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What
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® |ets us lock on to
GPS satellites.
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Communication Theory

® |ets us lock on to
GPS satellites.

® How to communicate despite noise
- transmitting information through noisy channels

® E.g, can calculate a channel’s capacity
=> fundamental limit on transmission rate.
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Computation
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e Simulation: {random gas atoms + gravity}
= {galaxy formation}
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Computation
(a.k.a transforming information)

e Multiplication: {x,y} = xy
e Rendering: {HTML} = {web page}

e Simulation: {random gas atoms + gravity}
= {galaxy formation}

e Factoring: xy = {x,y}
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Computation
(a.k.a transforming information)

e Multiplication: {x,y} = xy O(nlogn)
e Rendering: {HTML} = {web page}

e Simulation: {random gas atoms + gravity}
= {galaxy formation}
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Computation
(a.k.a transforming information)

e Multiplication: {x,y} = xy O(nlogn)
e Rendering: {HTML} = {web page} O(n)

e Simulation: {random gas atoms + gravity}

O 2
= {galaxy formation} ()
® Factoring: xy = {x,y}

® Some problems are harder than others...
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Cryptography
(a.k.a. communicating secretly)

® Caesar cypher: “hello world” = “ifmmp xpsme"'

Scorecard: easy, convenient, totally insecure

® One-time pad: Sender XORs with a random key.
Looks like gibberish until de-XORed.

Scorecard: easy, awkward, absolutely secure

e RSA PUb”C'key Crypto: pyplic key (encryption) is x*y.
Private key(decryption) is {x,y}

Scorecard: complex, convenient, computationally secure
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How Quantum
IS

Different
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Nature is weirder than we
thought (c. 1900)

® Experimental symptoms:
* atoms don’t collapse
* light comes in chunks and it diffracts
* glowing charcoal radiates finite energy

® Physical systems follow unexpected rules!

* “The particle has well-defined position and momentum” is not true.
* “The photon’s energy is an integer multiple of its frequency” is true.

® Conclusion: We needed a new set of states to
describe physical systems in our quantum world.
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States of Classical Systems

Example I: Pendulum

Simple Pendohom n Beal Space : Damped with Coeff =0.4

Smmple Pendulum in Phase Space : Damped with Coef =0.4
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States of Classical Systems

Example I: Pendulum Example 2: A Switch

Simple Penduhom n Real Space : Damped with Coeff =0.4
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States of Classical Systems

Example I: Pendulum Example 2: A Switch

Simple Penduhom n Real Space : Damped with Coeff =0.4
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States of Classical Systems

Example I: Pendulum Example 2: A Switch

Simple Penduhom m Real Space : Damped with Coeff =0.4 1
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States of Classical Systems

Example I: Pendulum Example 2: A Switch
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States of Classical Systems

Example I: Pendulum Example 2: A Switch
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States of Classical Systems

Example I: Pendulum Example 2: A Switch

Simple Penduhom n Real Space : Damped with Coeff =0.4 I
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States of Classical Systems

Example |I: Pendulum Example 2: A Switch

Simple Penduhom n Beal Space : Damped with Coeff =0.4 I
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States of Classical Systems

Example I: Pendulum Example 2: A Switch

Simple Pendubem n Real Space : Damped with Coeff =0.4 1
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< probably on
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< probably off
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States of Classical Systems

Example I: Pendulum Example 2: A Switch

Simple Penduohom n Beal Space : Damped with Coeff =0.4 I
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< probably on
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< probably off
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States of Classical Systems

Example I: Pendulum Example 2: A Switch

Simple Penduhom n Beal Space : Damped with Coeff =0.4 1

X

< probably on

b : < random

< probably off
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Hardy’s Axiom
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® A new demand: “There must be continuous
and reversible dynamical transformations
between any pair of states.”
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Hardy’s Axiom

® A new demand: “There must be continuous
and reversible dynamical transformations
between any pair of states.” 1

® Qur probabilistic bit doesn’t
have enough intermediate
states to go from | to 0!

® Need more states...
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Quantum States

Classical Bit Quantum Bit
(Probabilistic) & the Bloch Sphere
| 1)

< mostly 1

<~ random

< mostly 0

0 State predicts outcome of measurements.

o} ector space: |v) = a o) + B 1) = |v) = (g% 444444



Quantum Measurements

® Sole purpose of a state is to predict the outcome
of measurements.

® (lassical bit = one measurement:

“Is the switch on, or off?”

