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Abstract: In deBroglie-Bohm theory the quantum state plays the role of a guiding agent. In this seminar we will explore if thisis a universal feature
shared by all hidden variable theories or merely a peculiar feature of deBroglie-Bohm theory. We present the bare bones of a model in which the
guantum state represents a probability distribution and does not act as a guiding agent. The theory is aso psi-epistemic according to Spekken\'s and
Harrigan\'s definition. For simplicity we develop the model for a 1D discrete lattice but the generalization to higher dimensions is straightforward.
The ontic state consists of a definite particle position and in addition possible non-local links between spatialy separated lattice points. These
non-local links comes in two types: directed links and non-directed links. Entanglement manifests itself through these links. Interestingly, this
ontology seems to be the simplest possible and immediately suggested by the structure of quantum theory itself. For N lattice points there are
N*3"(N(N-1)) ontic states growing exponentially with the Hilbert space dimension N as expected. We further require that the evolution of the
probability distribution on the ontic state space is dictated by a master equation with non-negative transition rates. It is then easy to show that one
can reproduce the Schroedinger equation if an only if there are positive solutions to a gigantic system of linear equations. Thisis a highly non-trivial
problem and whether there exists such positive solutions or not is till not clear to me. Alternatively one can view this set of linear equations as
constraints on the possible types of Hamiltonians. We end by speculating how one might incorporate gravity into this theory by requiring
permutation invariance of the dynamical evolution law.
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Configuration Space

v, v,

M

igure: In a quantum measurement the quantum state branches into a

-

superposition of macroscopically distinct states: - — 7 + .
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Phase Space

Figure: In a classical measurement the classical probability distribution
branches into a “superposition’ of macroscopically distinct states:
P—PL—F
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[nformation about what??!
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Avoiding Vague Concepts

@ Information about possible ‘outcomes of a future
‘measurement’ /!

@ But what precisely constitutes an ‘outcome’ or a
‘measurement Iin the physical world?? How many atoms do
we need??

@ As Bell repeatedly stressed. concepts like ‘outcome’ and
‘measurement are inherently vague and should not appear in
a fundamental theory of nature.
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The “Hidden Variable® Program

@ To develop empirically adequate theories in which such vague
notions do not appear at the fundamental level is the basic
idea behind the “hidden variable” program.

@ "Hidden variables’ is a fantastically stupid name for variables
that are meant to represent tables, chairs, outcomes...

@ Better word for ‘hidden variable’ is ‘ontic variable’ or
‘beables’.
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@ [he i -epistemic program is about finding an ontological
model in which the quantum state just represents a
probability distribution.

Pirsa: 08070033

It is also about developing exact mathematical criteria for
deciding when a ontological model could be regarded as

L -epistemic.

For example, the deBroglie-Bohm theory should not be

. -epistemic according to any reasonable definition. The
quantum state is primarily a guiding agent choreographing the
motion of point-particles (or field configurations in QFT).

Many of the features of deBroglie-Bohm theory are universal
so it could be that there are no (-epistmic theories
compatible with the quantum statistics.

Page 25/129
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Spekkens, Barett, Hardy, Harrigan, et. al. have introduced a
reasonable mathematical constraint that «-epistemic theories
should satisfy.

We would now like to introduce a new logically independent
constraint by considering dynamics.

The intuition is that we would like to exclude models like
deBroglie-Bohm theory in which the quantum state guides an
individual system, thus not acting as a probability distribution.

This will not be a kinematical constraint but rather a
mathematically sharp constraint on the dynamics of an
ontological model.

Page 26/129




Dynamical Evolution of the Ontic State

Figure: Evolution of an ontic state
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Remarks

@ Notice that we are assuming that the world can be
decomposed into a sequence of ‘instants’.

@ [ his assumption can of course be false. But notice that
quantum theory has the same structure.

@ Let us now discuss the evolution of ensembles, or probability
distributions on A.
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The Master Equation

Master Equation: pi = Z Tip;i — Tjipi E %

Conditions on the transition rates T;: "

@ Off-diagonal components are non-negative:
g2 t+]
@ Diagonal components T;; do not enter the Figure: The

master equation and are therefore arbitrary. transition rates I
represents the

@ [ he transition rates are allowed to be infinite . .
; _ : probility per unit
(Georgi& Tumulka 03, math 0312294). UL Y-
f ==l
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Example: Light Bulb

i w = waf b T Tb-axw FPw — wa:’ 'w T Twwf 'w — — k w
- L
— ,.'!I”v‘.f (1 r) S Ce £

@ Note that k can be as large as we want but
not negative. To=k>0

@ Also note that no matter how large k is the
light bulb will never be definitely broken.

@ In order to reach the definitely broken state & i
k needs to become infinite. For example, if
Tiw(t) = —— then the light bulb will T

. . .\‘ .f-_l -
e o tely be In the broken state for t > 0. Page 20129




Dynamical Constraint on y-epistemic Theories

@ In deBroglie-Bohm theory the transition rates can be shown to
depend on the quantum state.

