

@ Standard Cosmology based on
Culite))—8=6G{T,.; N .
@ Einstein equations are nonlinear

/

“\HGJUL’ (glup)\*" "_"E JLLU({gHF})

— We are using the wrong metric to describe the universel!

@ Correct equations
( G,uL—*(g,uV)} = 87G T,ub*} + A {gﬂb’:}

for some average (A) in a domain D

— Modifications can in principle act as a dark enegy

Gl (B)) —0=G{T..) | 8wGIS, + A (8ur)
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Einstein Equations in 3+1 Form

@ Foliate spacetime with family of spacelike hypersurfaces
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Einstein Equations in 3+1 Form
Foliate spacetime with family of spacelike hypersurfaces

Projection operators n* — %(1 3") and b —£. 2.8
Line element ds® = —(a® + 3;3')dt? + 23'dtdx' + h;dx'dx’!
Extrinsic curvature 2K; = —L,h;; = —h;; /a (for 3/ = 0)
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Einstein Equations in 3+1 Form

@ Foliate spacetime with family of spacelike hypersurfaces

Projection operators n* — %(1 3") and b —£. BB
Line element ds® = —(a® + 3;3')dt? + 23'dtdx’ + h;dx'dx’
Extrinsic curvature 2K; = —L,h;; = —h;; /a (for 3' = 0)

Stress-energy [I,, = pn,n, + 2n(,j,) + Suu
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Einstein Equations in 3+1 Form

Foliate spacetime with family of spacelike hypersurfaces

Projection operators n* — %(1 3") and . —£. B0
Line element ds* = —(a® + 3;3")dt? + 23'dtdx’ + h;;dx' dx’
Extrinsic curvature 2K; = —L,h;; = —h;; /a (for 3' = 0)
Stress-energy [I,, = pn,n, + 2n(,j,) + Suu

Hamiltonian constraint:
R+ K2 — KK =167Gp + 2\
Evolution equation:
i =
R 2K+ KK, 8=GS; + InGl (S—p)  Nb;— %D,—Dja
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Buchert Equations

o Define average (A) = + [, AV hd’x
@ Define Hubble rate 3Hp = 3ap/ap = V;”
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Buchert Equations
o Define average (A) = + [, AV hd’x
@ Define Hubble rate 3Hp = 3ap/ap = V/V

@ Commutator between time and space derivatives

(A) = Z(A) + L(A) + (AaK)

¢ AR f'_‘}f\i
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Buchert Equations

o Define average (A) = + [, AV hd’x
@ Define Hubble rate 3Hp = 3ap/ap = V/V

@ Commutator between time and space derivatives

(A) = Z(A) + L(A) + (AaK)

— Hamiltonian constraint = Friedmann equation:
. N2
8w G A/ 1
(22)" = %55 (0%) + 4 (o) — 1(Qp + Ro)

— Extrinsic curvature evolution = Raychaudhuri equation:
B = & (a?(p+ S)) + 2 {a®) + 2 (Op + Pp)

a4D
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Modifications

@ Kinematical backreaction:

Qo= (o (i) 3 ok

@ Dynamical backreaction:
Pp = (aK) + (aD'D;av)
@ Curvature contribution:

’R-p — <G‘2'R>
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Perturbation Theory

@ [ake the Newtonian metric in the form

ds* = —(1 + 20)dt* + a*(t)(1 — 20)d;dx" dx!
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Modifications

@ Kinematical backreaction:

Qp = <az (K2 = I{,’Kf)> = % (aK)?