® Quantum bit has more states
= must be more measurements

® Symmetry implies
each axis © measurement
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Quantum Measurements
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Application: Quantum Crypto

e Alice picks a random basis: {up,down} or {left,right} or {in,out}

® Then she sends up/left/in for “0”
or down/right/out to indicate “|".
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Application: Quantum Crypto

® Alice picks a random basis: {up,down} or {left,right} or {in,out}

® Then she sends up/left/in for “0”
or down/right/out to indicate “|". 1)

® Bob also picks a random basis,
and measures it. |/3 of the
time, he gets lucky!

e Afterward, Alice tells Bob

what basis she sent the
information in.

® Bob throws away 2/3 of his measurements...
...and the remaining |/3 agree with what Alice sent!

e |f an Eavesdropper listens in, she disturbs the qubits... which Alice
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Quantum Dynamics (for | qubit!)

® Sphere of quantum states
can rotate around
any axis.
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® Sphere of quantum states
can rotate around 1)
any axis.

® For instance,
around X,Y, or Z!

o) —[1)
V2
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Quantum Dynamics (for |
Z
® Sphere of quantum states )
can rotate around )
any axis.

® For instance,

around X,Y,or Z! o -
V2

e Rotations around
X,Y,and Z by 90°
form the single-qubit
Clifford Group.

qubit!)
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Quantum Dynamics (for | qubit!)

VA
® Sphere of quantum states .
can rotate around 1)
any axis.

® For instance,

around X,Y, or Z!

e Rotations around
X,Y,and Z by 90
form the single-qubit
Clifford Group.

® There is a nice theorem about the Clifford group
on systems of one @r many qubits together...
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Example: Gottesman-Knill Theorem
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Example: Gottesman-Knill Theorem

® Suppose we start with N qubits,
each in the |o0) state.

@@

...and we do a bunch of dynamical
transformations from the Clifford group...
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Example: Gottesman-Knill Theorem

® Suppose we start with N qubits,
each in the |o0) state.

® __.and we do a bunch of dynamical
transformations from the Clifford group...

e __.then the whole thing can be efficiently
simulated by a classical computer!
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..but why is this remarkable?...



Quantum Computation

® In general, dynamics of large quantum systems
(e.g., N qubits) can’t be simulated in less than
O(2") time by a classical computer. Why?
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® Basically, amplitudes are much harder to track
than probabilities, because of interference!



Quantum Computation

® In general, dynamics of large quantum systems
(e.g., N qubits) can’t be simulated in less than
O(2") time by a classical computer. Why?

® Basically, amplitudes are much harder to track
than probabilities, because of interference!

® Feynman pointed out that a computer built of
qubits could simulate quantum systems...
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Quantum Computation

In general, dynamics of large quantum systems
(e.g., N qubits) can’t be simulated in less than
O(2") time by a classical computer. Why?

Basically, amplitudes are much harder to track
than probabilities, because of interference!

Feynman pointed out that a computer built of
qubits could simulate quantum systems...

...so would such a device be more powerful than
a classical computer?
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protected from noise, on which we can do |-
and 2-qubit gates (dynamical operations).

Pirsa: 08070044



Quantum Computer
= Supercomputer???

® Quantum computer: a bunch of qubits,
protected from noise, on which we can do |-
and 2-qubit gates (dynamical operations).

e Can a QC solve hard problems quickly? YES:

quantum simulation, factoring, and a few others.
=> ironically, a QC can break RSA crypto!

Pirsa: 08070044  Page 101/140



Quantum Computer
= Supercomputer???

® Quantum computer: a bunch of qubits,
protected from noise, on which we can do |-
and 2-qubit gates (dynamical operations).

® Can a QC solve hard problems quickly? YES:

quantum simulation, factoring, and a few others.
=> jronically, a QC can break RSA crypto!

® Can a QC solve all hard problems quickly! NO.

Pirsa: 08070044



Quantum Computer
= Supercomputer???

® Quantum computer: a bunch of qubits,
protected from noise, on which we can do |-
and 2-qubit gates (dynamical operations).

® Can a QC solve hard problems quickly? YES:

quantum simulation, factoring, and a few others.
=> ironically, a QC can break RSA crypto!

® Can a QC solve all hard problems quickly! NO.
® Will 2 QC run regular software really fast? NO.
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The Science:
Quantum Info in the Lab
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The Science:
Quantum Info in the Lab
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Photons: the ideal qubit




Nuclear Magnetic Resonance:
here today, gone tomorrow

NMR QC (5-bit)




Atoms & lons: precise control




SQUIDs:
technology of tomorrow?

Magnetic flux
oD

Island

v Josephson
Gate voltage junctions
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Research Fronts
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Quantum error-correcting codes
Fault-tolerant quantum computation

Novel models of quantum computing
- adiabatic QC

- measurement-based “single-use” QC

- topological QC

What is QM a theory of? Reality? or knowledge?
Where does the power of QC come from?
Designing new quantum algorithms

Decoherence: why does the world look classical?
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