@ [his means that the quantum state in that theory does not
play the role of a probability distribution.

@ [hus, we should impose the following the constraint:

Dynamical Constraint on ¥-epistemic models:

The transition rates T in a v -epistemic ontological model has to
be independent on the quantum state.
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Bell-Type annlogica.i Models

Introducing ontic propertie
Finding transition rates
Proof that the transition rates depends on the quantum state

Bell-Type Ontological Models
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Finding transition rates
Proof that the transition rates depends on the quantum state

Bell-Type Ontological Models SOk S e A

Preliminaries

@ Consider an N-dimensional quantum system with the
quantum state o and Hamiltonian H.

@ In a specific basis |/ the quantum state and Hamiltonian can
be represented as a Hermitian matrices p ~ pj; and H ~ Hj;.

@ In this basis the Schrodinger equation reads:

r'.’x'j = E ik Ha'aj — Hig Hkj-

k
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e R e Introducing ontic properties
Bell-Type Ontological Models B e TS
i T iy i Finding transition rates
| 3 ' Proof that the transition rates depends on the quantum state

Introducing ontic properties

o [hinkiof i =1..::: N as an ontic property and p;, = p;; as the
probability of the system of having that property.

@ Thus A =i and p(\) = p;.

@ [ he evolution of the probability distribution p; is given by

pi = pi=1 E Fij Hj.f' - Hjjlr'fij',fl+

j
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: g S S Introducing ontic properties
Bell-Type Ontological Models DN SO, =
S yp . & = : Finding transition rates
G ' Proof that the transition rates depends on the quantum state

Introducing transition rates

@ In order for the model to be an ontological model the
probability distribution p; has to obey a master equation:

pi = E Tf'jf" F ijf /i
;

where T; > 0 for i = J.

o Let J; = i(pjH;i — Hjjpji) and notice the anti-symmetry:

@ Our task is now to find transition rates T so that

Z Tr'_.-" i — Tji Fi— Z J i
J I
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: : s i Introducing ontic properties
Ef"-__Typ'_E_Dn_t?l?g-tca_l Mcd?ls Finding transition rates

Proof that the transition rates depends on the quantum state

Finding transition rates

@ One solution is to take (Bell '87)

% i Sy =20
0 if J; <0

@ Note that with this particular choice the transition rates
depend on the quatum state. Therefore, the theory does not

count as a genuine ¢ -epistemic theory.
@ Is it possible, within the framework of Bell-type ontological
models, to find transition rates that does not depend on the

quantum state?
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Introducing ontic properties
Finding transition rates

Bell-Type Ontological Models
S e et = Proof that the transition rates depends on the quantum state

Proof by Contradiction

@ We proceed by proof by contradiction. Therefore assume that
Tjj does not depend on the quantum state.

@ [his implies in particular that EI Tiipj — T;ip; cannot depend
on off-diagonal component p;—; of the quantum state.

@ But since EJ Fiy— Fiipi= S; Jij we have that S; I
cannot depend on the off-diagonal components either.

@ [he only way that could happen is if EJ Ji; = 0 which
Immediately implies that o = 0.

@ [his is absurd and we have to give up the assumption that
the transition rates [; do not depend on the quantum state.
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Generalized Bell-Type Models

Introducing Generalized Bell-Type Models Meodelling 3 measurement along any direction of a3 qubit

Introducing Generalized Bell-Type Models
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Finding transition rates

Bl Fope Ohuinlogcal Modess Introducing ontic properties
S y Proof that the transition rates depends on the quantum state

Proof by Contradiction

@ We proceed by proof by contradiction. Therefore assume that

Tjj does not depend on the quantum state.

@ [his implies in particular that E; Tiipj — Tjip;i cannot depend
on off-diagonal component p;—; of the quantum state.

@ But since Y . Tjp; — Tjipi = > ; J; we have that } . J;
cannot depend on the off-diagonal components either.

@ [he only way that could happen is if SJ Ji; = 0 which
Immediately implies that o = 0.

@ [his is absurd and we have to give up the assumption that
the transition rates [; do not depend on the quantum state.
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Generalized Bell-Type Models

Introducing Generalized Bell-Type Models Meodelling 3 measurement along any direction of a qubit

Introducing Generalized Bell-Type Models
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3ell- 2 Ontologica lels Generalized Bell-Type Models
Introducing Generalized Bell-Type Models Meodelling a3 measurement along any direction of a qubit

Key Idea

@ It is important to note that we could derive a contradiction
precisely because the probability distribution p; did not
uniquely determine the quantum state.

E W pii i — Hgpg) = E 1 — 130
J J
@ It is therefore seems necessary to develop a new class of

ontological models so that the epistemic probability
distribution p(\) uniquly determines the quantum state.

@ [o do this it is necessary to introduce more ontological

properties.
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Generalized Bell-Type Models

Introducing Generalized Bell-Type Models Meodelling 2 measurement along any direction of a qubit

Today's Misleading Statement

Not all ‘obervables’ can be given beable status, for they do not all
have simulateneous eigenvalues, i.e. o not all commute. J. S. Bell

84.

