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Dark stars

A British born “n@tural phil@ésopher” dared to combine the
corpusculardescription of light with Newton’s gravitation laws to
predict what large compact stars should look like.

He showed that a star#hat has the same density of the sun, but
500 time as big, would Mave such agravity, that "All light emitted
from such a body would be made to return towards it". He said we
wouldn't be able toggee such a bady, but we'sure will'feel it's
gravitational pull. .

We could fly closeto this "Dark star” and look around and
describe the features of the object.

A novelty, world lost interest when light was shown to be waves in
1803 by Thomas Young.
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G=6.67x10" =2

M =597x10"ke
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What is Earth’s r when escape velocity is 3x10° m/s

-
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11181m/ s




What is Earth’s r when escape velocity is 3xI10F my

~89 mm

‘ (6.67x107")(5.97 x10*) G=6.67x107""
V= n'— |
"!

v~11181m/s




Einstein's Equivalence Principle

= There is no experiment that you can perform that
will distinguish these two diagrams
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Einstein Field Equation: another
dissection

- Generally speaking, Einstein field egquation:

/s

- Just so that we are clear on definitions:

“ - each differential equation contains multiple terms;
equations cannot be solved individually.

“ - determinants of sub-matrices of the system of
equations matrix are either positive or negative; never zero.

“ - dependent on nonlinear function of metric components

“ - an equation containing partial
derivatives of functions, for example & f(x,y,z)/cxcy

“ - components of the metric tensor g,
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The Geometry of Space




Spacelike, Null, Timelike
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The Tensor (in Spacetime)
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The Tensor (in Spacetime)

N
O-tensor is a single number: for example "5"

I-tensor is a string of 4 numbers: for example A=(1,0, -3.14,2)
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The Einstein field equation (EFE) is usually

written in the form

Gg. = 877];.?. + Agg

G, G, . I f g B s B

GE G:l I I_ I_:_' g:_ gl: g_ g:l
=8 + Al

G::: G;; ' 2 I_" 3 I_'-'._' | g:' g-'i" g:'-f g:!_"

&, &G E b e UF ga Bv £ &

The EFE is a tensor eguation relating a set of
symmeftric 4 x 4 tensors. Einstein’s equations are
actually 16 equations in the form: G =38zT, +Ag,




If you sit down and write down

the Ricci tensor for a general
case of a Z-dimen. ace
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Just fry to imagine all of three dimensions of space plus one
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Calculation of
Schwarzschild radius

vIn 1916 Karl Schwarzschilddiscovers a
solution of the Emstern field equation,
~vhich describes a nonspinning,
uncharged spherical body.

vDid this when serving in the German
Army on the Russian front of World War 1

vOnly required a few days to solve
aguation and describe spacetime
curvature.

-Emstefn presented solution on behalf of
chwarzschild to the Academy of
ciences.

£
-
-
=
>

Schwarzschilddied on the front 4
*nenths later.




The Schwarzschild Radius
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The Schwarzschild Radius
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Schwarzschild Metric
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Schwarzschild Metric

dr’
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- 1s the proper time (time measured by a clock moving along path)
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Schwarzschild Metric
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Schwarzschild Metric

dr’
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- 1s the proper time (time measured by a clock moving along path)

r 1s the proper distance (distance measured by a clock moving along path)
1s the time coordmate (measured by a far away stationary observer)

- 1s the radial coordinate (circumference of a circle centered on star divided by 2




Schwarzschild Metric
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r 18 the proper distance (distance measured by a clock moving along path)

1s the time coordmate (measured by a far away stationary observer)
' 1s the radial coordinate (circumference of a circle centered on

1s the Schwarzschild radius




Schwarzchild radii for different objects

Object Mass Rs
Atom 10~%° kg 10~°! em
Human Being 70 kg 102 cm

Earth
Sun
Galaxy

Universe (if closed)

6.0 x 10** kg
2.0 x 10°° kg
104 Mg
10%3 Mg

0.89 cm
3.0 km

10~% Ly.
1019 Ly.
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Sir Arthur Eddington

i

- 1926 Book - The internal constitution
of the Stars

- Early proponent of Einstein’s Theory
of General Relativity (next to Einstein
best expert on General Relativity)

-Poses the mystery of white dwarfs and
attacks the reality of black holes
predicted by Schwarzschild

- Believed White Dwarf was last state in
a stars life (rock Star)

- Paradox with White Dwarf



Subrahmanyan Chandrasekhar

/‘ - Idolized Eddington, resolved Eddington’s paradox

- In 1930 he showed that there is a maximum mass
for White Dwarts

- 1935 Eddington attacks his work. "Chandra” left
the field of Blackholes until 1970's

- Nobel Prize in Physics 1983




Walter Baade and Fritz Zwicky

Neutron star

- Identifies the process of a
supernovae, predicted that

this collapse strips the atoms

of their electrons, packing
the nuclei fogether as a
neutron star.

- Neutron stars would not be

verified observably until
1968.

a

- Identified the galaxies
associated with cosmic radio
sources.

- Still something was missing
that fook a star from fusion
fo supernovae.

