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Classical channels have essentially only one capacity. For quantum

channels, we can define many capacities.
We will mention:
Accessible informtation.
Adaptively accessible information.
Classical capacity.
Holevo capacity.
Entanglement-assisted capacity.

Quantum capacity.

Capacity (q and c) with feedback channel.

Capacity (q and ¢) with side channel.
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Claude Shannon. 1948

The fundamental problem of communication is that of reproducing

at one point either exactly or approximately a message selected at

another point.
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John Pierce. 1973
I think that I have never met a physicist who understood

information theory. I wish that physicists would stop talking about

reformulating information theory and would give us a general

expression for the capacity of a channel with quantum effects taken

into account rather than a number of special cases.
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Shannon's Channel Coding Theorem

Definition of Entropy:

If a signal takes the value ¢ with probability p;. its entropy is

Hi{X)— Z —p; log p;

1

Channel Coding

A noisy channel N has capacity

max I(X:N(X)).
p{X)

H(Y)-H(Y|X)

Xy L YY) HEX.¥Y)
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Elltl‘n_rp_‘f of a quantum state

(? l‘clf-whi(:' i'll (:.E'l &

Given n photons, each in state | [) or | +=). with probability . Any

two of these states are completely distingnishable. The entropv is n

!1itr-.

Quantum Case

Given n photons, each in state | [) or | /), with probability 5. If
the angle between the polarizations is small. any two of these states
are barely distinguishable. Intuitively. the entropy should be much

lt_‘-lr-::-é Ellull n IritH.
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By thermodynamic arguments. von Neumann deduced the entropy

of a quantum system with density matrix p is

H(p) = —TIx(plog p)

Recall p was positive semidefinite, so plog p is defined.

If p is diagonal with eigenvalues A;. then plog p is diagonal with

eigenvalues \; log A;.
Thus. H(p) = Hspan(A;) so the von Neumann entropy is the
Shannon entropy of the eigenvalues.

(Recall Trp —1 — Zé A;.)

You can ask: Does this definition give the right quantum channel

capacity’
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Accessible Information
Suppose that we have a source that outputs signal p; with
probability p;. How much Shannon information can we extract

about the sequence of 7's?
Let X be the random variable telling which signal p; was sent.

Answer (from classical information theorv):
Optimize over all possible measurements M on the signals (with

outcomes M;. M. .. .).

P —max (X M)
M
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EK&.’iﬂlplE‘ 12 Two states in ensemble

(B

Then

1
2

1-1-¢ {b‘- H :-lillH cosf
”'*lll H C {}HH 1 — l:'t_!:-%z ¥4
and H = Hl——'”“Hf,

2

The optimal measurement 1is

sin f
I-.'tLC:l_Hi__ '}L ).
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> see that .. < HI';H.

A plot of H and [I,.. for the ensemble of two pure quantum states

with p = 1/2 that differ by an angle of #, 0 < 8 < 7/2

1 cos 8
= > and
1 , sinfy
:3 ¥

The top curve is the von Neumann entropy H = H |

the bottom the accessible mformation I,.. = 1 — H S
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POV M Measurements

(Positive Operator Valued Measurements).

We are ,L‘;i‘i‘t_‘ll a set of I}t_rhitii't_' semidefinite matrices E! Htttihfﬁ'illf::

Y. E;=1.

The probability of the 'th outcome is

p; = Tr(E;p)

For von Neumann measurements, F; =Ilg,

To obtain the maximum information. we can assume that E;’s are

pure states. Then E; = v;v; for some vector v;.
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Example 2:

Three signal states differing by 60°.

Optimal Measurement:

POVNMI E‘ul‘l‘i_'r-wpl_rlliHll,L." L0 veclors w; | v;.

) 5
_E;. =" H';

3

et R
(prob % :,1

Each outcome rules out one state, leaves other two equally likely

S8 bis; H—1bk. Apam I, < Il

w;.

Pirs Page 13/81




Holevo Bound y

Suppose we have a source emitting p; with probability p;.