Pirsa: 08070033 Page 42/129



|- - Ontologica ie Generalized Bell-Type Models
Introducing Generalized Bell-Type Models Meodelling a3 measurement along any direction of a qubit

Generalized Bell-Type Models

@ First we outline the general structure of generalized Bell-type
models. Then we are going to consider a specific Bell-type
model which seems to be the simplest possible with a minimal
number of ontic states.

@ [ he density matrix and the Hamitonian are Hermitian
operators, therefore, we can express any quantum state and
any Hamilton as

|

:N_
A

-

I

cala H:Ula*zb,qﬁ-
A

where the operators T4 are N — 1 generators of SU(N).

@ [ogether with the identity the generators form a basis of the
space of Hermitian operators. N
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2| - 2 Ontologica 2 Generalized Bell-Type Models
Introducing Generalized Bell-Type Models Meodelling 3 measurement along any direction of a qubit

Properties of the Generators

@ [he generators satisfy

. 1 .
[1a.TB] = Z fapcTc  1Ta-Tep = oag + > dapcTc
g &
T = 0 Tl ey b E
gl = A B—w‘AB“ZEUF.ASC—GABC) C
C
ko
Ir(TaTg) = 5048

—
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Generalized Bell-Type Models

@ First we outline the general structure of generalized Bell-type
models. Then we are going to consider a specific Bell-type
model which seems to be the simplest possible with a minimal
number of ontic states.

@ [ he density matrix and the Hamitonian are Hermitian
operators, therefore, we can express any quantum state and
any Hamilton as

1

:N_
-

~

_f"

C,qTA H:b~l—a—ZbAT4h
A

where the operators T4 are N* — 1 generators of SU(N).

@ [ogether with the identity the generators form a basis of the
space of Hermitian operators. N
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)l . tologica jels Generalized Bell-Type Models
Introducing Generalized Bell-Type Models Meodelling 3 measurement along any direction of a qubit

Properties of the Generators

@ [he generators satisfy

1

[Ta-Te] = ) ifapcTe  {Ta.Tg}= A 0AB Y dapcTc
C c
] 1 |
Iria = 0 Talg =508+ > 5(ifaBc + dagc) Tc
C
.\ L .
Ir(TalTg) = 50a8.

—
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The Schrodinger Equation

@ Using these relations we see that

CTA — Tf’(ﬁ TA)

@ We can also rewrite the Schrodinger equation in terms to the
c-values:

éc =— ) fapccabs
AB
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Generalized Bell-Type Models
Introducing Generahzed Bell Type Madels Meodelling 2 measurement along any direction of a qubit

Introducing Ontic States

@ We now regard each A as representing an ontic property
IA:]...,,.N:—]_.

@ Our ontic state \ we take to be the collection of these
properties, i.e. A = (i1..... e ; iN2_1)

@ [he number of ontic states M grows exponentially with the
dimension: M = NV -1,

@ For N = 2 we have 3 ontic states, for N =3 M = 6561.
N=4M=10° N=5 M=~ 0.6 1018
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Generalized Bell-Type Models
Introducing Generahzed B-ell Type M::H:Iels Meodelling 2 measurement along any direction of a qubit

Introducing Ontic States

@ We will later see in how the number of ontic properties can
gratly be reduced by choosing a special representation of the
operators [ 4.

@ In addition we can make use of the fact that a subset of them
commute (the Cartan subalgebra). This means that we only
need to introduce one property for all operators in the
commuting subalgebra.

@ In the specific model we will present below the number of
ontic states is N - 3(N(N=1)) \which is far less than NNV 1!
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Introducing a Probability Distribtion p(/)

@ We now introduce an epistemic distribution

Bl v 7 5 IA.....in2_1) SO that ca Is the expectation value of
the property /4.

CA b s

where | = (1.....Iny2_1) is 2 multi-index.
@ We note that the quantum state is uniquely determined by
specifying the distribution p(/) and that not all distributions

give rise to a proper density matrix. ( I hese are examples of
quantum non-equilibrium distributions.)
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Introducing a Probability Distribtion p(/)

@ We now introduce an epistemic distribution
Bl » R ¢ s in2_1) SO that ca is the expectation value of
the property ia.

CA b i
5 ; Aa ()

where | = (i1..... iny2_1) is @ multi-index.
@ We note that the quantum state is uniquely determined by

specifying the distribution p(/) and that not all distributions

give rise to a proper density matrix. ( I hese are examples of
quantum non-equilibrium distributions.)
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Introducing a Probability Distribtion p(/)

@ We now introduce an epistemic distribution
By 5 IA.....In2_1) SO that ca Is the expectation value of
the property ia.

CA A 1
5 = ;,\Ap(/;

where | = (i1.....iy2_1) is @ multi-index.
@ We note that the quantum state is uniquely determined by

specifying the distribution p(/) and that not all distributions

give rise to a proper density matrix. ( [ hese are examples of
quantum non-equilibrium distributions.)
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Evolution of the Probability Distribution p(/)

@ Next assume that the evolution of p(/) is governed by a
master equation p(/) = > , T(l. J)p(d) — T(J. I)p(]).