@ Dynamical backreaction:
Pp = (aK) + (aD'D;av)
@ Curvature contribution:

R-p = <O"2R>
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Buchert Equations

o Define average (A) = + [, AV hd’x
@ Define Hubble rate 3Hp = 3ap/ap = V/V

@ Commutator between time and space derivatives

(A) = 2(A) + L(A) + (AaK)

— Hamiltonian constraint = Friedmann equation:
- N2
ap __ 8nG 2 A 2 1 |
(5) =5-(a®p) + 3(a*) — 5(2p +Rp)

— Extrinsic curvature evolution = Raychaudhuri equation:
B = & (a?(p+ S)) + 2 {(a®) + 3 (Op + Pp)

4D
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o Define average (A) = + [, AV hd’x
@ Define Hubble rate 3Hp = 3ap/ap = V/V

irsa: 08080029 Page 28/90



Introduction Averaging Problem Perturbation Theory Generally Covariant Averaging

Einstein Equations in 3+1 Form

@ Foliate spacetime with family of spacelike hypersurfaces

Projection operators n* — é(l 3") and b, —£. BB
Line element ds* = —(a? + 3;3")dt® + 23'dtdx' + hjjdx'dx’
Extrinsic curvature 2K; = —L,h;; = —h;; /a (for 3' = 0)

Stress-energy [I,, = pn,n, + 2n(,j,) + Suu

— Hamiltonian constraint:
R+ K?— KK =167Gp + 2\
— Evolution equation:
i A
a U

R&' il 2K;nKnj -+ KKU - SWGSU —i—4ﬂ'GhU (5—;0) —Ahu & %D;Dj&
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Buchert Equations

o Define average (A) = + [, AV hd’x
@ Define Hubble rate 3Hp = 3ap/ap = V/V

@ Commutator between time and 5pace derivatives

A . "J I,fi‘. —|— A —|—1AGK

— Hamiltonian constraint = Friedmann equation:

(32)° = %58 () + 4 (2®) ~ 1(@p + Rp)

a4p

— Extrinsic curvature evolution = Raychaudhuri equation:
e —% (a?(p+5)) + % (a®) + % (Qp + Pp)

4D
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Perturbation Theory

@ [ake the Newtonian metric in the form

ds® = —(1 + 20)dt* + a7(t)(1 — 20)d;;dx’ dx!
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Perturbation Theory

@ [ake the Newtonian metric in the form
ds* = —(1 + 20)dt* + a*(t)(1 — 20)d;dx’ dx!

e Since p= T, n"n” = p(1+ d)(u,n")* there is an additional
modification in the Buchert equations:
density correction Tp = (87G/3)p(u,n*)?d
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Perturbation Theory
@ [ake the Newtonian metric in the form
ds® = —(1 + 20)dt> + a%(t)(1 — 20)d;dx" dx’

e Since p= T, n"n” = p(1+ d)(u,n*)* there is an additional
modification in the Buchert equations:
density correction Tp = (87 G /3)p(u,n*)?d

@ lake D large enough to neglect first-order averages
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Perturbation Theory
@ [ake the Newtonian metric in the form
ds® = —(1 + 20)dt> + a%(t)(1 — 20)d;dx" dx’

e Since p= T, n"n” =p(1+ d)(u,n*)* there is an additional
modification in the Buchert equations:
density correction Tp = (87 G/3)p(u,n*)?d

@ lake D large enough to neglect first-order averages

Rp = 2 H(To) + 40V 70)

Qp = 6(5”)
2
o6 il — M = —_(6V26 — (V6)?))
a a
TG
Zp— 0(206 + a*v?)

: 08080029 Page 34/90



Introduction Averaging Problem Perturbation Theory Generally Covariant Averaging Conclusions

Modifications at z=10 and z =0

le0SF =

le-10F

Ie-12f

1-:~l-l-

le-16f
0001 0.01 Ol i 16

k (Mpe )

@ Evaluate corrections with CMBEasy, e.g.
, 2
Qp = 6 [ Pul(k) |o(t. k)| %
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Perturbation Theory

@ [ake the Newtonian metric in the form
ds® = —(1 + 20)dt> + a%(t)(1 — 20)d;dx" dx’

e Since p= T, n"n” = p(1+ d)(u,n*)* there is an additional
modiﬁcatlon in the Buchert equations:
density correction Tp = (87 G/3)p(u,n*)?d

