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Abstract: New low frequency radio telescopes currently being built open up the possibility of observing the 21 cm radiation before the Epoch of
Reionization in the future, in particular at redshifts 200 &%0¥ z &%0¥ 30, also known as the dark ages. At these high redshifts, Cosmic Microwave
Back-ground (CMB) radiation is absorbed by neutral hydrogen at its 21 cm hyperfine transition. This redshifted 21 cm signa thus carries
information about the state of the early Universe and can be used to test fundamental physics. We study the constraints these observations can put on
the variation of fundamental constants and on fundamental mass scales. We show that the 21 cm radiation is very sensitive to the variations in the
fine structure constant and can in principle place constraints comparable to or better than the other astrophysical experiments. Cosmic strings, if they
exist, contribute to the anisotropies in the primordial gas leaving an imprint on the 21 cm radiation. They can tell us about the fundamental mass
scales involved in the theories beyond the standard model. We show that the 21 cm radiation can potentially probe cosmic strings of tension
~104" 12 asumming intercommutation probability of 1. Making such observations will require radio telescopes of collecting area 10 & 106 km2
compared to ~ 1 km2 of current telescopes.
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Dark Ages

“the last frontier in cosmology”




Cosmological observations
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@ Big Bang Nucleosynthesis: z ~ 10°, Homogeneous
Universe.
@ Cosmic microwave background: z ~ 1100, kK < 0.1Mpc™'.
@ Large scale structure: z < 6, kK < 0.1Mpc—'.
s oo @ Ly-cx forest: z < 6, k < 1Mpc'. e




Hyperfine transition of Hydrogen
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New Observational Window

@ 21 cm radiation: 200 > z > 6, kK < 1000Mpc—".

irsa: 08070030 Page 6/39




Thermal history of the Universe

@ Spin temperature:
m __ i — I, Tspfn
ns Qse

@ Collisions couple T, to

emperature (K)

Tgas 5
- Dominates at high redshift

@ Emission/absorption of
CMB couples T, to Tous
- Dominates at low redshift
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Thermal history of the Universe

@ Spin temperature:
m __ i —Fa / Tspm
ns Qse

@ Collisions couple T4, to

emperature (K)

Tgas E
- Dominates at high redshift

@ Emission/absorption of
CMB couples T, to Tems
- Dominates at low redshift
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Thermal history of the Universe

@ Spin temperature:
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21 cm brightness temperature

Brightness temperature = Difference between Observed
brightness and CMB

ayleigh-Jeans: T, = I,,c</2kgv
(Rayleigh-J T, = 1,62 /2kgt?)
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New observational window

Dark ages: [ ' . —
g ﬁff _
® 200 > z > 30
@ /MHz 3 v < 46MHz s cMB_—
- - - f; =~ Spin i
Epoch of reionization: = ; s
@30>z>6
@ 46MHz < v < 200MHz L2
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New observational window
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21 cm power spectrum

@ Smaller scales — more modes

@ 21 cm: No of modes ~x I° ~ 1076
(CMB: x /2 ~ 107)
(Loeb & Zaldarriaga 2004, Bhardawaj & Ali 2004)
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Fundamental Physics From 21 cm Radiation

e Variation of the fine structure constant
e Cosmic (super)strings




Fine structure constant («) variations

Current constraints (Garcia-Berro et al 2007)
@ Lab experiments:a/a < 10714 /yr
@ Oklo natural fission reactor: 5o /o < 1072, 2 billion years
ago.
@ BBN/CMB: da /v < few percent

@ Quasar absorption spectra: da/a ~ 10~ at z = 3.5.

