Title: Additive Extensions of a Quantum Channel

Date: Jun 27, 2008 02:00 PM

URL: http://pirsa.org/08060205

Abstract:

Additive extensions of a quantum channel

Graeme Smith and John A Smolin

arXiv:0712.2471

Additive Extensions of a Quantum Channel

- Quantum Channels
- Capacities and Additivity
- Known Bounds
- Additive and Degradable Extensions
- New Bounds on quantum and private capacity
- Relation to Symmetric Side Channels (SSW 2006)

Pirsa: 08060205 Page 3/66

Shannon 1948

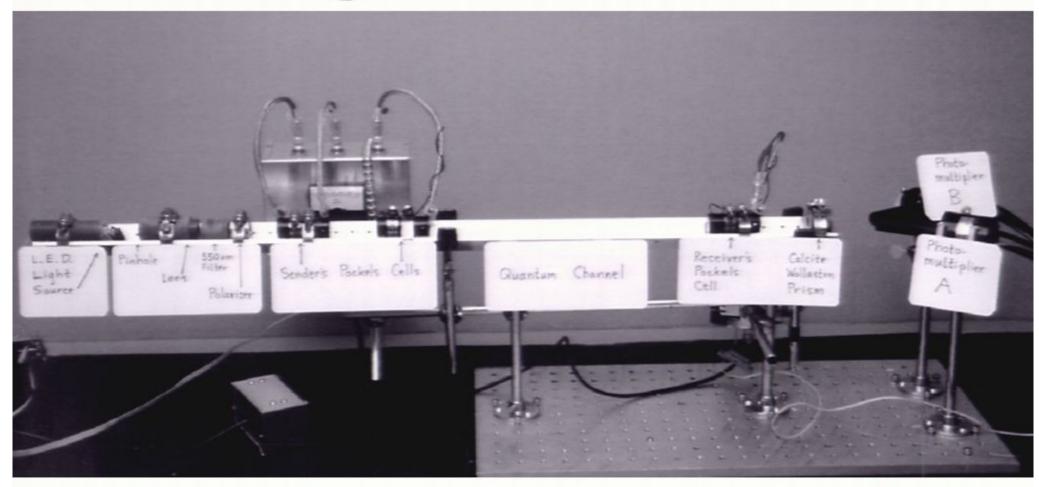
Mutual Information I(A:B) = H(A) + H(B) - H(A,B)

Channel maps X to B

Classical capacity C=Max_X I(A:B)

Remarkable that you can achieve this with random coding And that it is a single-letter formula

A Quantum Channel



Pirsa: 08060205 Page 5/66

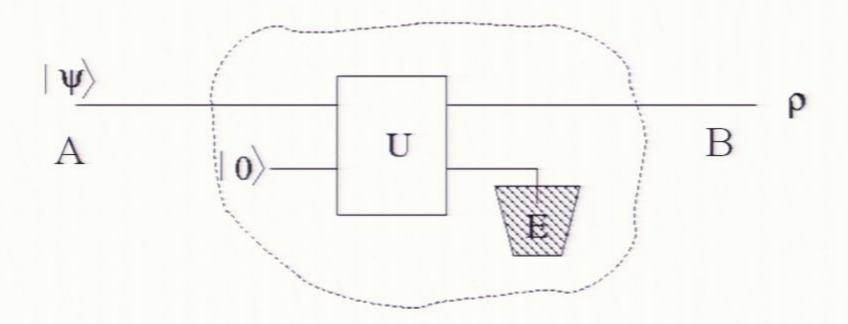
Quantum channels

A quantum channel is represented by a trace-preserving, completely positive (TCP) map from density operators to density operators.

$$\rho \to \sum_{i} A_{i} \rho A_{i}^{\dagger}$$
$$\sum_{i} A_{i}^{\dagger} A_{i} = 1$$

Isometry

A-->BE



Coherent Information

Coherent Information :
$$I^{c}(\rho_{AB}) = S(\rho_{B}) - S(\rho_{AB})$$

of a channel and state) $I^{c}(\mathcal{N}, \rho) = I^{c} \left(I \otimes \mathcal{N}(\phi^{AB}) \right)$
where $\text{Tr}_{A} |\phi^{AB}\rangle \langle \phi^{AB}| = \rho$
$$Q_{1} = \max_{\rho} I^{c}(\mathcal{N}, \rho)$$

Page 8/66

Coherent Information

Coherent Information :
$$I^{c}(\rho_{AB}) = S(\rho_{B}) - S(\rho_{AB})$$

of a channel and state) $I^{c}(\mathcal{N}, \rho) = I^{c} \left(I \otimes \mathcal{N}(\phi^{AB}) \right)$
where $\text{Tr}_{A} |\phi^{AB}\rangle \langle \phi^{AB}| = \rho$
$$Q_{1} = \max_{\rho} I^{c}(\mathcal{N}, \rho)$$

Looks like Shannon formula

Coherent Information

Coherent Information :
$$I^{c}(\rho_{AB}) = S(\rho_{B}) - S(\rho_{AB})$$

of a channel and state) $I^{c}(\mathcal{N}, \rho) = I^{c} \left(I \otimes \mathcal{N}(\phi^{AB}) \right)$
where $\text{Tr}_{A} |\phi^{AB}\rangle \langle \phi^{AB}| = \rho$
$$Q_{1} = \max_{\rho} I^{c}(\mathcal{N}, \rho)$$

Looks like Shannon formula

Not the capacity SS96

Capacity Theorem

Have to regularize the one-shot capacity

Quantum Capacity:
$$Q = \lim_{n \to \infty} \frac{1}{n} \max_{\rho_n} I^c \left(\mathcal{N}^{\otimes n}, \phi_n \right)$$
$$= \lim_{n \to \infty} \frac{1}{n} Q_1(\mathcal{N}^{\otimes n})$$
$$Q_1 = \max_{\rho} I^c(\mathcal{N}, \rho)$$

Capacity Theorem

Have to regularize the one-shot capacity

Quantum Capacity:
$$Q = \lim_{n \to \infty} \frac{1}{n} \max_{\rho_n} I^c \left(\mathcal{N}^{\otimes n}, \phi_n \right)$$
$$= \lim_{n \to \infty} \frac{1}{n} Q_1(\mathcal{N}^{\otimes n})$$
$$Q_1 = \max_{\rho} I^c(\mathcal{N}, \rho)$$

* Ugly

* Usually impossible to evaluate

Additivity Questions Abound

Entanglement of formation Holevo classical capacity Minimum output entropy Output rank