X :th_{j}-l{’i] —ZEJ?H[;:}}
z

('
Theorem (Holevo. 1973)
B <)

If all the p; commute, the situation is essentially classical, and we

el I e —— Otherwise 17 T A 1
ACC i ACC "E
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How can we use an ensemble of quantum states to send classical
mformation”

Once we have chosen the measurement, we have essentially

determined a classical channel. Shannon’s classical coding theorem

says that Alice can find a codebook using states from the ensemble

such that she can asymptotically send Bob [I,.. bits per state.

14
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Example 2. Continued:

Suppose we use just two of the three signal states differing by 60°.

(prob =)

Optimal Measurement for two vectors:

Im:i_‘ =S| == Hl% T \':)E )} — .6454 bits

This is larger than the accessible information for the ensemble
containing all three states with equal probability, showing that the

accessible information is not concave.
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Let us go back to the situation where Alice is sending to Bob the

states of the ensemble in Example 2 with equal probabilities.

Can Alice use this non-concavity of accessible information to let

Bob extract more information from her ensemble?

She can give him hints. For the three-vector ensemble above. Alice
can first narrow Bob's possibilities down to two vectors, and then
he can use the optimal measurement to distinguish between these.

This lets him extract more information from the reduced state.

So if Alice sends Bob extra classical information, then he can
extract more information from the ensemble of three states above.
even after subtracting the amount of extra classical information

from the total.
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This situation does not occur for classical probability distributions.
Suppose Alice has three labels. each corresponding to a probability
distribution on Bob's classicallv correlated information. If Alice
sends Bob more information about the label. he can now

necessarily extract less information from the reduced state.

Alice’s extra information tells Bob how to make a better

measturement.

Classically. Bob has complete information. so extra information

can 't help.
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How to do better: use three codewords v X vy, Vo

The optimal measurement for these three states gives 1.369 bits.

which i1s larger than 2 - 0.6545 = 1.309 bits.

What about still h_rll};’t:l‘ codewords?

Pirs Page 22/81
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How to do better: use three codewords v Uy, Vo X Ve, V3 X V3.
1 1 2 3

3
- L

The optimal measurement for these three states gives 1.369 bits.

which 1s larger than 2 - 0.6545 = 1.309 bits.

What about still lull};‘*:l‘ codewords”?
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Theorem (Holevo., Schumacher-Westmoreland)

The classical-information capacity obtainable using codewords
composed of signal states p;. where p; has marginal probability p;.
is

i

x({pit:ipi}) = H{Zp;p,; ) — Z!*éH[f’-"é )

Does this give the capacity of a quantum channel N7
Possible capacity formula:
Maximize x ({/N(p;)}: {pi}) over all output states N'(p) of the

channel.

Pirs Page 24/81
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Theorem (Holevo. Schumacher-Westmoreland)

The classical-information capacity obtainable using codewords
composed of signal states p;, where p; has margimal probability p;.

IS

{pi}:{ps) =HO pipi) — Y piH(p;)
! 1

How do we prove this?
e random coding
e typical subspaces and conditionally typical subspaces
e the square root measurement (or “pretty good measurement’ )
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Example 3

Look at tensor product of two copies of the ensemble of Example 2.
How can we extract the most information from it?

We can extract more than the accessible information (1.309 bits) in

the following manner:

Alice sends Bob the difference between the labels on the two states.

Bob knows which of the three following ensembles he holds:

Uv) |v1), |v2) |v2), |vs) |vs,
{|v1) |v2), |v2) |vs), |vs) |v1)
Uve) | vs), |ve) | v1). |vs) v,
Each of these three ensembles has a measurement vielding 1.369

])ith,
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So far, we have examples where the amount of information we can
extract from an ensemble is the average of the accessible
information for some subensembles (where the states are chosen

with various probabilities).

How do we do this? Alice figures out which subensemble the state

is in. and sends Bob this information.
Is this the best we can do?

Answer: No
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Example 3

Look at tensor product of two copies of the ensemble of Example 2.

How can we extract the most information from it?