@ [ake D large enough to neglect first-order averages

2 2
Rp == H(To) + 40V <0)
Qp = 6(0”)
Pp = —62(b0) — 3(&?) + = (6V%6 — (V6)?))
= =]
8nG
Tp = 0(206 + a*v?)
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Modifications at z=10 and z =0

le-0SF :

le-10F

le-12f_—

Ir.:~l-l'

le-16F

0.001 0.01 0.1 I 10
k (Mpe )

@ Evaluate corrections with CMBEasy, e.g.
: 2
Qp = 6 [ Pul(k) |o(t. k)| %
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Perturbation Theory

@ [ake the Newtonian metric in the form
ds® = —(1 + 20)dt* + a%(t)(1 — 20)d;dx" dx’

e Since p= T, n"n” =p(1+ d)(u,n")* there is an additional
modification in the Buchert equations:
density correction Tp = (87G/3)p(u,n*)?d

@ lake D large enough to neglect first-order averages

Rp = = x(To)z + 406V 20)

Qp = 6(0°)

Pp = —62(66) — 3(6?) 22<D\—20 — (Vo)»)
87?2 - 21 a

Ip— 3 p(200 + a
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Modifications at z=10 and z =0

le-0SF =

Te-10F

le-12
1¢~l-t-
le-16F
001 0.01 01 1 Ly

k (Mpc l}

@ Evaluate corrections with CMBEasy, e.g.
, 2
Qp = 6 [ Pul(k) |o(t. k)| %
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Effective Equation of State

L —
0.053
= |
0.054
0.055F -
B | R SR .
.01 0.1 i 10
p

e Effective density: (87G/3)peg = Tp — (2p +Rp) /6
o Effective pressure: 167Gp.g = Rp/3 — Qp —4Pp/3
— Effective equation of state:
rsaosomcs Woff = —(1/3(Rp—4Pp—39Qp)/(Rp—67p+ 9Qp) = —1/,1R
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Impact on Large-Scale Evolution

1 S s e e B B IR
delSET i -—- EdS a
e — ACDM
8 —— norm.top
I\.--
2e-05} N -

-2e-05 -
A5 —
2 i i 4 b I P &k i i l b L b Ea I B i g 4 I L &b i 2
0.001 001 0.1 1 10 100
Z

@ Einstein de-Sitter and ACDM (WMAPIII concordance)

@ ~ 107 impact as predicted, maxima at z~ 1.4 and z =~ 0.7
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— Backreaction is a small but non-vanishing physical effect
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— Backreaction is a small but non-vanishing physical effect

@ Newtonian metric cannot be used
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Perturbation Theory
@ [ake the Newtonian metric in the form
ds® = —(1 + 20)dt* + a%(t)(1 — 20)d;dx" dx’

e Since p= T, n"n” =p(1+ d)(u,n*)* there is an additional
modification in the Buchert equations:
density correction Tp = (87 G/3)p(u,n*)?d

@ [ake D large enough to neglect first-order averages
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Modifications at z=10and z =0
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@ Evaluate corrections with CMBEasy, e.g.
: 2
Qp = 6 [ Pul(k) |o(t. k)| %
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— Backreaction is a small but non-vanishing physical effect

@ Newtonian metric cannot be used
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— Backreaction is a small but non-vanishing physical effect

@ Newtonian metric cannot be used

@ Backreaction is a non-linear effect
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— Backreaction is a small but non-vanishing physical effect

@ Newtonian metric cannot be used
@ Backreaction is a non-linear effect

@ Averaging process

(A =L [ AVhdx
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— Backreaction is a small but non-vanishing physical effect

@ Newtonian metric cannot be used
@ Backreaction is a non-linear effect

@ Averaging process

(A =L [ AVhd3x

e depends on the choice of slicing
e depends on choice of coordinate system
e cannot be used to average vector and tensor quantities
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— Backreaction is a small but non-vanishing physical effect