Quantum capacity is simply not single-letter

Bad: Hard to calculate

Good: Lots to work on

Capacity Theorem

Have to regularize the one-shot capacity

Quantum Capacity:
$$Q = \lim_{n \to \infty} \frac{1}{n} \max_{\rho_n} I^c \left(\mathcal{N}^{\otimes n}, \phi_n \right)$$
$$= \lim_{n \to \infty} \frac{1}{n} Q_1(\mathcal{N}^{\otimes n})$$
$$Q_1 = \max_{\rho} I^c(\mathcal{N}, \rho)$$

* Ugly

* Usually impossible to evaluate

Additivity Questions Abound

Entanglement of formation Holevo classical capacity Minimum output entropy Output rank

Quantum capacity is simply not single-letter

Bad: Hard to calculate

Good: Lots to work on

Depolarizing channel

$$\mathcal{N}_{p}(\rho) = (1-p)\rho + \frac{p}{3}X\rho X + \frac{p}{3}Y\rho Y + \frac{p}{3}Z\rho Z$$

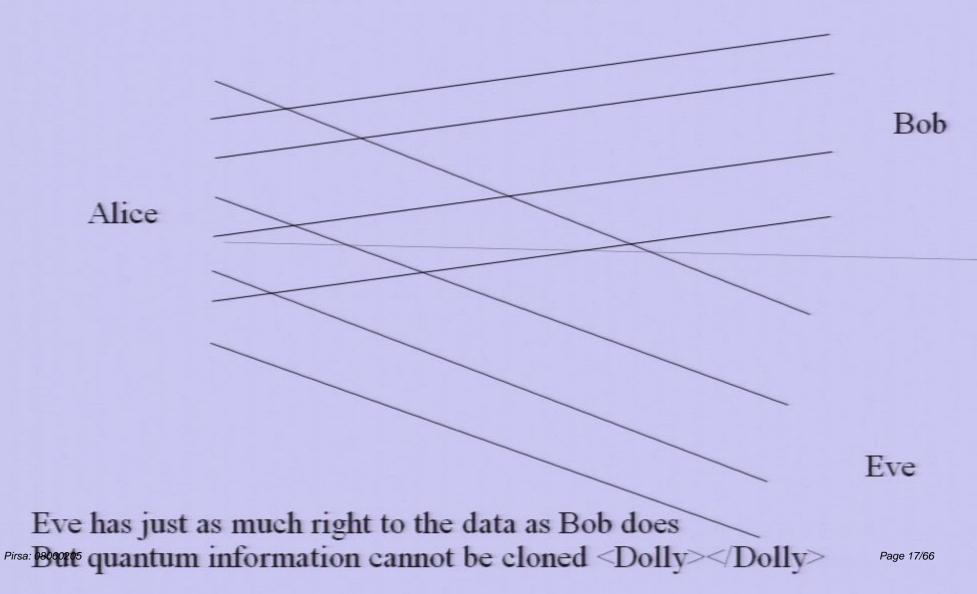
$$\mathcal{T}_{x}(\rho) = (1-x)\rho + x\frac{I}{2} = (1-x)\rho + \frac{x}{4}I\rho I + \frac{x}{4}X\rho X + \frac{x}{4}Y\rho Y + \frac{x}{4}Z\rho Z$$

$$p = \frac{3}{4}x$$

$$\mathcal{N}_{p}(U\rho U^{\dagger}) = U\mathcal{N}_{p}(\rho)U^{\dagger}$$

Pirsa: 08060205 Page 16/66

50% depolarizing probability

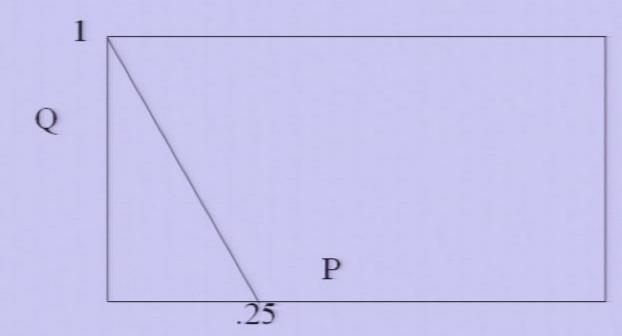


No-cloning bound

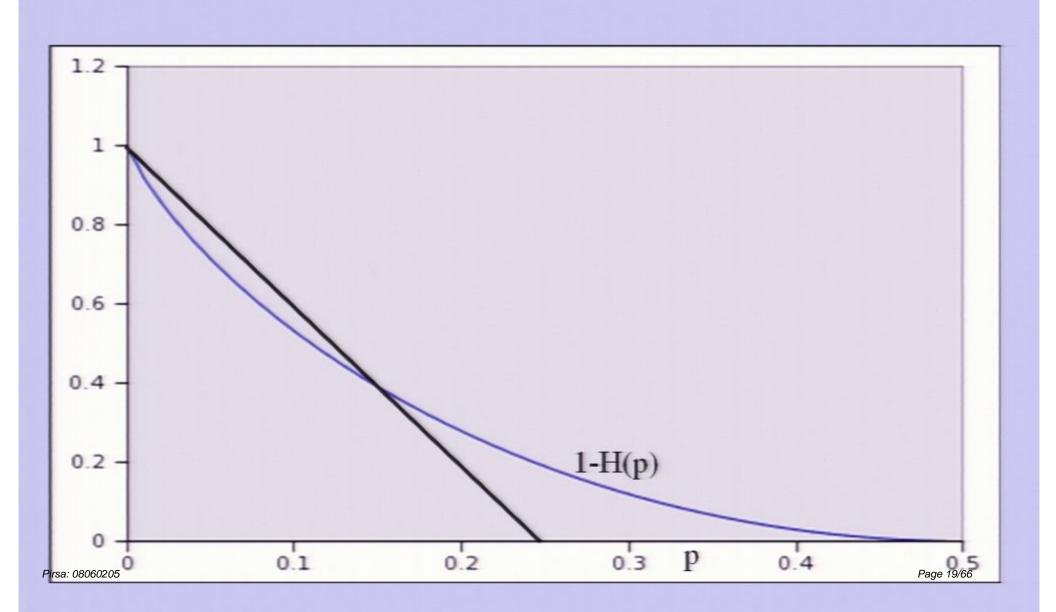
50% depolarlizing probability corresponds to p=3/8

Surprisingly, the approximate cloner of the previous slide is not optimal. Need ancilla to find optimal approximate cloning channel