@ Webb et al 2001,Murphy et al 2003:
daja = (—0.543 +£0.116) x 10> at0.2 < z < 3.7
@ Chand et al 2006: da /o = (0.05+=0.24) x 10>,
r— 11508
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Fine structure constant («) variations

Why should the “constants” vary?
@ Why should they be constant? (pirac 1937)
@ Can vary in GUTs, superstring theories.
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Dark Ages

“the last frontier in cosmology”
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21 cm power spectrum

@ Smaller scales — more modes

@ 21 cm: No of modes ~x I° ~ 1076
(CMB: x /2 ~ 107)
(Loeb & Zaldarriaga 2004, Bhardawaj & Ali 2004)
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Fundamental Physics From 21 cm Radiation

e Variation of the fine structure constant
e Cosmic (super)strings




Fine structure constant («) variations

Current constraints (Garcia-Berro et al 2007)
@ Lab experiments:ai/a < 10714 /yr
@ Oklo natural fission reactor: 5o /o < 1072, 2 billion years
ago.
@ BBN/CMB: da/a < few percent

@ Quasar absorption spectra: da/a ~ 10~ at z = 3.5.

@ Webb et al 2001,Murphy et al 2003:
da/a = (—0.5431+0.116) x 10° at 0.2 < z < 3.7
@ Chand et al 2006: o /a = (0.05+ 0.24) x 105,
r—1.1508
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Fine structure constant («) variations: Results

1 cm signal depends strongly on the

ne structure constant.
Chatri & Wandelt 2007)
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Fine structure constant («) variations: Results
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Cosmic (super)strings

Line like topological defects of cosmic lengths: Alternative to
inflation for seeding perturbations in primordial gas (before WMARP)

@ Breaking of circular symmetry (Poichinski 2007)

@ Characterized by the dimensionless string tension Gu
(speed of light = 1)

v : A007-4%)
j=0

-
L1
-

1.

Pirsa: 080f(r0 Page 24/39




Cosmic (super)strings

@ Perturb the matter through which they move at relativistic
speeds.

@ Ubiquitous in GUTs, brane inflation.
@ Observed in lab experiments!

@ superfluids

@ superconductors

@ nematic crystals
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Cosmic (super)strings

Line like topological defects of cosmic lengths: Alternative to
inflation for seeding perturbations in primordial gas (before WMAP)

@ Breaking of circular symmetry (Poichinski 2007)

@ Characterized by the dimensionless string tension Gy
(speed of light = 1)
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Cosmic (super)strings

@ Perturb the matter through which they move at relativistic
speeds.

@ Ubiquitous in GUTs, brane inflation.
@ Observed in lab experiments!

@ superfluids

@ superconductors

@ nematic crystals
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Cosmic (super)strings

Cosmic string network simulation. Box size is 2x Hubble length.

Allen and Shellard 1990
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Cosmic (super)strings

Cosmic string induced perturbations OE il e

from CMBACT Pogosian and Vachaspati 1999 : P
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Fine structure constant («) variations: Results
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Challenges

Galactic and extra galactic foregrounds:

@ Mostly synchrotron, T, ~ 19000K (
(Roger et al. 1999)

22MHz )2,5

L’

Foreground Removal (Zaidarriaga et al. 2004)

C OMRELATED

| UNGoRR
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Challenges

@ Interstellar scattering, fscatter < A2
~ 1 arc-second at 30 MHz
| =27/ ~ 10°
( Cohen & Croyen 1964)

@ Terrestrial interferance (FM,TV)
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Far side of the Moon

SEARCH,
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February 2, 2007: If you woks up tomorow morming and found your
what would yvou do? NASA has just released a list of 181 good ideas
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Ever since the end of the Apollo program, "olks around the world have been thinking = = i
about retuming to the moon, and what they would ke to do thare,” says Jeff Volosn —

: = = = N o 20 = : i ! ! L T | —
strategy development ead for NASA's Explcration Systems Mission Directorate. Now =
MASA is going back; the agency plans to send astronauts to the Moon no later than = = .
2020. "So we consulted more than 1,000 people from businesses, academia and 13 —

intema |‘|ﬁal space agencies to come up with 3 master st of 181 poteniial lunar R
ohjechves :

'I-

v for radio

For example, the m
astronomy. A radio telescope on the far sid= of the Moon
would be shielded from Earth's copious radio noise, and
would be able to observe low radio freguencies blocked by
Earth's atmospher=. Observations at these freguencies
have never 1 m before and opening up 2 window
inta this low frey ncy unmniverss will ikely lead to many