@ Newtonian metric cannot be used
@ Backreaction is a non-linear effect
@ Averaging process

(A = L [ AVhd3x

e depends on the choice of slicing
e depends on choice of coordinate system
e cannot be used to average vector and tensor quantities

@ Background free approach
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— Backreaction is a small but non-vanishing physical effect

@ Newtonian metric cannot be used
@ Backreaction is a non-linear effect

@ Averaging process
(A) = % ID AV hd3x

e depends on the choice of slicing
e depends on choice of coordinate system
e cannot be used to average vector and tensor quantities

@ Background free approach

— Need a generally covariant averaging process
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Generally Covariant Averaging Process for the Metric

@ Averaging Process must be independent of coordinate system

— Parallel transport tensor quantities along geodesics to the
same point before averaging
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Generally Covariant Averaging Process for the Metric

@ Averaging Process must be independent of coordinate system

— Parallel transport tensor quantities along geodesics to the
same point before averaging

@ Decompose metric into a right-handed orthochronous
Minkowski tetrad

Bpv (X) = TNlas Eﬁ,u(x)Eju (X)
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Generally Covariant Averaging Process for the Metric

08080029

Averaging Process must be independent of coordinate system

Parallel transport tensor quantities along geodesics to the
same point before averaging

Decompose metric into a right-handed orthochronous
Minkowski tetrad

By (X) — ”&:SE&,M(X)EBM(X)

Find (up to global Lorentz-transformations) unique tetrad
field, the maximally smooth tetrad field, by following
L agrangian

Lys = (DL E®,) (DL EP ) 8" 8% ag

Page 54/90
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Parallel transport along geodesics C,,
realized by Wegner-Wilson line operator

V(x’? Xo: anxf) — Pexp [_fcmxf dz* F# (Z)]

where I,(x) are four matrices with
components ([ ,(x))) = I_;}L,(x)
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In i Averaging Problen
| e Parallel transport along geodesics C,, s
| realized by Wegner-Wilson line operator

t"\_ﬁ *’f fi I

mﬁ\_i___: / Wi s Conr)=—P exp[ f{ dz* T, ( )]
| e

L___‘ where I',(x) are four matrices with
e components ([ ,(x))) = l_ﬁy (x)
(E%u(x0))

— [ (%0, X'; Crsg )Vo” (%0, X' Cersg ) E® (X' )/—2 () d*¥
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2= Parallel transport along geodesics C, s
~ realized by Wegner-Wilson line operator
; “‘ i l\L\
} “h;"“_ ‘IEI..--,'.'"" ;! V(XI‘ X0, Crxﬂxf) m Pexp [_f{-qxgxr dz:“ r‘u (Z)]
i
L_i e where I,(x) are four matrices with
b components ([,(x))) =), (x)
{Ea,u(xﬂp

— fRf(xo.x’;fom)V#”(x(}.x’;foxﬂ)E“y(x’)\/—g(x’) d*x’
— Averaged metric:

(8 (%)) = N (E*u(x)) (E”u(x))
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Averaging the Metric of a Two-Sphere

Stereographic Projection: @ Metric: g = (2—5‘)46,}- where
z I>— 42+ (1 OFF
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S Parallel transport along geodesics C,,
realized by Wegner-Wilson line operator
I k : 3
. 'li. o i e
S S / V(X', x0; Cxyx') = P exp [_fofo dz* rp(Z)]
f J'JI.C,-_.,
i & where I,(x) are four matrices with
- SR components ([ ,(x))) = rf},, (x)
{E“#(XGD

— fRf(XU.x’;fom)VH”(XG.x’;Cfoﬂ)E“y(x’)\/—g(x’) d*x’
— Averaged metric:

{g,uv (X), — Tlas3 Eﬂ,u (X)} <E'I3V(X)>
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Averaging the Metric of a Two-Sphere