Can achieve p=1/4 with optimal approximate cloner

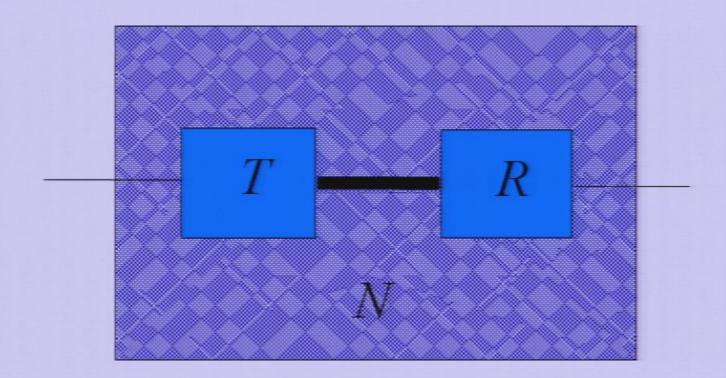


Rains bound



Additive Extension

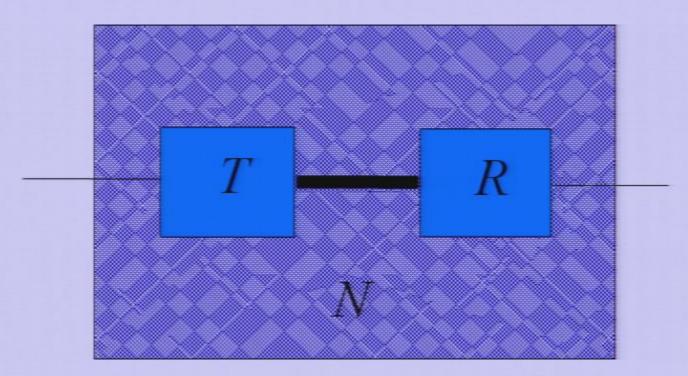
Definition: T is an additive extension of a quantum channel \mathcal{N} if there is another channel \mathcal{R} such that $\mathcal{N} = \mathcal{R} \circ \mathcal{T}$ and $Q(\mathcal{T}) = Q_1(\mathcal{T})$.



Pirsa: 08060205 Page 20/66

Additive Extension

Definition: T is an additive extension of a quantum channel \mathcal{N} if there is another channel \mathcal{R} such that $\mathcal{N} = \mathcal{R} \circ \mathcal{T}$ and $Q(\mathcal{T}) = Q_1(\mathcal{T})$.



A degradable extension is an additive extension

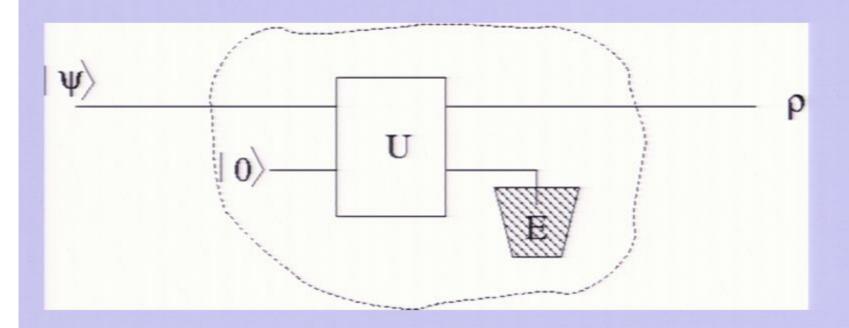
Pirsa: 080 total at is also degradable

Page 21/66

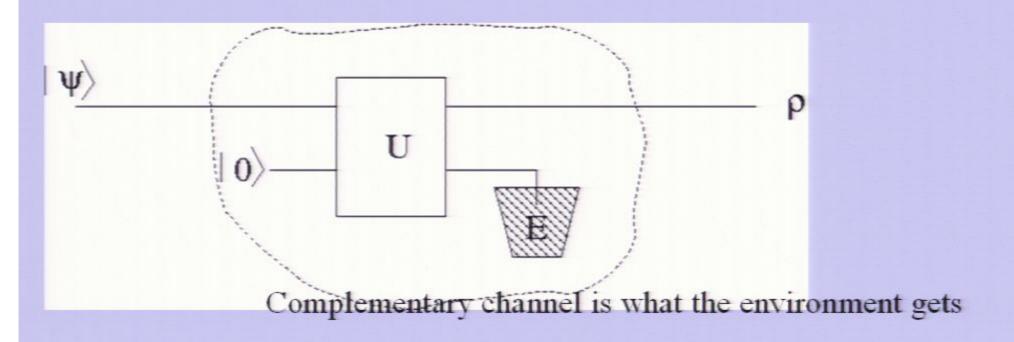
efinition: A channel \mathcal{N} with isometric extension $U: A \to BE$ is calle egradable if there is a degrading map \mathcal{D} such that $\mathcal{D} \circ \mathcal{N} = \hat{\mathcal{N}}$, where $\hat{\mathcal{N}}(\rho) = \text{Tr}_B U \rho U^{\dagger}$. $\hat{\mathcal{N}}$ is called the complementary channel of \mathcal{N} .

Pirsa: 08060205 Page 22/66

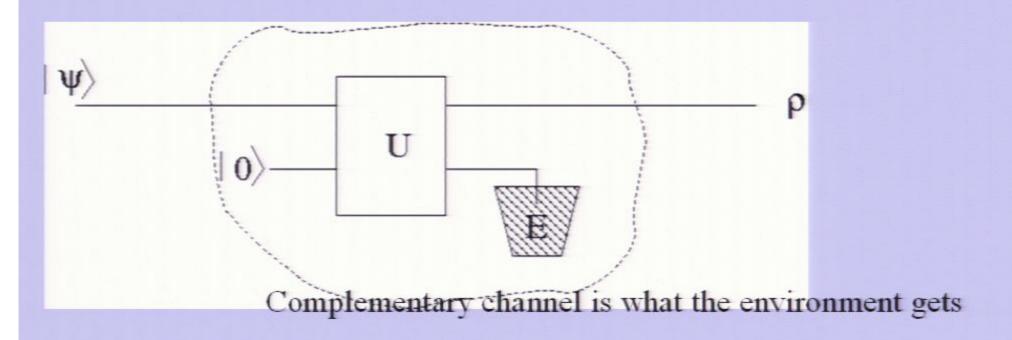
efinition: A channel \mathcal{N} with isometric extension $U: A \to BE$ is calle egradable if there is a degrading map \mathcal{D} such that $\mathcal{D} \circ \mathcal{N} = \hat{\mathcal{N}}$, when $\hat{\mathcal{N}} = \hat{\mathcal{N}}$ is called the complementary channel of \mathcal{N} .



efinition: A channel \mathcal{N} with isometric extension $U: A \to BE$ is calle egradable if there is a degrading map \mathcal{D} such that $\mathcal{D} \circ \mathcal{N} = \hat{\mathcal{N}}$, wher $(\rho) = \operatorname{Tr}_B U \rho U^{\dagger}$. $\hat{\mathcal{N}}$ is called the complementary channel of \mathcal{N} .

