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A huge great enormous thing, like — like
nothing. A huge big — well, likea — I don't
know — like an enormous big nothing ...

Piglet describes the Heffalump,

in Winnie the Pooh by A.A. Milne




Dark stars

d

A British born “n@tural philésopher” dared to combine the
corpusculardescription of light with Newton’s gravitation laws to
predict what large compact stars should look like.

He showed that a starp#hat has the same density of the sun, but
500 time as big, would Rawe such agravity, that "All light emitted
from such a body would be made to return towards it". He said we
wouldn't be able toggee such a bady, but we'sure willfeel it's
gravitational pull. "

We could fly closeto this "Darkstar” and look around and
describe the features of the object.

A novelty, world lost interest when light was shown to be waves in
1803 by Thomas Young.
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Calculation of Escape Velocity for Earth
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What is Earth’s r when escape velocity is 3x10F m/s
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What is Earth’s r when escape velocity is 3x10° m/s




Einstein's Equivalence Principle

= There is no experiment that you can perform that
will distinguish these two diagrams
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Einstein's Equivalence Principle

= There is no experiment that you can perform that
will distinguish these two diagrams
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Einstein Field Equation: another
dissection

- Generally speaking, Einstein field equation:

/S

- Just so that we are clear on definitions:

“ - each differential equation contains multiple terms;
equations cannot be solved individually.

“ - determinants of sub-matrices of the system of
eqguations matrix are either positive or negative; never zero.

]

“ - dependent on nonlinear function of metric components

“ - an equation containing partial
derivatives of functions, for example Ff(x,y,z)/cxcy

“ - components of the metric fensor g,




Let's Review

‘<‘ =




Let's Review

R s
'




Let's Review







Space Diagram

|2 «— Bob
OO




5 Space Diagram

® ©:




,'G'*/*‘“‘“*
Ole:

e N

{? Alice's twin (@&
A sister, Alice__ﬂ%ﬁ}




Space Diagram

-
G

_O =

77w dA - 10 me.l-r'es SN

Ty




Space Diagram

'.-;P_
G

~. d, = 10 metres ..,.,.-\

&y

TA:O TA—O




Space Diagram

@C e’

A - 10 me.l.r'es N

;

&




Space Diagram

~. d, = 10 metres .~

&

t,=9sec t,=9sec




Space Diagram

|£__
G

® ®

77 ) dA = 10 me.l-r'es P

Ty

= D sec t,=9sec
Question:




Draw a "Spacetime Diagram”




Draw a "Spacetime Diagram”




Draw a "Spacetime Diagram”

A (T"at rest”)




Draw a "Spacetime Diagram”

A (Tat rest”) A’ (at rest relative to A)




Draw a "Spacetime Diagram”

A (Tat rest”) A’ (at rest relative 1o A)




Draw a "Spacetime Diagram”

A (Cat rest”) A’ (at rest relative to A)

‘Time”

dA = 10 m
l‘—b“"Spi::ce""




Draw a "Spacetime Diagram”

A (Cat rest”) A’ (at rest relative to A)

Time”

dA - 10 m
l‘—b""’.‘.Iop«:tce:""




Draw a "Spacetime Diagram”

A (Cat rest”) A’ (at rest relative to A)
2 = -2
1- =1

L 0- -0




Draw a "Spacetime Diagram”

A (Cat rest”) A’ (at rest relative to A)
44 -4
3= -3
g =2
1- -1
‘Time"” 0+ -0



Draw a "Spacetime Diagram”

A (Tat rest”) A’ (at rest relative to A)
tT,=97 TOo =1,
4 - -4
3- =3
2 = =2
1- =1
Time” 0- 10



Draw a "Spacetime Diagram”

A (Tat rest”) A’ (at rest relative to A)
1,.=5% +5 = T,
4 - -4
3=+ =3
2 = -2
1- =1
Time"” 0- 10




Draw a "Spacetime Diagram”

A (Tat rest”)

'l'A=5-

A’ (at rest relative to A)

=5 = t,



Draw a "Spacetime Diagram”

A (Tat rest”)

.I.A=5-

A’ (at rest relative to A)

TO = T,



Draw a "Spacetime Diagram”
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Draw a "Spacetime Diagram”

A (Tat rest”)

A’ (at rest relative to A)
B (moving rel. to A

5=1-A'




Draw a "Spacetime Diagram”

A (Cat rest”) A’ (at rest relative to A)
B (moving rel. to A
TA = 5- 5 = fA'
471 T4 v= dA/TA
34 -3 =-10m/5s
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Let’'s Have Spacetime Fun!

Sketch spacetime diagrams for each:

. Bob at rest relative to Alice

. Alice tossing a baseball up
. Bob moving Fast

. Bob moving Slow
. The Earth orbiting about the Sun

M W) -






Bob at rest relative to Alice
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Earth Orbiting the Sun

Time
Sun’s frajectory 1 elliptical cylinder
in Spacetime \P <V
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Back to Bob and Alice
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Newton’'s “"Universal Time”
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[ Problem: Newton's Universal
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The Geometry of Space
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The Geometry of Space
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The Geometry of Space

) Problem : Curves
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Experimental Data:
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Spacelike, Null, Timelike
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The Geodesics
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Cirves of shortest distance are known in relativistic Jhrgan as gen desics.
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The Einstein field equation (EFE) is usually

written in the form

G?. = 877];. + Agg
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The EFE is a tensor eguation relating a set of
symmeftric 4 x 4 tensors. Einsteins equations are
actually 16 equations in the form: G =37, +Ag,




If you sit down and write down

the - >nsor for a general
case of a 2-dimensional space
with axial symmefry, you would

get something like this:










... and just a little bit more.