Stereographic Projection: @ Metric: g = (2—5)40',;,- where
z " — 42+ (X' 1 (°F
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Averaging the Metric of a Two-Sphere

Stereographic Projection: @ Metric: g = (2—5)46,}- where
z [*— 427+ P+ (5

i‘ @ Maximally smooth dyad field:

Ea:_ = (2_5)2fjaf
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Averaging the Metric of a Two-Sphere

Stereographic Projection: @ Metric: g = (2—5)4r55.- where
z I — 427+ O+ ()

@ Maximally smooth dyad field:
Ear- == (2—5)2(53,‘
@ Geodesics through origin:

a N =) — 2;5vtan(2‘—;)‘;ffir (0)
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Averaging the Metric of a Two-Sphere

Stereographic Projection: @ Metric: g = (2—5)4;5,;,- where
z " — 42"+ P+ (5

@ Maximally smooth dyad field:
Eaf S (2_5)2fjaf

@ Geodesics through origin:

p 2 N =)= 23tan(2‘—;)‘§i (0)
— @ Connector:
/e i Vi'(0, 7, C-0) = cos™(%)d;
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Averaging the Metric

Stereographic Projection: )
Z
9
o
=
x2 ¢
: _f:__ -
e o

irsa: 08080029

Generally Covariant Averaging Conclusions

of a Two-Sphere

Metric: g; = ($)*; where
IF— 42+ X'+ (°F
Maximally smooth dyad field:
E (2—5)2{53;

Geodesics through origin:

Z(r)— 23tan(2‘—;)§fj (0)

Connector:

-

Vi'(0.7; Cr0) = cos™(%)dj

Averaged metric:
(&ii(x)) = gij(x)
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Averaging the Metric of a Perturbed Two-Sphere

@ Perturb spherical coordinates with function f(x. y, z)

@ Stereographic projection leads to perturbed metric:
(gr)ii = (1 + 2nf)(2)*0;
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Perturbation Theory Generally Covariant Averaging _onclusions
Averaging the Metric of a Perturbed Two-Sphere

@ Perturb spherical coordinates with function f(x. y. z)
@ Stereographic projection leads to perturbed metric:
(gp)ii = (1 +2nf)(2)*9;
@ Maximally Smooth Dyad Field:
e Reference dyad field Ea,- with E"“,—Ebj s — g

e Maximally smooth dyad E?; = ab(fb(x))gb;
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Averaging the Metric of a Perturbed Two-Sphere

@ Perturb spherical coordinates with function f(x. y, z)
@ Stereographic projection leads to perturbed metric:
(gr)i = (1 + 2nf)(2)*9;
@ Maximally Smooth Dyad Field:
e Reference dyad field E"",— with E"“,—Ebj s — &
e Maximally smooth dyad E=; = ab(fb(x))gb;
e Solve 65 =0 with S = [, d°x,/g (D;E?;)}(DkE®1)g™ g .5

o Introduce vector field v* = (D;ES;)E? jecqg™ g’
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Averaging the Metric of a Perturbed Two-Sphere

@ Perturb spherical coordinates with function f(x. y, z)
@ Stereographic projection leads to perturbed metric:
(gp)ii = (1 + 2nf)(2)*0;
@ Maximally Smooth Dyad Field:
e Reference dyad field Ea,- with ;'::"“,-Ebj o0n— 8
e Maximally smooth dyad EZ?; = ab(fb(x))gb;
e Solve 65 =0 with S = [, d°x,/g (D;E?;)}(DkE®1)g™ g .

o Introduce vector field v* = (D;E;)E? jecag™ g’

= g”‘(@,—@k.gé) — —%Dkuk on R
=3 % — —%nkuk on dR
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The Gaussian Shaped Perturbation
Gascoigne3D