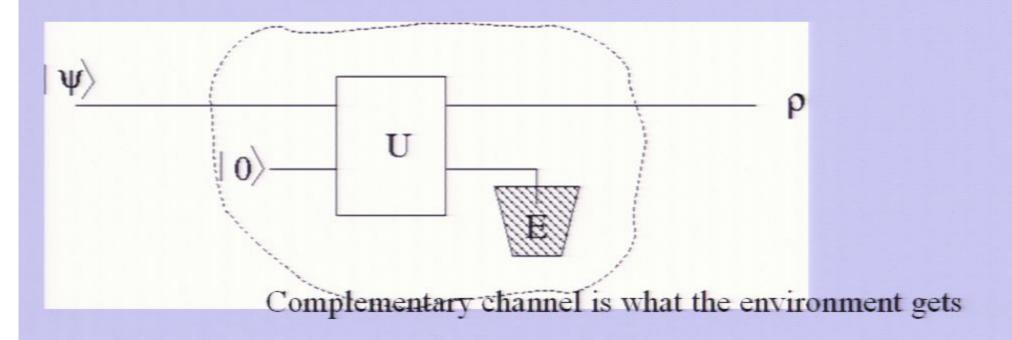


efinition: A channel \mathcal{N} with isometric extension $U: A \to BE$ is calle egradable if there is a degrading map \mathcal{D} such that $\mathcal{D} \circ \mathcal{N} = \hat{\mathcal{N}}$, where $(\rho) = \text{Tr}_B U \rho U^{\dagger}$. $\hat{\mathcal{N}}$ is called the complementary channel of \mathcal{N} .



Degradable channels have single-letter capacity Devetak-Shor 2003 This is huge, since hardly anything is known to be single-letter!

efinition: A channel \mathcal{N} with isometric extension $U: A \to BE$ is calle egradable if there is a degrading map \mathcal{D} such that $\mathcal{D} \circ \mathcal{N} = \hat{\mathcal{N}}$, wher $(\rho) = \operatorname{Tr}_B U \rho U^{\dagger}$. $\hat{\mathcal{N}}$ is called the complementary channel of \mathcal{N} .



Degradable channels have single-letter capacity Devetak-Shor 2003 This is huge, since hardly anything is known to be single-letter!

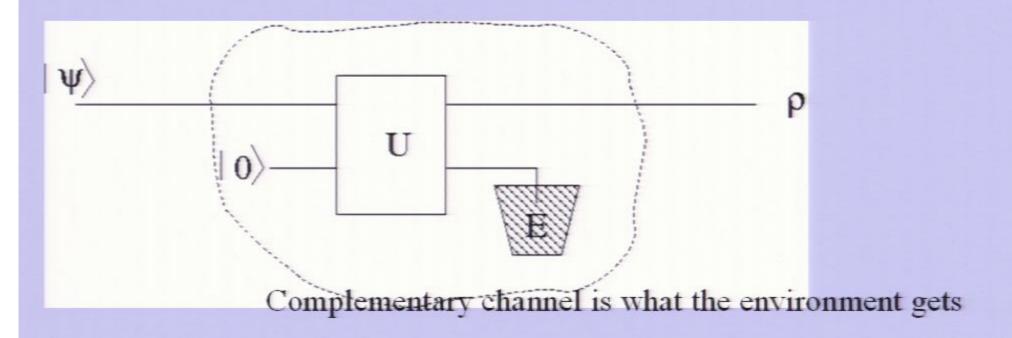
Unfortunately, the depolarizing channel is not degradable

Good Properties of Additive Extensions

- Simple to understand
- Additive (single-letter) bounds on Q
- Includes all previous bounds on Q
- Can get Rains bound without my having to understand his paper
- Also bounds private capacity when degradable
- Good convexity properties
- Fixes argument for no-cloning straight line
- Yields new, tighter bounds

Pirsa: 08060205 Page 27/66

efinition: A channel \mathcal{N} with isometric extension $U: A \to BE$ is calle egradable if there is a degrading map \mathcal{D} such that $\mathcal{D} \circ \mathcal{N} = \hat{\mathcal{N}}$, wher $(\rho) = \operatorname{Tr}_B U \rho U^{\dagger}$. $\hat{\mathcal{N}}$ is called the complementary channel of \mathcal{N} .



Degradable channels have single-letter capacity Devetak-Shor 2003 This is huge, since hardly anything is known to be single-letter!

Unfortunately, the depolarizing channel is not degradable

Good Properties of Additive Extensions

- Simple to understand
- Additive (single-letter) bounds on Q
- Includes all previous bounds on Q
- Can get Rains bound without my having to understand his paper
- Also bounds private capacity when degradable
- Good convexity properties
- Fixes argument for no-cloning straight line
- Yields new, tighter bounds

Embarrassingly Simple Theorem

$$Q(\mathcal{N}) \le Q^{(1)}(\mathcal{T})$$

 $Q(\mathcal{N}) \leq Q^{(1)}(\mathcal{T})$ T is an additive extension of \mathcal{N}

$$C_p(\mathcal{N}) \le Q^{(1)}(\mathcal{T})$$

 $C_p(\mathcal{N}) \leq Q^{(1)}(\mathcal{T})$ when \mathcal{T} is also degradable

Proof.

Embarrassingly Simple Theorem

$$Q(\mathcal{N}) \le Q^{(1)}(\mathcal{T})$$

 $Q(\mathcal{N}) \leq Q^{(1)}(\mathcal{T})$ \mathcal{T} is an additive extension of \mathcal{N}

 $C_p(\mathcal{N}) \leq Q^{(1)}(\mathcal{T})$ when \mathcal{T} is also degradable

Proof.

 $Q^{(1)}(T) = Q(T)$ by definition of additive extension $Q(\mathcal{N}) \leq Q(\mathcal{T})$ can obtain \mathcal{N} from \mathcal{T} using \mathcal{R}

imilarly for C_p using $C_p(\mathcal{T}) = Q^{(1)}(\mathcal{T})$ (Smith 07)

Lemma:

Suppose we have $\mathcal{N} = \sum_{i} p_{i} \mathcal{N}_{i}$ with \mathcal{N}_{i} degradable $T = \sum_{i} p_{i} \mathcal{N}_{i} \otimes |i\rangle\langle i|$ is a degradable extension of \mathcal{N}

Proof:

Lemma:

Suppose we have $\mathcal{N} = \sum_{i} p_{i} \mathcal{N}_{i}$ with \mathcal{N}_{i} degradable $T = \sum_{i} p_{i} \mathcal{N}_{i} \otimes (i) \langle i \rangle$ is a degradable extension of \mathcal{N}

Proof:

Lemma:

Suppose we have $\mathcal{N} = \sum_{i} p_{i} \mathcal{N}_{i}$ with \mathcal{N}_{i} degradable $T = \sum_{i} p_{i} \mathcal{N}_{i} \otimes (i) \langle i \rangle$ is a degradable extension of \mathcal{N}

Proof: Need to show: 1) it's an extension, and 2) it's additive (will show degradable)

Pirsa: 08060205 Page 34/66

Lemma:

Suppose we have $\mathcal{N} = \sum_{i} p_{i} \mathcal{N}_{i}$ with \mathcal{N}_{i} degradable $T = \sum_{i} p_{i} \mathcal{N}_{i} \otimes (i) \langle i \rangle$ is a degradable extension of \mathcal{N}_{i}

Proof: Need to show: 1) it's an extension, and 2) it's additive (will show degradable)

 $\mathcal{N} = \mathcal{R} \circ \mathcal{T}$: trace out flag system

 \mathcal{T} Degradable: read flag and apply \mathcal{D}_{i}

Convex combination bound

If $\mathcal T$ is a flagged-degradable extension of $\mathcal N$ then

$$Q(\mathcal{N}) \le \sum_{i} p_i Q_1(\mathcal{N}_i)$$

Convex combination bound

If $\mathcal T$ is a flagged-degradable extension of $\mathcal N$ then

$$Q(\mathcal{N}) \le \sum_{i} p_i Q_1(\mathcal{N}_i)$$

Let ϕ be the optimal input state for T:

$$P_{1}(T) = S\left(\sum_{i} p_{i} \mathcal{N}_{i}(\phi) \otimes |i\rangle\langle i|\right) - S\left(\sum_{i} p_{i} \hat{\mathcal{N}}_{i}(\phi) \otimes |i\rangle\langle i|\right)$$
$$= \sum_{i} p_{i} \left(S\left(\mathcal{N}_{i}(\phi)\right) - S\left(\hat{\mathcal{N}}_{i}(\phi)\right)\right)$$

$$\leq \sum_{i} p_{i} Q_{1}(\mathcal{N}_{i})$$

Pirsa: 08060205

Page 37/66

No cloning as special case

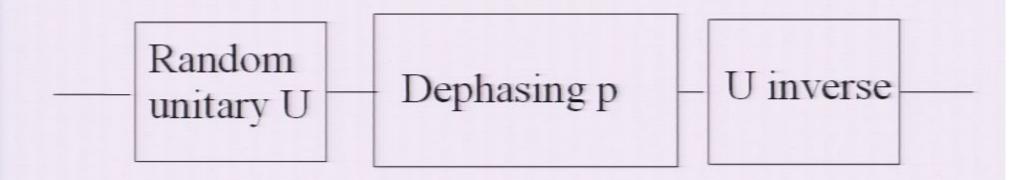
To show off how general Additive extensions are To let us use convexity results on no-cloning bounds

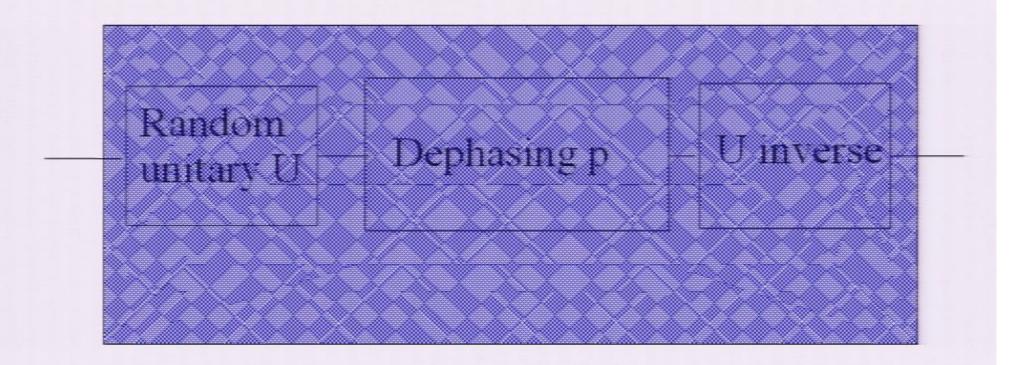
$$\mathcal{N}$$
 Antidegradable : $\mathcal{D} \circ \hat{\mathcal{N}} = \mathcal{N}$
Isometry of \mathcal{N} is $U : A \to BE$

et
$$V|\phi\rangle = \frac{1}{\sqrt{2}}U|\phi\rangle|0\rangle_{f_1}|1\rangle_{f_2} + \frac{1}{\sqrt{2}}SWAP_{BE}U|\phi\rangle|1\rangle_{f_1}|0\rangle_f$$

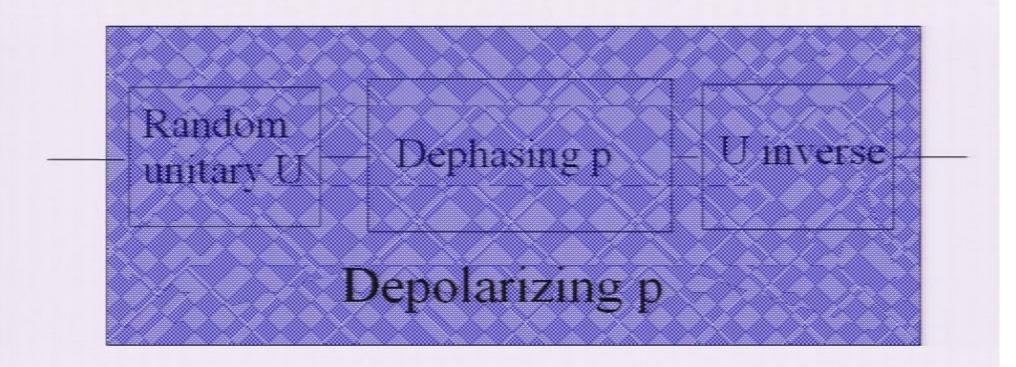
 $\mathcal{T}(\rho) = \text{Tr}_{Ef_2}V\rho V^{\dagger}$ is a degradable extension of \mathcal{N}

Degradable, antidegradable and zero capacity by symmetry Carroget N by applying antidegrading map when necessary