. -
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Dark Ages Lunar Interferometer

The Dark Ages Lunar Interferometer (DALI)

Joseph Lazio (NRL), Susan G. Neff (NASA /GSFC),
Dayton L. Jones (JPL), Jack O. Burns (U. Colorado),
Steven W. Ellingson (VaTech), Steven Furlanetto (UCLA),
Justin Kasper (CfA), Robert MacDowall (NASA /GSFC),
G. B. Taylor (U. New Mexico), Harley Thronson (NASA),
K. W. Weiler (NRL), S. D. Bale (Berkeley),

Louis Demaio (NASA /GSFC), Lincoln Greenhill (CfA),
Michael L. Kaiser (NASA/GSFC), J. S. Ulvestad (NRAO),
Jonathan Weintroub (CfA)

International Union of Radio Science (URSI) General Assembly,
Chicago, IL; 2008 August 10-16

Abstract

The Dark Ages represent the last frontier in cosmology. the era
between the genesis of the cosmic microwave background (CMB) at
recombination and the formation of the first stars. During the Dark
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Dark Ages Lunar Interferometer

the only site in the solar system shielded from human-gensrated inter-
ference and. at night. from solar radio emissions. The DALI array will
observe at 3—30 m wavelengths {10100 MHz; redshifts 15 < _:‘__hi__l__':lll}_,
and the DALI baseline concept builds on ground-based telescopes oper-
ating at similar wavelengths, e.g., the Long Wavelength Array (LWA)
and Murchison Widefield Array (MWA). Specifically, the fundamental
collecting element will be dipales. The dipoles will be grouped into
“stations.” deployed via rovers over an area of approximately 50 km
in diameter to obtain the requisite angular resolution. The desired
threse-dimensional imaging requires approximately 1000 stations, sach
containing 100 dipoles (i.e., ~ 10° dipoles); alternate processing ap-
proaches may produce useful results with significantly fewer dipoles
(factor ~ 3—10}). Each station would be deployed by one rover, which
would also serve as a “transmission hnb” for sending the sienals for
correlation to a central processing facility. After sending the correlator
output to Earth, analysis would then proceed via standard methods
being developed for ground-based arrays.
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Dark Ages Lunar Interferometer

the only site in the solar system shielded from human-gensrated inter-
ference and. at night. from solar radio emissions. The DALI array will
observe at 3-30 m wavelengths (10100 MHz; redshifts 15 < __::__é_l__ﬁ_g‘}_,
and the DALI baseline concept builds on ground-based telescopes oper-
ating at similar wavelengths, e.g., the Long Wavelength Array (LWA)
and Murchison Widefield Array (MWA). Specifically, the fundamental
collecting element will be dipales. The dipoles will be grouped into
“stations.” deployed via rovers over an area of approximately 50 km
in diameter to obtain the requisite angular resolution. The desired
three-dimensional imaging requires approximately 1000 stations, sach
containing 100 dipoles (Le., ~ 10° dipoles): alternate processing ap-
proaches may produce useful results with significantly fewer dipoles
(factor ~ 3—10}. Each station would be deployed by one rover, which
would also serve as a “transmission bub” for sending the sienals for
correlation to a central processing facility. After sending the correlator
output to Earth, analysis would then proceed via standard methods
being developed for ground-based arrays.

Pirsa: 08070030 Page 38/39




Edwin Hubble
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TrauUs the explorations of space end on a note of uncer-
tainty. And necessarily so. We are, by definition, in the
verv center of the observable region. We know our imme-
diate neighborhood rather intimately. With increasing
distance, our knowledge fades, and fades rapidly. Even-
tually, we reach the dim boundary—the utmost limits of
our telescopes. There, we measure shadows, and we search
among ghostly errors of measurement for landmarks that
are scarcely more substantial.

The search will continue. Not until the empirical re-
sources are exhausted, need we pass on to the dreamy
realms of speculation.

Edwin Hubble, The Realm of the Nebulae, 1936.
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