({aii}z ¥ {aﬁ)z)ﬁb(xlyxz) =0on R
Neumann boundary conditions on 9R
2 — peos X (L)(h(r.7) + 550, Jif(s'.7)ds)
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The Gaussian Shaped Perturbation
Gascoigne3D

& 7 N
((axl}i’- + {axz}i)@(xlﬁxz) =0on R
Neumann boundary conditions on R
% =7 ccs_z(é)(h(r, )+ ﬁf% furf(s’, v)ds’)

R is the area inside JR given by
a(vy) = 23tan(i)c05ﬂf - -r;ﬂ% sin
2a
COsy
_ncosz[ ) JTEI
vir,v)

a’(y) = 23tan( )SH‘I"}‘ — f?—zﬁ COS

Nz Jo F(s:7)ds’
dz*
where h(T) W (L, 2}_{21[1'] 22{1')} d'-"(o) m {Xl 2} (z {T}-ZZ{T” F(O)
and v(7,~) fulfills the differential equation ;{;ﬂ . i V(:{” = ci;{;}
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DF

13, 00%

@ Averaging effect in investigated example is too small
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@ Problem: Used Lagrangian is similar to the Lagrangian which
defines the geodetic induced parallel field

L = (LE?) (LeE®)) ot el
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The Gaussian Shaped Perturbation
Gascoigne3D

({&éﬁ}z + {aii)z)@(xlyxz) =0on R
Neumann boundary conditions on R
3*# =mncos (b)(h(r ¥)+ 2323 fﬂf(s ,v)ds")

R is the area inside JR given by
a'(y) =2atan(%)cosy + r}—{% sin ~

—nm‘;éj"; ] Js f(s',7)ds’

i c::;nsz( ﬁ] ﬁf")dsf
= dz>
where h(T) = EE xE 2 Z) ot ) 22w )y o (0) W (1 x2)=(z1(7).22(T)) 7-(0)
and v(r,~) fulfills the differential equation % =2 "{"' 2 - “{"{_)}
23
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Introduction Averag

Averaging the Metric of a Two-Sphere

Stereographic Projection: @ Metric: g = (z—f)’ﬂ'o',_-f- where
z I — 42+ (4 (FF

@ Maximally smooth dyad field:
Ea;_ — (2_5)2(53

@ Geodesics through origin:

' 7 i T\ dz!
2 & N z'(z) —2Zaan( )+ (0]
2 @ Connector:

Vi'(0, 7; C-0) = cos™(£)d;
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troduction

e = Parallel transport along geodesics C,, ./
realized by Wegner-Wilson line operator

IIIII

i"\.x i':-‘ i \".
p = Hil_..—*;,---- / V(X'. x0; Cxyxr) = Pexp | — fL dz* T .(z)]
e
Ll AL P where I, (x) are four matrices with
SR components ([,(x))) = I’ﬁu (x)
(E”u(x0))

— fRf(XO.X’;CXfm)V#”(XG.x’;foxﬂ)E“p(x’)\/—g(x’) d*x’
— Averaged metric:

{gﬁv(x)} = Tas3 REQ# (X):' <E'I3V(X)>
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The Gaussian Shaped Perturbation
Gascoigne3D

({&?;)2 + {ai)z)ﬁﬁ(xlyxz) =0on R

Neumann boundary conditions on JR

Pirsa: 08080029

Conclusions

32 = ncos (£)(h(r.7) + 320, [5f(s'.7)ds")
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@ Problem: Used Lagrangian is similar to the Lagrangian which
defines the geodetic induced parallel field

L = (LeE?)) (LeE®)) ot el
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@ Problem: Used Lagrangian is similar to the Lagrangian which
defines the geodetic induced parallel field

L = (LeE?;) (LeE®)) ot el

— Use different Lagrangian to define initial tetrad field:
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@ Problem: Used Lagrangian is similar to the Lagrangian which