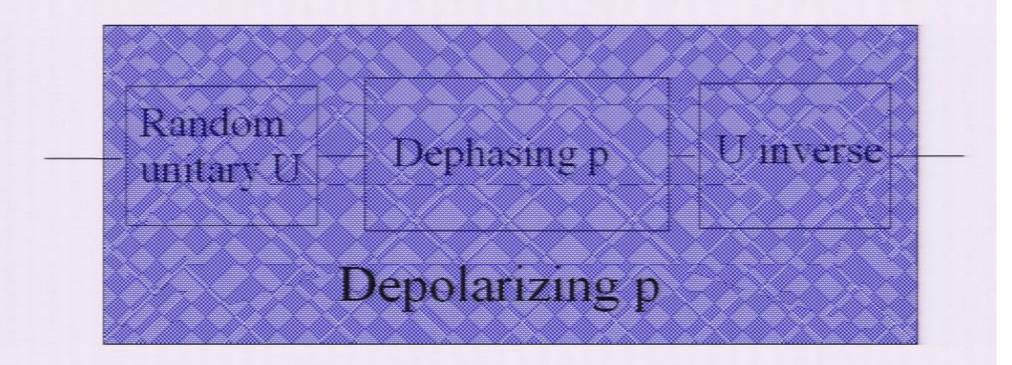




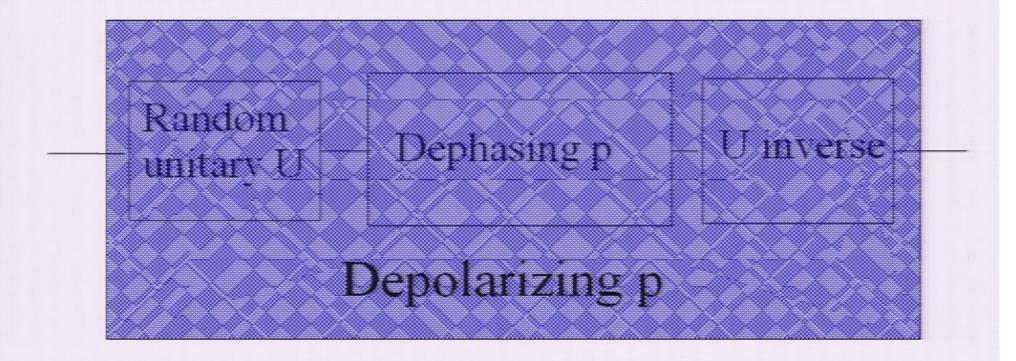
Pirsa: 08060205 Page 40/66



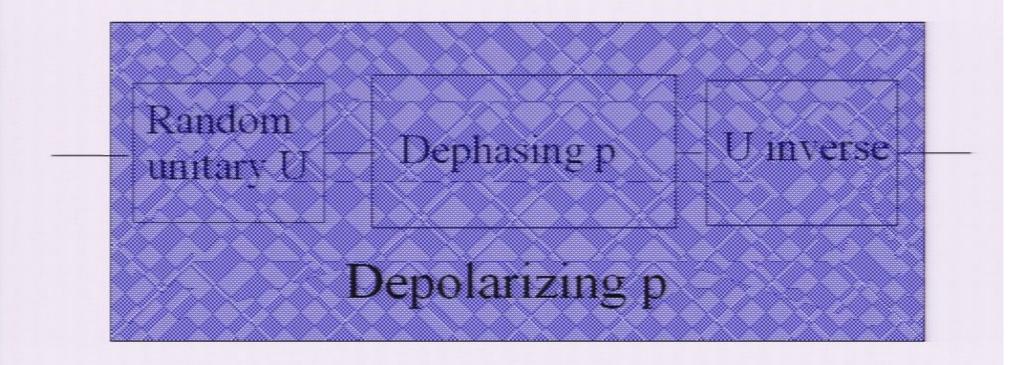
Pirsa: 08060205 Page 41/66



Pirsa: 08060205 Page 42/66



Depolarizing channels are convex mixtures of dephasing channels. Gives bound immediately



Depolarizing channels are convex mixtures of dephasing channels. Gives bound immediately

Better than Convex

f $\mathcal T$ is a flagged-degradable extension of $\mathcal N$ then

$$Q(\mathcal{N}) = \max_{\phi} \sum_{i} p_{i} \left[S\left(\mathcal{N}_{i}(\phi)\right) - S\left(\hat{\mathcal{N}}_{i}(\phi)\right) \right]$$

Pirsa: 08060205

Page 45/66

Better than Convex

f \mathcal{T} is a flagged-degradable extension of \mathcal{N} then

$$Q(\mathcal{N}) = \max_{\phi} \sum_{i} p_{i} \left[S\left(\mathcal{N}_{i}(\phi)\right) - S\left(\hat{\mathcal{N}}_{i}(\phi)\right) \right]$$

Let ϕ be the optimal input state for \mathcal{T} :

$$Q_{1}(T) = S\left(\sum_{i} p_{i} \mathcal{N}_{i}(\phi) \otimes |i\rangle\langle i|\right) - S\left(\sum_{i} p_{i} \hat{\mathcal{N}}_{i}(\phi) \otimes |i\rangle\langle i|\right)$$

$$= \sum_{i} p_{i} \left(S\left(\mathcal{N}_{i}(\phi)\right) - S\left(\hat{\mathcal{N}}_{i}(\phi)\right)\right)$$

$$\leq \sum_{i} p_{i} Q_{1}(\mathcal{N}_{i})$$
also $Q(\mathcal{N}) \leq Q_{1}(T)$ **QED**

Better than Convex

f $\mathcal T$ is a flagged-degradable extension of $\mathcal N$ then

$$Q(\mathcal{N}) = \max_{\phi} \sum_{i} p_{i} \left[S\left(\mathcal{N}_{i}(\phi)\right) - S\left(\hat{\mathcal{N}}_{i}(\phi)\right) \right]$$

Let ϕ be the optimal input state for \mathcal{T} :

$$P_{1}(T) = S\left(\sum_{i} p_{i} \mathcal{N}_{i}(\phi) \otimes |i\rangle\langle i|\right) - S\left(\sum_{i} p_{i} \hat{\mathcal{N}}_{i}(\phi) \otimes |i\rangle\langle i|\right)$$
$$= \sum_{i} p_{i} \left(S\left(\mathcal{N}_{i}(\phi)\right) - S\left(\hat{\mathcal{N}}_{i}(\phi)\right)\right)$$

also
$$Q(\mathcal{N}) \leq Q_1(\mathcal{T})$$
 QED

General Degradable Qubit channel

$$A_{+} = \begin{pmatrix} \cos(\frac{1}{2}(v-u)) & 0\\ 0 & \cos(\frac{1}{2}(v+u)) \end{pmatrix}$$

$$A_{-} = \begin{pmatrix} 0\\ \sin(\frac{1}{2}(v-u)) & \sin(\frac{1}{2}(v+u))\\ 0 \end{pmatrix}$$

degradable when $|\sin v| \le |\cos u|$

Wolf Perez-Garcia 2007 Cubitt, Ruskai, Smith 2008

General degradable-depolarizing mixture

$$T_{(u,v)}^{\text{dep}}(\rho) = \frac{1}{|\mathcal{C}|} \sum_{c \in \mathcal{C}} c^{\dagger} \mathcal{N}_{(u,v)}(c\rho c^{\dagger}) c \otimes |c\rangle\langle c|$$

$$\operatorname{Tr}_{f} \mathcal{T}_{(u,v)}^{\operatorname{dep}}(\rho) = \mathcal{N}_{p}(\rho)$$
$$p = 1 - \cos^{2}(u/2)\cos^{2}(v/2)$$