We can extract more than the accessible information (1.309 bits) in

the following manner:

Alice sends Bob the difference between the labels on the two states.
Bob knows which of the three following ensembles he holds:

Uv1) | v1), |v2) |v2), |v3) |v3)}

{|v1) |v2), |v2) |v3), |vs) |v1)}

{lv1) |vs), |v2) |v1), |vs) |v2)}

Each of these three ensembles has a measurement vielding 1.369

1)ifh.
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So far, we have examples where the amount of information we can

extract from an ensemble is the average of the accessible
mmformation for some subensembles (where the states are chosen
with various Ifrl‘{_r}'mhﬂitifj:-l !

How do we do this? Alice ﬁgill‘i_‘:-é out which subensemble the state
is in. and sends Bob this information.

Is this the best we can do?

Answer: No
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How do we do better?

We have an example where Bob can do better using two

measurements sequentially.
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(:"E-_'].l:"'i_': E.t_ll_t E].]_'-_1 t.ll?‘t_llll} }1*_‘ lll%l_{ i_t_" ]11_} lJ'E '[]_l{_l E}-lltl-tt_‘_{lilllt_‘lliii_}llill htiitl_“‘\

j 3 7, _
l‘i‘l'ilL'l't_* Fta—I1k

These are just the three states of Example 2 lifted out of the plane

bv an angle arcsin a.
For these states, and small . we can extract more than the
accessible information for anyv [fil‘{_riltl}'rilit_‘i' distribution on these

states E{T llr-éilljul a two 1‘1_-1111.:1 I‘:-n_rt{_nj-ul_

Pirs Page 31/81







Pirs

Consider the ensemble made up of the three-dimensional states

[‘ﬂ'.'hL‘L‘!_* -_fz T+ ”j ——Q

(3.0, )

(—=3. %27 )

(=325 o)

= o

Tllt_‘:ﬁt;‘ are Ij]l:-wt tllt‘ T.lll‘t_‘t_* states t_nf E};;unplt; - l]fr“[ ot t_}f ’Ehr: [‘-*12111*_‘

by an angle arcsin a.
For these states. and small &v. we can extract more than the
accessible information for any probability distribution on these

states E}ﬁ.' llf-iiil}.l a two 1‘1_-11]_1{1 [ﬂ'thUClJl.
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First. Bob makes a measurement which either projects these three
trine states down into the plane (Example 2) or lifts them further

out of the plane (akin to example 3 but with different angles).

If theyre lifted out of the [i}l':'tllt:. Bob makes the {_rptilllatl

measurement distinguishing all three of them.

If they re projected into the plane. Bob asks Alice to narrow the

choice down to two possibilities, and then makes the optimal

measurement distinguishing them (Example 1).
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First. Bob makes a measurement which either projects these three
trine states down into the plane (Example 2) or lifts them further

out of the plane (akin to example 3 but with different angles).

If they're lifted out of the plane., Bob makes the optimal

measurement distinguishing all three of them.

If they're projected into the plane. Bob asks Alice to narrow the

choice down to two possibilities, and then makes the optimal

measurement distinguishing them (Example 1).
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(Can we use this protocol for extracting information for
communication of classical information using quantum states
chosen from this ensemble?

‘{11:- WET: &Ft_l:-l

‘.Yt;l 11:_%-.‘(1 TO hilt_ﬁﬁ,‘ thut —Kllt‘t can use l’lli:—i lﬁl‘t_rt{_r{‘{_rl ii‘itllt_i11t ol
feedback channel from Bob to Alice.

We use two classical codes, one COrTresp o1 lillg to each of Bob's

measurement steps, and combine them by bitwise addition (mod 3).

By the fact that random classical codes achieve Shannon’s channel

capacity, this means that Bob can decode Alice’s message.

Page 36/81



First. Bob makes a measurement which either projects these three
trine states down into the plane (Example 2) or lifts them further
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First. Bob makes a measurement which either projects these three
trine states down into the plane (Example 2) or lifts them further

out of the plane (akin to example 3 but with different angles).