... and just a little bit more.

for Riccri tensor

Just fry to imagine all of three dimensions of space plus one






What does all this say?
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1919 Verification
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Calculation of
Schwarzschild radius

In 1916 Karl Schwarzschilddiscovers a

olution of the Einstein field equation,
hich describes a nonspinning,
nchargedspherical body.

Did this when serving in the German
Army on the Russian front of World War 1

Only required a few days to solve
rquation and describe spacetime
urvature.

Einstein presented solution on behalf of
bchwarzschild to the Academy of
bciences.

Schwarzschilddied on the front 4
onths later
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Schwarzschild Metric

dr’ =dt’ —dx’ - C?Lf: 20D flat Spacetime in Cartesian

It is the square of the wristwatch time befween ftwo events as marked by
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Schwarzschild Metric
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Schwarzschild Metric
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The metric describes the shape of spacetfime outside of matter. Once you hit
matter, be it some gas, a star, a planet or a rock, this meiric no longer applies.

You can see that, if r = 2/, dt term would be zero. That is to say that at the event
horizon there would be no change ' time. Makes sense; you can look at the
event horizon as being the place where time “ “. The ar factor deals with
now close to something you are. You'll notice that it "blows up” when r =



Schwarzschild Metric
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The metric describes the shape of spacetime outside of matter. Once you hit
matter, be it some gas, a star, a planet or a rock, this metric no longer applies.

You can see that, if - = 2/\!, dt term would be zero. That is to say that at the event
horizon there would be no change in time. Makes sense; you can look at the
event horizon as being the place where time “ “. The ar factor deals with
now close to something you are. You'll notice that it "blows up” when




Schwarzchild radii for different objects

Object Mass Rs
Atom 10~%° kg 10~>! em
Human Being 70 kg 10722 cm
Earth 6.0 x 10** kg 0.89 cm
Sun 2.0 x 10°° kg 3.0 km
Galaxy 104 Mg 102 Ly.
Universe (if closed) 10%% Mg 1019 Ly.
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Sir Arthur Eddington

. |

-4

- 1926 Book - The internal constitution
of the Stars

- Early proponent of Einstein’s Theory
of General Relativity (next to Einstein
best expert on General Relativity)

-Poses the mystery of white dwarfs and
attacks the reality of black holes
predicted by Schwarzschild.

- Believed White Dwarf was last state in
a stars life (rock Star)

- Paradox with White Dwarf



Subrahmanyan Chandrasekhar

8.
-l
- 1

|

/‘ - Idolized Eddington, resolved Eddington s paradox

- In 1930 he showed that there is a maximum mass
for White Dwarts

h
- 1935 Eddington attacks his work. "Chandra” left
the field of Blackholes until 1970's

- Nobel Prize in Physics 1983



Walter Baade and Fritz Zwicky

Neutron star

- Identifies the process of a —
supernovae, predicted that
this collapse strips the atoms
of their electrons, packing
the nuclei fogether as a
neutron star.

- Neutron stars would not be

verified observably until
1968.

- Identified the galaxies
associated with cosmic radio Netstron sbas
sources. -

- Still something was missing
that fook a star from fusion
fo supernovae.




Robert J. Oppenheimer

- Showed that there is a maximum mass

for a neutron star from 1.5 fo about 3
solar masses (1938).

-In a highly idealized calculation, showed
that an imploding star forms a black hole.

-Led the American atomic bomb project.

- Which provided the opportunity fo
experimentally verify and fest theories
(too expensive for the universities)and
the development of the atomic bombs
which mimic the power source for the sun
to come up with the mathematics and
understanding of stellar mechanics

-Major battle with Wheeler.




Robert J. Oppenheimer

In 1939 Einstein wrote a paper
about his concerns about
Oppenheimer's paper and the
Schwarzschild radius and
states "Schwarzschild
singularities do not exist in
physical reality”. He
demonstrated that a collapsing
star is unstable when it
reaches the Schwarzschild
radius, which ended up being
mute since that star collapses
into a singularity there

anyway.
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Yakov Zel’dovich

- Soviet counterpart to Oppenheimer.

- Developed the theory of nuclear chain
reactions. (1939)

-Lead theoriston USSR etomic bomb (1945)

- Creates black hole research team (1962).

- Super massive black holes power Quasars
(1960's)




John Wheeler

- With Bohr develops the theory
of nuclear fission.

-Completes a catalog cold, dead
stars firming up evidence of

destiny of dead stars. (1957)

*Major battle with Oppenheimer
about existence of black holes.

(1957)

-Retracted arqument and became
the leading proponent of black
hole. (1960)

- Coined the phrase "Black Hole”.

- Coined the phrase "a Black Hole
has no hair” (1968).
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