@ We now have two distinct ways of computing o(/): one
through the Schrodinger equation and one through the master

equation.
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Evolution of the Distribution p(/)

@ [he two expressions are

%C = Y AEp(N =D AED  T(1.Np(d) — T(J. Np(1)
/ S

cc
5 = —Z fABcf—DB = Z E‘ASCZ XEp(1)
@ [hese have to agree!
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Constraint Imposed by the Schrodinger Equation

@ Equating both sides vields:

St J{f"‘xfé_ = \é}T(f J) & fABCf\Jg bg ;;(J; == )
o /

@ This is an equation for the transition rates T (/. J).
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Constraint Imposed by the Schrodinger Equation

@ [he most obvious way to satistfy the equation is to put

V() =) (NE = NEYT(1.J) + fac NEbg =0
/

@ But on reflection this is way too restrictive. |t would imply
that the Schrodinger evolution was valid for all distributions
p(J). But we can only safely assume the Schrodinger equation
to be satisfied for equilibiurm distributions pe, (/).

@ [ he equilibrium distributions are parameterized by the
c-values: peg.(1; ca).
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Constraint Imposed by the Schrodinger Equation

@ Equating both sides vields:

Y T{{H‘aé = \w (/*J) < fAch\f bg ;!{J:} =}

@ This is an equation for the transition rates T(/. J).
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Constraint Imposed by the Schrodinger Equation

@ [he most obvious way to satistfy the equation is to put

Vel(ld) = Z(\IC — ,\jg)TU. J) + ?':43(':.\}555 —0
[

@ But on reflection this is way too restrictive. |t would imply
that the Schrodinger evolution was valid for all distributions
p(J). But we can only safely assume the Schrodinger equation
to be satisfied for equilibiurm distributions peq (/).

@ [he equilibrium distributions are parameterized by the
c-values: peg.(1; ca).
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Imposing that the T(/, J)'s are Independent of cx

@ Equating both sides vields:

Sj Y(\E — /\JEJT(/. J) - f,qgcﬂjg bg ;1{\_'./2 C4) — (0
J /

@ Thus, the N? — 1 vectors V(J) have to be orthogonal to all
equilibrium distributions p(J; ca).
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Generalized Bell-Type Models
Introducing Ganerahzed BE'“ Type Mudels Meodelling a3 measurement along any direction of a qubit

Space of probablllty dIStrIbUtIOHS

piIn e d

4

]t
—
D
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Fibre bundle structure of the space of probability
distributions p(/; ca)

-

Ca

——

Figure: The space of probability distributions has a natural fibre bundle
structure. To each value of ¢4 there is an equivalence class of different
distributions p(/: ca).
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Selecting a set of equilibrium distributions

piT) d

Figure: If the section is “curved  then there will be no vectors V(J)
orthogonal to all equilibrium distributions on the line.
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Can a section be contained within a subplane?

A
i'
|

viI) pJ) »

| § N
| z-’.

.r"'.-
.
Figure: If it is possible to choose a section to that all equilibrium

dlstﬂbutmns are contained within a plane then there (might!) exist
vectors a V- (J) orthogonal to all equilibrium distributions.
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Selecting a set of equilibrium distributions

piI) o

Figure: If the section is “"curved then there will be no vectors V(J)
orthogonal to all equilibrium distributions on the line.
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Can a section be contained within a subplane?

(I P i

T—

Figure: If it is possible to choose a section to that all equilibrium
distributions are contained within a plane then there (might!) exist
vectors a V¢ (J) orthogonal to all equilibrium distributions.
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Modelling a Measurement Along any Direction of a Qubit
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Modelling a General Spin Measurement

@ Consider two qubits. One we regard as a model of a
measurement apparetus and the other the system, i.e. the

qubit we are performing the measurement on.

@ We shall interpret the z property of the measuring qubit as
revealing the outcome.

@ A measurement constitutes an interaction between the
apparatus and system, H, say.
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Modelling a General Spin Measurement

@ Consider two qubits. One we regard as a model of a
measurement apparetus and the other the system, i.e. the
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@ We shall interpret the z property of the measuring qubit as
revealing the outcome.

@ A measurement constitutes an interaction between the
apparatus and system, H; sav.
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Mathematical Modellmg

@ [he operator 7, 1 and Tis5 are simultaneously diagonal in
the standard matrix representation. The A = 15 property has
4 distinct states 1.2.3.4. The first two corresponds to
eigenvalue -1 of @, = 1 and the last two eigenvalue —1.

@ It is therefore natural to take the A = 15 property as the
measurement needle’.

@ Summarizing: If we find the A = 15 property to be 1 or 2 the
we have outcome +1 and if it is 3 or 4 the outcome is —1.
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Introducing a Specific Model

@ What we outlined above is a framework of a specific type of
models that we have denoted generalized Bell-type models.