Pirsa: 08060205 Page 49/66

$$\mathcal{O}(\mathcal{N}_p) \le \min H\left[\frac{1}{2}[1+\sin u \sin v]\right] - H\left[\frac{1}{2}[1+\cos u \cos v]\right]$$

minimize over (u,v) s.t. $\cos^2(u/2)\cos^2(v/2) = 1-p$

$$Q(\mathcal{N}_p) \le \cos\left[1 - H(p), H(\frac{1 - \gamma(p)}{2}) - H(\frac{\gamma(p)}{2}), 1 - 4p\right]$$

where $\gamma(p) = 4\sqrt{1 - p}(1 - \sqrt{1 - p})$

$$P(\mathcal{N}_p) \le \min H\left[\frac{1}{2}[1+\sin u\sin v]\right] - H\left[\frac{1}{2}[1+\cos u\cos v]\right]$$

minimize over (u,v) s.t. $\cos^2(u/2)\cos^2(v/2) = 1-p$

Rains

$$Q(\mathcal{N}_p) \le \cos\left[1 - H(p), H(\frac{1 - \gamma(p)}{2}) - H(\frac{\gamma(p)}{2}), 1 - 4p\right]$$

where $\gamma(p) = 4\sqrt{1 - p}(1 - \sqrt{1 - p})$

$$P(\mathcal{N}_p) \le \min H\left[\frac{1}{2}[1+\sin u \sin v]\right] - H\left[\frac{1}{2}[1+\cos u \cos v]\right]$$

minimize over (u,v) s.t. $\cos^2(u/2)\cos^2(v/2) = 1-p$

Rains

No cloning

$$Q(\mathcal{N}_p) \le \cos\left[1 - H(p), H(\frac{1 - \gamma(p)}{2}) - H(\frac{\gamma(p)}{2}), 1 - 4p\right]$$

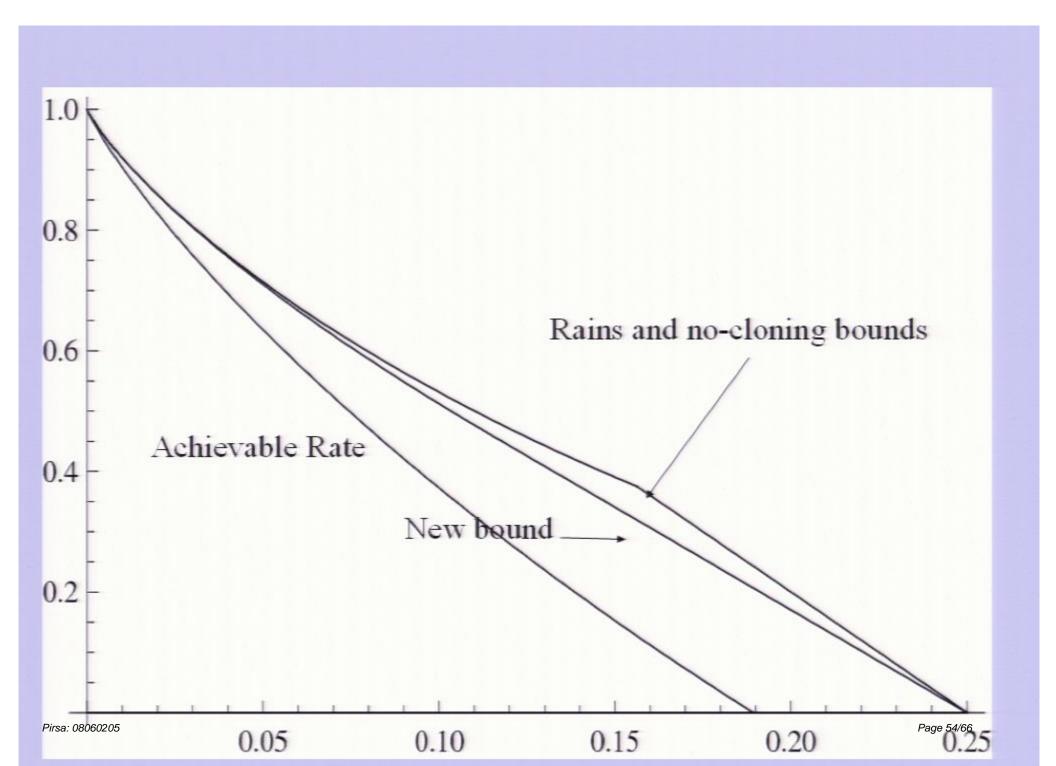
where $\gamma(p) = 4\sqrt{1 - p}(1 - \sqrt{1 - p})$

$$P(\mathcal{N}_p) \le \min H\left[\frac{1}{2}[1 + \sin u \sin v]\right] - H\left[\frac{1}{2}[1 + \cos u \cos v]\right]$$

minimize over (u, v) s.t. $\cos^2(u/2)\cos^2(v/2) = 1 - p$
Rains New bound No cloning