If theyre lifted out of the plr:tllt:. Bob makes the {_rptilllul

measurement distinguishing all three of them.

t
Pl

If theyv're projected into the plane. Bob asks Alice to narrow the
choice down to two possibilities, and then makes the optimal

measurement distinguishing them (Example 1).
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Can we use this protocol for extracting information for

communication of classical information using quantum states

chosen from this ensemble?
_jxll:-n‘ﬁ't_‘l'i &115

TEYL‘ 11:_1t_1(1 TO hhi_r‘ﬁ' tllu'[ —klll:t_ can use 'Elli:-i lﬁl't_rt{_rf:{_rl ‘ii‘itll{_.i1lt a

feedback channel from Bob to Alice.

We use two classical codes, one COrTesp o1 Hﬂ}l to each of Bob's

measurement steps, and combine them by bitwise addition (mod 3).

By the fact that random classical codes achieve Shannon's channel

capacity, this means that Bob can decode Alice’s message.
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(Can we use this protocol for extracting information for
communication of classical information using quantum states
chosen from this ensemble?

:ill:«ﬁ't_"l‘i &Ft_‘:-l

We need to show that Alice can use this protocol without a

feedback channel from Bob to Alice.

We use two classical codes, one corresponding to each of Bob's

measurement steps, and combine them by bitwise addition (mod 3).

Bv the fact that random classical codes achieve Shannon’s channel

capacity, this means that Bob can decode Alice’s message.
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(Can we use this protocol for extracting information for

communication of classical information using quantum states

chosen from this ensemble?
:Xll:—ﬂﬁft_"r: &Ft_‘:-l

We need to show that Alice can use this protocol without a

feedback channel from Bob to Alice.

We use two classical codes, one COrTresp oI lix g to each of Bob's

measurement steps, and combine them by bitwise addition (mod 3).

By the fact that random classical codes achieve Shannon's channel

capacity, this means that Bob can decode Alice’s message.
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This gives us two additional capacities:

1. The capacity of a set of quantum states where Bob is allowed

to make LOCC measurements.

The capacity of a set of quantum states where Bob has a back

channel to Alice. and Alice has a side channel to Bob (but the
amount of information sent over the side channel is subtracted

from the total amount Bob receives).
Are theyv the same? I don't know.

They appear to be different if vou look at the natural

,L*,'!.*llt‘*l‘::lﬁzutiuil to classical black boxes.

Pirs
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So far we have discussed communication using quantum states. We

now discuss communication over quantum channels.

Formula for arbitrary memorvless quantum channel V.

N must be trace-preserving completely positive operator.

p N(p) = Z _—Lp_—lj

where

Y AlA; =1

Positive: takes positive semi-definite matrices to positive
semi-definite matrices.
Completely positive: is positive even when tensored with the

identity channel.

Page 53/81
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Unentangled Inputs. Separate Measurements

Message

Maximize.

channel.

Noisy

Channel

Recervec

Message

::
“n

over probability distributions p; on inputs p;

Licc ({N (pi) }: {Pi })

L

30

to the
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Unentangled Inputs. Adaptive Separate Measurements

Does this increase if vou add a feedback channel from Bob to
Alice? Allow a classical side channel from Alice to Bob that must

be palic | for?

Pirs Page 55/81
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Unentangled Inputs. Joint Measurements

| -
J 04T

Message - Recerver

Message

Maximize over probability distributions p; on inputs p; to the

channel
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Entangled Inputs. Joint Measurements

Enmansied Joxmr

Input . Measurement

Message |

Maximize over probability distributions p; on inputs p; to the

channel. where p; is in the tensor product space of n inputs:

lim x({N“"(p:)}:

E—+ OO
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Unentangled Inputs. Joint Measurements

Maximize over probability distributions p; on inputs p; to the
channel

x({N(pi) }:
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Entangled Inputs. Joint Measurements

Enmansied Joxmt

Input ) Measurement

Maximize over probability distributions p; on inputs p; to the

channel. where p; is in the tensor product space of n inputs:

lim x( {IN="(pi) }: {p:})

TI—O0
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Open Question

Is channel capacity additive?
Is max y(N: @ N3) =max yx(N;) +max y(N3)?
If it is, then y gives the classical-information capacity of a quantum

channel.

Pirs Page 60/81
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This question i1s equivalent to a number of other additivity

qn 1estions.
e Additivity of entanglement of formation.