@ In order to produce a specific theory we need to choose a
specific basis T4 on the space of Hermitian operators.
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Introducing a Specific Model

@ What we outlined above is a framework of a specific type of
models that we have denoted generalized Bell-type models.

@ In order to produce a specific theory we need to choose a
specific basis T4 on the space of Hermitian operators.
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Empirical Adequacy of the Spin Measurement Model

@ But how close can we get to quantum predictions in our

Pirsa: 08070033

model? A recent paper (quant-ph/0805.1728) examines how
many measurements can be modelled by M ontic states. They
claim that the relationship is roughly linear. |.e. with M ontic
states we can reproduce the statistics of M distinct
measurements.

In our spin measurement model there are 10 ontic states so
in principle one should be able to account for 10° distinct
quantum measurements!!!

This could mean that this model. even if it does not exactly
reproduce the quantum predictions. will be empirically
adequate for carefully chosen transition rates T(/. J).
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Introducing a Specific Model

@ What we outlined above is a framework of a specific type of
models that we have denoted generalized Bell-type models.

@ In order to produce a specific theory we need to choose a
specific basis T4 on the space of Hermitian operators.
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Introducing a Specific Model

@ One simple choice of basis is

, 1 - ]
ab & ab R T
M i EL 0ia0 jb T O u:r‘ a) ij‘ — ;("fa"‘“}b _ "k'f'r':r‘\"ja)

o Notu:e first the symmetry properties: M2t = P2 and

N Nba

@ [ his means that there are

N(IN—1) NN+1)
> T3 =N

operators as required.
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- Intrc-du;:ing.a Specific Mo-det

Properties of the Operators M3t and N2

@ [ he diagonal operators M=22 constitute a set of N commuting

Pirsa: 08070033

projection operators and have eigenvalues 0. 1. Since they are
commuting it is only necessary to associate one ontological
property to all these projectors. (N?? = 0 because of
antisymmetry. )

The off-diagonal ones M3=% are permutation operators
permuting the points a — b. The eigenvalue spectra is 0. 2.

The antismmetric operators N=b are also a type of
permutation operators with eigenvalue spectra is O. ':% They
are there because we are dealing with a Hilbert space over the
complex numbers.
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Natural Ontology Associated to the Choice of Basis
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There 1s a natural ontology associated with this choice of
basis.

The N commuting projection operators M?2 could represent
the position PVM on a discrete lattice with N points.

Just like in deBroglie-Bohm theory we will assume that the
only one of the projectors M?° “has value 1" and the rest
“have value 0" .

Thus, part of the ontology constists of a particle occupying a
definite position on the lattice. The position property can take
on the values 1..... N.

Page 82/129




Further Speculations

- Intrc-du;:ing-a Specific Mo-dei

Natural Ontology Associated to the Choice of Basis

@ [ he off-diagonal “symmetric’ operator M2k (for some a = b)
have eigenvalues 0 and :% Since we only have three distinct
eigenvalues the property /i, corresponding to this operator

only needs three distinct attainable values: 11,5 = 0. £

@ We interpret 1/, = 0 to mean that there is no link between
the points a and b. Eigenvalue ji,, = +% correspond to a
non-directed “bosonic” link and /1,5 = —2 to a non-directed

“fermionic’ link.

@ The antisymmetry of the operators N2° immediately suggest
that these represent directed links. Eigenvalue 17,5 = 0 means

no link, eigenvalue 1, = —% means that there is a link
starting from a and ending up at b, and 17,5 = —% that there

Is a link starting from b and ending up at a.

Pirsa: 08070033 Page 83/129




Further Speculations

- Introduéinﬁ-a Specific Mo-det

Ontology lllustrated

r
1 -—
o e
Fermiome Link Bosomc Lnk
The ontic state in this particular case is: fi35 = 044, 24 = —1,2.
ftog = —1/2, j1g5s = —1/2, 137 = +1,/2, and the rest equal to zero.
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Introducing a Specific Model

Ontology lllustrated

—— Directed links ———

— Particle posiizon

1 s 3
b, ==
1 . L 5 [a) T 5
ks - "'l:
~— Fermiomic Link Bosonic link —
The ontic state in this particular case is: fis5 = 044, V24 = —1/2,
tiog = —1/2, pias = +1/2, 37 = +1/2, and the rest equal to zero.
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Ontology lllustrated

—— Directed links ———

— Particle position

T —
’ = - » e = 2 s
2 = "'w
— Fermiomic Link Bosomic link —
The ontic state in this particular case is: fis5 = 042, 24 = —1/2,
tiog = —1/2, pas = +1/2, v37 = +1/2, and the rest equal to zero.
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Introducing a Specific Model

Ontology lllustrated

~—— Directed links ————

— Particle posiizon

1 i
. —
. = % l = 2 s
= —" g
~ Fermionic Link Bosonic link —
The ontic state in this particular case is: fi;5 = 044, V24 = —1/2,
tiog = —1/2, pias = +1/2, v3z = +1/2, and the rest equal to zero.