.
—l®
7

irsa: 08080029

defines the geodetic induced parallel field
,C = (LtEa,‘) (LrEbj) {iabtf-tj

Use different Lagrangian to define initial tetrad field:

ok — (LrEE;) (LtEbJ:) O.p (t’.fj + g‘szz)

Page 81/90



ntroduction Aver IEINE Problem Perturbation Theory G‘EHEFEHY Covariant A"H"‘Emglng

@ Problem: Used Lagrangian is similar to the Lagrangian which
defines the geodetic induced parallel field

L = (LeE?;) (LeE®)) ot el

— Use different Lagrangian to define initial tetrad field:

ol — (LrEE;) (LfEbj) O.b (t’.fj = g‘szz)

o L = (L,E?) (L.E®;) 660"
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@ Problem: Used Lagrangian is similar to the Lagrangian which
defines the geodetic induced parallel field

L = (LE?) (LeE®)) ot el

— Use different Lagrangian to define initial tetrad field:
o £ — (LrEa;) (LfEbj) dap (I”-fj —+ g"szz)
o £ =(L,E?;) (L.E®;) 6.6n' ¥

o L=(LeE?) (LeEP)) 068"
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@ Problem: Used Lagrangian is similar to the Lagrangian which
defines the geodetic induced parallel field

=) (LrEbj) Spt't!
— Use different Lagrangian to define initial tetrad field:
ol — (LrEaf) (LfEbj) Oap (l'fi'j —+ g‘szz)
o L = (L.E?;) (L.E®;) .60’

o £ =(LE%) (LE?)) 6,pE'¢)

— They all fail to define a dyad field that can be used to average
the perturbed plane in the desired way
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Conclusions and Outlook

@ Once we have a suitable Lagrangian we have a generally
covariant averaging process which can be used to smooth
metrics in the framework of GR
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@ Problem: Used Lagrangian is similar to the Lagrangian which
defines the geodetic induced parallel field

L = (LE?;) (LeE®)) ot el

— Use different Lagrangian to define initial tetrad field:
N — (LrEE;) (LfEbj) Oap (t’.fj & g‘szz)
o L = (LaE?) (LaE®;) 660"V

o £ =(LE%)(LE?}) 6upE'E)
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@ Problem: Used Lagrangian is similar to the Lagrangian which
defines the geodetic induced parallel field

,C == (LtEa,‘) (LrEbj) {iabtf-tj
— Use different Lagrangian to define initial tetrad field:
o L =(L:E?)(L:EP}) b5 ('Y + g Rs?)
o L = (LoE?) (LoE®;) 660"

o L =(L:E?) (LcE®;) 8,688

— They all fail to define a dyad field that can be used to average
the perturbed plane in the desired way
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Conclusions and Outlook

@ Once we have a suitable Lagrangian we have a generally
covariant averaging process which can be used to smooth

metrics in the framework of GR

@ Apply it to different perturbation functions to study their
Interaction with each other and with the background sphere

@ Apply it to three-sphere and three-plane corresponding to
hypersurfaces of closed and flat FLRW models
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Conclusions and Outlook

@ Once we have a suitable Lagrangian we have a generally
covariant averaging process which can be used to smooth

metrics in the framework of GR

@ Apply it to different perturbation functions to study their
Interaction with each other and with the background sphere

@ Apply it to three-sphere and three-plane corresponding to
hypersurfaces of closed and flat FLRW models

@ Apply it to four-dimensional example which involves choice of
boundary conditions on the congruence of light-like geodesics
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Conclusions and Outlook

@ Once we have a suitable Lagrangian we have a generally
covariant averaging process which can be used to smooth

metrics in the framework of GR

@ Apply it to different perturbation functions to study their
Interaction with each other and with the background sphere

@ Apply it to three-sphere and three-plane corresponding to
hypersurfaces of closed and flat FLRW models

@ Apply it to four-dimensional example which involves choice of
boundary conditions on the congruence of light-like geodesics

— Apply averaging process to Cosmology and combine the two
lines of research
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