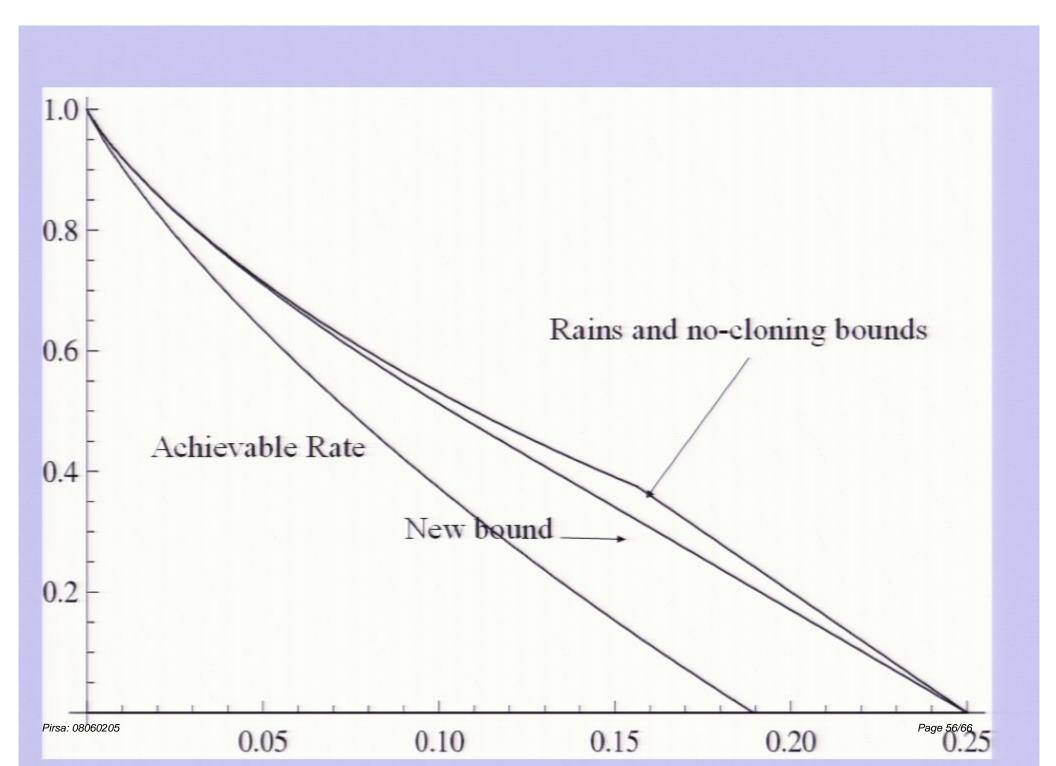
$$Q(\mathcal{N}_p) \le \cos\left[1 - H(p) H(\frac{1 - \gamma(p)}{2}) - H(\frac{\gamma(p)}{2})\right] - 4p$$

where
$$\gamma(p) = 4\sqrt{1 - p(1 - \sqrt{1 - p})}$$



$$V_q^{\text{BB84}}(\rho) = (1 - q)^2 \rho + q(1 - q)X\rho X + q(1 - q)Z\rho Z + q^2 Y\rho Y$$

Pirsa: 08060205 Page 55/66



$$V_q^{\text{BB84}}(\rho) = (1 - q)^2 \rho + q(1 - q)X\rho X + q(1 - q)Z\rho Z + q^2 Y\rho Y$$

Pirsa: 08060205 Page 57/66

$$V_q^{\text{BB84}}(\rho) = (1 - q)^2 \rho + q(1 - q)X\rho X + q(1 - q)Z\rho Z + q^2 Y\rho Y$$

Similar to depolarizing channel but with independent amplitude and phase noise

Pirsa: 08060205 Page 58/66

$$V_q^{\text{BB84}}(\rho) = (1 - q)^2 \rho + q(1 - q)X\rho X + q(1 - q)Z\rho Z + q^2 Y\rho Y$$

Similar to depolarizing channel but with independent amplitude and phase noise

This channel has private capacity equal to that of BB84 with one-way postprocessing and bit error rate q.

Pirsa: 08060205 Page 59/66

$$V_q^{\text{BB84}}(\rho) = (1 - q)^2 \rho + q(1 - q)X\rho X + q(1 - q)Z\rho Z + q^2 Y\rho Y$$

Similar to depolarizing channel but with independent amplitude and phase noise

This channel has private capacity equal to that of BB84 with one-way postprocessing and bit error rate q.

$$C_p(\mathcal{N}_q^{\text{BB84}}) \le H\left(\frac{1}{2} - 2q(1-q)\right) - H(2q(1-q))$$

Amplitude Damping

$$\mathcal{N}_{\gamma}^{\mathrm{ad}}: \qquad A_{0} = \left(\begin{array}{cc} 1 & 0 \\ 0 & \sqrt{1-\gamma} \end{array} \right)$$

$$A_{1} = \left(\begin{array}{cc} 0 & \sqrt{\gamma} \\ 0 & 0 \end{array} \right)$$

degradable when $\gamma \leq 1/2$

BB84 extension

$$I_q^{\text{BB84}} = \frac{1}{2} \mathcal{N}_{\gamma(q)}^{\text{ad}}(\rho) \otimes |0\rangle\langle 0| + \frac{1}{2} Y \mathcal{N}_{\gamma(q)}^{\text{ad}}(Y \rho Y) Y \otimes |1\rangle\langle 1|$$

$$\gamma(q) = 4q(1-q)$$

This is a degradable extension of the BB84 channel

BB84 extension

$$T_q^{\text{BB84}} = \frac{1}{2} \mathcal{N}_{\gamma(q)}^{\text{ad}}(\rho) \otimes |0\rangle\langle 0| + \frac{1}{2} Y \mathcal{N}_{\gamma(q)}^{\text{ad}}(Y \rho Y) Y \otimes |1\rangle\langle 1|$$

 $\gamma(q) = 4q(1-q)$

This is a degradable extension of the BB84 channel

Nice because it has just two terms We can fully calculate its Q₁

SS Capacity

sometry:
$$V|(i,j)\rangle = \frac{1}{\sqrt{2}}(|i\rangle|j\rangle - |j\rangle|i\rangle)$$

Channel:
$$\mathcal{A}(\rho) = \text{Tr}_2 V \rho V^{\dagger} \quad Q(\mathcal{A}) = 0$$

$$Q_{\rm ss}(\mathcal{N}) = \lim_{n \to \infty} \frac{1}{n} Q_1(\mathcal{N}^{\otimes n} \otimes \mathcal{A})$$

$$Q_{\rm ss}(\mathcal{N}) = Q_1(\mathcal{N} \otimes A) \text{ SSW}2006$$

Vant to show $\mathcal{N} \otimes \mathcal{A}$ is an additive extension of \mathcal{N} with capacity $Q(\mathcal{N} \otimes \mathcal{A}) = Q_{ss}(\mathcal{N})$

$$Q(N) = \lim_{n o \infty} rac{1}{n} Q_1(\mathcal{N}^{\otimes n} \otimes \mathcal{A}^{\otimes n})$$

A is an additive extension

$$Q(\mathcal{N} \otimes \mathcal{A}) = \lim_{n \to \infty} \frac{1}{n} Q_1(\mathcal{N}^{\otimes n} \otimes \mathcal{A}^{\otimes n})$$

$$= \lim_{n \to \infty} \frac{1}{n} \left(Q_1(\mathcal{N}^{\otimes n} \otimes \mathcal{A}) + Q_1(\mathcal{A}^{\otimes (n-1)} \otimes \mathcal{A}) \right)$$

$$= \lim_{n \to \infty} \frac{1}{n} (nQ_1(\mathcal{N} \otimes \mathcal{A})) = Q(\mathcal{N} \otimes \mathcal{A}) = Q_1(\mathcal{N} \otimes \mathcal{A})$$

CHU UI SHUE SHUW, CHEK LU EXIL

Pirsa: 08060205 Page 66/6