Pirsa: 08070033 Page 88/129




Introducing a Specific Model

Expectation Values

@ As before the quantum state and Hamiltonian can be
expressed in the basis

A { gab njab i \ gab NEL,
p=> M+ d., N H="> a.,M* + b,,N
a.b a.b

where c,p = cp, and d,p = —dp,.

@ We also have

(M%) = (M) = (N =T(N")=ds
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Introducing a Specific Model

Expectation Values

@ As before the quantum state and Hamiltonian can be
expressed in the basis

A { gab njab i VEL: NEL,
p=> M+ d., N H=> a.,M* + b,,N°
a.b a.b

where c,p = cp, and d,p = —dp,.

@ We also have

(M35 = Tr(pM?P) = oy, (NPP) = Tr(pNP) = dp.
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Introducing a Specific Model

The Schrodinger Equation

@ [he Schrodinger equation can be shown to take the form

Ge— E Cedbfd — dedafd + Crdbed — dfdaed
d

dr— Z Ced 3fd + dedbfd — Crdaed — dfdbed
d
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Introducing an Probability Distribution

@ We now introduce a probability distribution

plpar. o, - - - V12, . .. ) such that we reproduce the
expectation values

o — Z tapp( . v)

[T

dab = Z ﬂab,‘-}(“- U)

LE L

where 1 and v are multi-indices.

@ Recall that paa — 0,3 for some 3. This implies that

Y ,Ca=_,, (. v) =1 since p is assumed to be a
normahzed probabrllty distribution. Thus Tr(p) = 1 just

means that the probability distribution p(:. ) is normalized.

Page 92/129

Pirsa: 08070033




Introducing a Specific Model

Condition Imposed by the Schrodinger Equation

@ As before we require the probability distribution
p(N) = p(pu.v) evolves according to a master equation.

@ Introduce the symbols

Uap(fi. 7) = tpa(fi.7)

Z(Hab — Jiop) T(p.v|7,. 7)) — Z Pledbrd — Vedafd + [ifdbed — Vfdaed
Lt d

Vab(,i_*f- ‘U) - _Vba(ﬁ- -‘F)

Y (Vab— Tap) T (1. v|7.7) — Y _ fiedasd + Peabra — fitded — Ptdbed
[T 7 d
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Condition Imposed by the Schrodinger Equation

@ The Schrodinger equation then gives rise to the following N2

conditions:

Y " tap([i. 7)peq.(fi-7) =0

JTRZ

> Vab(fi, 7)peq (i1.7) = O
.7

P

@ As before these conditions should hold for all equilibrium
distributions in order for the quantum state to be a purely

epistemic object.
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Introducing a Specific Model

Quantum Equilibrium vs Quantum Non-Equilibrium
Distributions

o A distribution peq (1¢. 1) that satisfies

Y tap(p. v)peq. (1, v) =0

[T 7
Z Vab(ft, V) peg (11, ) = 0
[T 7
» = y: (y: s M2 1 Habfvab) p(pe.v) >0
.

we denote a “quantum’ equilibrium distribution.

@ Just as in deBroglie-Bohm theory we can have non-quantum
distributions p( . ).
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Introducing a Specific Model

Quantum Equilibrium and Quantum Non-Equilibrium
Distributions

@ An example of a quantum non-equilibrium distribution p(p, /)
is one which doesn't yield a positive density matrix p 2 0.

@ A positive density matrix is necessary to have a quantum
equilibrium but not sufficient. There are many distributions
p(pt.17) that yields the same density matrix. Not all
distributions need to satisfy the constraints imposed by the
Schrodinger equation.

@ If it does not satisfy the Schrodinger equation it is also to be
regarded as a non-equilibrium distribution.
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Quantum Equilibrium vs Quantum Non-Equilibrium
Distributions

o A distribution peq (1t. ) that satisfies

Y tap(p. v)peq. (1, v) =0

eV
3 Vab(st. v)peq.(1t.v) = 0
[T 7
p = y: (y: }uabMab . ] Ifabﬁjab) p(pe.v) >0
a.b [T

we denote a “quantum’ equilibrium distribution.

@ Just as in deBroglie-Bohm theory we can have non-quantum
distributions p(p. ).
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Quantum Equilibrium and Quantum Non-Equilibrium
Distributions

@ An example of a quantum non-equilibrium distribution p(p, /)
is one which doesn't yield a positive density matrix p 2 0.

@ A positive density matrix is necessary to have a quantum
equilibrium but not sufficient. There are many distributions
p(pe. ) that yields the same density matrix. Not all
distributions need to satisfy the constraints imposed by the
Schrodinger equation.

@ If it does not satisfy the Schrodinger equation it is also to be
regarded as a non-equilibrium distribution.
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Generalization to Many Body Systems

Pirsa: 08070033

In order to generalize this construction to n particles in three
dimensions we simply regards the indices a. b. /. in the
operators M;r"‘" and N;b as multi-indices:

a—J o Sl a ) . (af.af.aZ2)} and similarly for
bt jJ.

It is now clear that the non-local links are in fact links
between different points in configuration space and not
physical 3D space.