ﬁ '

Neutron star



Robert J. Oppenheimer

- Showed that there is a maximum mass
for a neutron star from 1.5 to about 3
solar masses (1938).

- In a highly idealized calculation, showed
that an imploding star forms a black hole.

-Led the American atomic bomb project.

- Which provided the opportunity fo
experimentally verify and test theories
(too expensive for the universities) and
the development of the atomic bombs
which mimic the power source for the sun
to come up with the mathematics and
understanding of stellar mechanics

-Major battle with Wheeler. «




Robert J. Oppenheimer

In 1939 Einstein wrote a paper
about his concerns about
Oppenheimer's paper and the
Schwarzschild radius and
states "Schwarzschild
singularities do not exist in
physical reality”. He
demonstrated that a collapsing
star is unstable when it
reaches the Schwarzschild
radius, which ended up being
mute since that star collapses
into a singularity there
anyway.




Yakov Zel’dovich

- Soviet counterpart to Oppenheimer.

- Developed the theory of nuclear chain
reactions. (1939)

- Lead theoriston USSR atomic bomb (1945)
- Creates black hole research team (1962).

- Super massive black holes power Quasars
(1960's)

~




Yakov Zel’dovich

- Soviet counterpart to Oppenheimer. o

- Developed the theory of nuclear chain
reactions. (1939)

- Lead theoriston USSR atomic bomb (1945)
- Creates black hole research team (1962).

- Super massive black holes power Quasars
(1960's)




Yakov Zel’dqvich

- Soviet counterpart to Oppenheimer.

- Developed the theory of nuclear chain
reactions. (1939)

- Lead theoriston USSR atomic bomb (1945)
- Creates black hole research team (1962).

- Super massive black holes power Quasars
(1960's)




Yakov Zel’dovich

- Soviet counterpart to Oppenheimer.

- Developed the theory of nuclear chain
reactions. (1939)

-Lead theoriston USSR atomic bomb (1945)

- Creates black hole research team (1962).

- Super massive black holes power Quasars
(1960's).




Yakov Zel’dovich

- Soviet counterpart fo Oppenheimer.

- Developed the theory of nuclear chain
reactions. (1939)

- Lead theoriston USSR atomic bomb (1945)
- Creates black hole research team (1962).

.
- Super massive black holes power Quasars
(1960's)




Yakov Zel’dovich

- Sovief counterpart fo Oppenheimer.

- Developed the theory of nuclear chain
reactions. (1939)

-Lead theoriston USSR atomic bomb (1945)
»

- Creates black hole research team (1962).

- Super massive black holes power Quasars
(1960's)




Yakov Zel’dovich

- Soviet counterpart to Oppenheimer.

- Developed the theory of nuclear chain
reactions. (1939)

- Lead theoriston USSR atomic bomb (1945)
- Creates black hole research team (1962).

- Super massive black holes power Quasars
(1960's)




Yakov Zel’dovich

- Sovief counterpart fo Oppenheimer.

- Developed the theory of nuclear chain
reactions. (1939)

- Lead theoriston USSR atomic bomb (1945)
- Creates black hole research team (1962).

- Super massive black holes power Quasars
(1960's)




Yakov Zel’dovich

- Soviet counterpart fo Oppenheimer.
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John Wheeler

- With Bohr develops the :f'heor;y

of nuclear fission.

- Completes a catalog cold, dead
stars firming up evidence of

destiny of dead stars. (1957)

*Major battle with Oppenheimer
about existence of black holes.

(1957)

*Refracted argqument and became

the leading proponent of black
hole. (1960)

»Coined the phrase "Black Hole”.

- Coined the phrase "a Black Hole
has no hair” (1968).

|




Roger Penrose

e
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- Speculated black holes loose their hair by
radiating it away.

- Discovered that spinning black holes store
energy in space outside their horizon (1969)

- Discovered surface area of black holes
musT increase.

- Proved that black holes must have
singularities at their core (1964).

-Proposed cosmic censorship conjecture

(1969).
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Roger Penrose
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Roger Penrose
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e ‘ - Speculated black holes loose their hair by
WEEMEN  adiating it away.
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- Discovered that spinning black holes store
energy in space outside their horizon (1969).

- Discovered surface area of black holes
mustincrease.

- Proved that black holes must have
singularities at their core (1964).

-Proposed cosmic censorship conjecture

(1969)
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Roger Penrose
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- Discovered that spinning black holes store
energy in space outside their horizon (1969)

- Discovered surface area of black holes
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- Proved that black holes must have
singularities at their core (1964).
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Roger Penrose

radiating it away.
- Discovered that spinning black holes store
energy in space outside their horizon (1969)

- Discovered surface area of black holes
musT increase.

- Proved that black holes must have
singularities at their core (1964).
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Roger Penrose
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- Discovered that spinning black holes store
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Roger Penrose
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- Discovered that spinning black holes store
energy in space outside their horizon (1969).

- Discovered surface area of black holes
musT increase.

- Proved that black holes must have
singularities at their core (1964).

- Proposed cosmic censorship conjecture
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