Thus it seems that, just as in deBroglie-Bohm theory,
configuration space is the real arena in this theory and not
physical space.

Although it is possible that we may excape the conclusion
that the quantum state is not “real”, it seems that
configuration space seems to be the fundamental arena. oo




Introducing a Specific Model

Measurement T heory

@ Since the position of paricles is a definite property we will have
no problem in developing models of quantum measurements.
As Bell repeatedly stressed, as long as we get the correct
statistical distribution for positions, then we will immediately
reproduce all the quantum statistics for any measurement.

@ Contextuality will work out in the same way as in
deBroglie-Bohm theory, i.e. two incompatible measurements
of a degenerate obsevable A can yields two outcomes simply
because the "measurement’ is not a passive intervention.
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Further Necessary Requirements: Stability of Records
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Introducing a Specific Model

Stability of records

@ Mathematically we can guarantee the stability of records if we
forbid non-local jumps on configuration space: i.e. the

corresponding transition rates are zero:
T(Xf Ha£b: iu.snf:3|)<: [ a=£b: -{_’ab) = 0.

@ [ his greatly reduces the number of non-zero transition rates.
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Introducing a Specific Model

Stability of records

@ Mathematically we can guarantee the stability of records if we
forbid non-local jumps on configuration space: i.e. the

corresponding transition rates are zero:
T(Xf Patb, Vab| X, [Hatb. -‘Tf_”'ab) =0

@ [ his greatly reduces the number of non-zero transition rates.
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Further Speculations
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Further Speculations
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Further Speculations
Introducing a Specific Model

The Absolute Spatial Structure in the Non-Relativistic
Hamiltonian

@ Where did all this structure of configuration space come from?
@ It is all encoded in the non-relatistic Hamiltonian

H=-%, f“ + V(X).

@ Let us conSIder a 1D lattice for simplicity. Then the
discretized non-relativistic Hamiltonian looks like.

- H2 o " .
I n_jlg Z(Ma+l.a o Maa) & ZS: VaMaa

3

where | is the lattice spacing.

irsa: 08070033
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The Schrodinger Equation

@ [he Schrodinger equation can be shown to take the form

= E Cedbfd — dedafd + Crdbed — dfdaed
d

def = Z Ced 3fd + dedDfd — Cd3ed — dfd Ded
d
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Introducing a Specific Model

@ One simple choice of basis is

b 1 o 2 K b ! Y- ) Y-
M§ :E(f_)faf_)J-bJrf_),-bf)ja) N,j’- :E(ﬂ)iaﬂjb_‘-}fbfjja)

@ Notice first the symmetry properties: M5 = Mb2 and
Nab = _ﬁjba_

@ [ his means that there are

N(N?— ), N(N; D) _

operators as required.

Pirsa: 08070033 Page 109/129
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Properties of the Operators M=> and N3P,

@ [he diagonal operators M?2 constitute a set of N commuting
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projection operators and have eigenvalues 0, 1. Since they are
commuting it is only necessary to associate one ontological
property to all these projectors. (ﬁf‘” = 0 because of
antisymmetry.)

The off-diagonal ones M37b are permutation operators
permuting the points a <— b. The eigenvalue spectra is 0. :I:%.

The antismmetric operators N3b are also a type of
permutation operators with eigenvalue spectra is 0. i%. They
are there because we are dealing with a Hilbert space over the
complex numbers.
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Natural Ontology Associated to the Choice of Basis

@ [ he off-diagonal “symmetric’ operator Y (for some a # b)
have eigenvalues 0 and i%. Since we only have three distinct
eigenvalues the property /i, corresponding to this operator
only needs three distinct attainable values: ., = 0. i%.

@ We interpret si,5 = 0 to mean that there is no link between
the points a and b. Eigenvalue ji,, = +% correspond to a
i : e s :
non-directed “bosonic” link and ji;5 = —5 to a non-directed
“fermionic’ link.

@ [ he antisymmetry of the operators Nab iImmediately suggest
that these represent directed links. Eigenvalue v, = 0 means
no link, eigenvalue 1,5 = +% means that there is a link
starting from a and ending up at b, and v, = —% that there

Is a link starting from b and ending up at a.
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Expectation Values

@ As before the quantum state and Hamiltonian can be
expressed in the basis

A \ gab njab i \ gab NEL,
p=> M+ d.p N H=> a.,M* + b,,N°
a.b a.b

where c,p = ¢cp, and d,p = —dp,.

@ We also have

(M?P)y = Tr(pM®) = o, (NPP) = Tr(pNPP) = d,p.
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Quantum Equilibrium vs Quantum Non-Equilibrium
Distributions

o A distribution peq (1¢. 1) that satisfies

Y tap(pt. v)peq. (1. v) =0

[T 7
Z Vab(ft, V) peg (11, v) = 0
[T 7
i = y: (y: s M2 1 Mabﬂfab) p(p.v) >0
ab \ps

we denote a “quantum’ equilibrium distribution.

@ Just as in deBroglie-Bohm theory we can have non-quantum
distributions p( . /).
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Mathematical Modelling

Pirsa: 08070033

First note that modelling two qubits require a Hilbert space of
4 dimensions. This means that we are going to have
415 =~ 107 ontic states in our model of the spin measurement.

We implement different measurements by choosing different
interaction Hamiltonians, i.e. different values of b,.

We can read off the by values from the equation

W) =cplz4) @ |n+c_|z—) @ |h—)
We also need to mathematically precise about which property
it is that will reveal the outcome. Above we took the

z-property of the measurement qubit.
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Modelling a General Spin Measurement

@ Consider two qubits. One we regard as a model of a
measurement apparetus and the other the system, i.e. the

qubit we are performing the measurement on.

@ We shall interpret the z property of the measuring qubit as
revealing the outcome.

@ A measurement constitutes an interaction between the
apparatus and system, H; say.
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Modelling a General Spin Measurement

@ Consider two qubits. One we regard as a model of a
measurement apparetus and the other the system, i.e. the

qubit we are performing the measurement on.

@ We shall interpret the z property of the measuring qubit as
revealing the outcome.

@ A measurement constitutes an interaction between the
apparatus and system, H; say.
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Preparation

Calibrated state
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Measurement Interaction

=k
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Recording the Outcome

—_— Outcome=+n

| Outcome=—n
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Introducing Generalized Bell-Type Models Meodelling a3 measurement along any direction of a qubit

Mathematical Modelling
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First note that modelling two qubits require a Hilbert space of
4 dimensions. This means that we are going to have
415 ~ 10° ontic states in our model of the spin measurement.

We implement different measurements by choosing different
interaction Hamiltonians, i.e. different values of bj,.

We can read off the by values from the equation

s

) = cplz+) @ |A+ c_|z—) @ |A—)

We also need to mathematically precise about which property
it is that will reveal the outcome. Above we took the
z-property of the measurement qubit.
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Recording the Outcome

— Outcome=+n

S Outcome=—n
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Measurement Interaction

7
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Mathematical Modelling
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First note that modelling two qubits require a Hilbert space of
4 dimensions. This means that we are going to have
415 =~ 107 ontic states in our model of the spin measurement.

We implement different measurements by choosing different
interaction Hamiltonians, i.e. different values of b,4.

We can read off the by values from the equation

ot

) = cplz+) @ |+ c_|z—) @ |A—)

We also need to mathematically precise about which property
it is that will reveal the outcome. Above we took the
z-property of the measurement qubit.

Page 123/129




Introducing Generalized Bell-Type Models Meodelling 2 measurement along any direction of a qubit

Mathematical Modelling

@ [he operator g, = 1 and 75 are simultaneously diagonal in
the standard matrix representation. The A = 15 property has
4 distinct states 1.2.3.4. The first two corresponds to
eigenvalue +1 of o, @ 1 and the last two eigenvalue —1.

@ It is therefore natural to take the A = 15 property as the
measurement needle’.

@ Summarizing: If we find the A = 15 property to be 1 or 2 the
we have outcome +1 and if it is 3 or 4 the outcome is —1.
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Empirical Adequacy of the Spin Measurement Model

@ Due to Hardy's ontological excess baggage theory we know
that no ontological model wih finitely many ontic states
(=~ 10 in our case) can reproduce all measurement statistics
on a qubit.

@ Somehow it must be the case that one cannot reproduce the
Schodinger equation for all interaction Hamitonians.

@ However, it seems like the larger Hilbert space dimension N
we consider the more Hamiltonian's will be allowed. This is so
because the number of transition rates grow much much
faster than the number of constraints imposed by the
Schrodinger equation.
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Empirical Adequacy of the Spin Measurement Model

@ But how close can we get to quantum predictions in our
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model? A recent paper (quant-ph/0805.1728) examines how
many measurements can be modelled by M ontic states. They
claim that the relationship is roughly linear. |.e. with M ontic
states we can reproduce the statistics of M distinct
measurements.

In our spin measurement model there are 10 ontic states so
in principle one should be able to account for 10° distinct
quantum measurements!!!

This could mean that this model, even if it does not exactly
reproduce the quantum predictions, will be empirically
adequate for carefully chosen transition rates T(/. J).
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Generalized Bell-Type Models
Introducing Generalized Bell-Type Models jelling 2 measurement 3

Fibre bundle structure of the space of probability
distributions p(/; ca)

— G

Figure: The space of probability distributions has a natural fibre bundle
structure. To each value of ¢4 there is an equivalence class of different
distributions p(/; ca).
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Preparation

Calibrated state
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Introducing a Specific Model

@ One simple choice of basis is

b ]' = o) - b f- T Y -1 ()
Méf — 5({_)faf_}J'b + "-}.r'bf-)ja) Nj — E(")fafjjb = ‘:'r'bf)ja)

@ Notice first the symmetry properties: M5 = Mb2 and
Nab = _ﬁjba

@ [ his means that there are

N(Nz— ), N(N; D _

operators as required.
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