Additivity of minimum output entropyv for quantum channels.

Strong superadditivity of entanglement of formation.

Additivity of minimum output entropyv for unital channels.
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What things might increase the capacity of a quantum channel

which don't affect the capacity of a classical channel

a) Entanglement between different channel uses?” Unknown: this

is the additivity question.

b) A classical feedback channel from the receiver to the sender?

}:(_rt ‘i.ﬁ'itllull[ ). Z\L_»rc hl[l_‘l’.

Prior entanelement shared between the sender and the receiver.

This helps!
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The phenomenon called superdense coding lets you send two bits

per qubit over a noiseless quantum channel if the sender and

receiver share entanglement.

B ererver Two classical
bits

wo classical
itz

By Holevo's theorem, the bound without prior shared entanglement

1S one E_}it per f‘{llh'lt.
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Formula for entanglement-assisted
capaclty

Theorem (Bennett. Shor. Smolin. Thaplival)

Cr = mecH[ Trg (N @I)®) +-H(Tra (N 21)®) — H((N @1)9)

The sender is A: the receiver B: here ® is a purification of p (so
Tro® — p) using a quantum space that the sender keeps.

This 1s the ( quanium ) mattial ;'n.l;‘}n'rrmh'rm I(A: B} between Alice
and Bob after Alice has sent part of the state @ through the

channel.

When the channel is classical. this formmla turns into classical

mutual information. 1.e.. Shannon’s formula.

Pirs

39
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Suppose that we have a quantum channel \'. From superdense
coding, if N is a noiseless quantum channel. the sender could
communicate twice as much classical information to a receiver if

they share EPR pairs than if they don't.

This new capacity generalizes to noisy channels. We call this

quantity the entanglement-assisted capacity and denote it by Cg.
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Formula for entanglement-assisted
capaclty

Theorem (Bennett., Shor, Smolin. Thaplival)

Crg = Lllflxﬂi Trg (N @Z)®)+H(Tra (N 21)®) — H((N 21)9)

The sender is A: the receiver B: here ® is a purification of p (so
Tro® — p) using a quantum space that the sender keeps.
This 1s the ,-’rpm,n.fmm_,.i mautial H:.I_}‘}”'m:.:}*mn f[:_—li B} between Alice

and Bob after Alice has sent part of the state ® through the

channel.

When the channel is classical. this formmla turns into classical

mutual information. 1.e.. Shannon’s formmla.

39
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(Generalization

Suppose that the sender and the receiver have a limited amount of
entanglement ( E ebits) thev share. How much capacity can they
obtain from a quantum channel?

If the sender is not allowed to use entanglement between different

channel uses. the answer is:

max H(p;) +H(N () —H(WN & 7)®,,)
pi:H(pi) <E

Here H means average entropy. and p; means state: ®,, is the
purification of p;, (so Tra®,, = p;).
This interpolates between the Holevo-Schumacher-Westmoreland

capacity and the entanglement-assisted capacity.
This will be generalized later.

Page 67/81
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Formula for entanglement-assisted
capaclity

Theorem (Bennett. Shor, Smolin. Thaplival)

Co— LllED{H[Tl‘B (NeI)®)+H(Tra(N 21)®) — H(N @21)9)

The sender is A: the receiver B: here ® is a purification of p (so
Tro® — p) using a quantum space that the sender keeps.

This is the ¢ quantum ) mautual information I(A: B) between Alice
and Bob after Alice has sent part of the state @ through the

channel.

When the channel is classical. this formmla turns into classical

mutual information. 1.e.. Shannon’s formmla.

Pirs
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(Generalization

Suppose that the sender and the receiver have a limited amount of
entanglement ( E' ebits) thev share. How much capacity can they
obtain from a quantum channel?

If the sender is not allowed to use entanglement between different

channel uses. the answer is:

max P_I[m | — H(N(p;)) — H((N
pi:H(pi)<E

Here H means average entropy. and p; means state: ®,, is the
purification of p;, (so Tra®,, = p;).
This interpolates between the Holevo-Schumacher-Westmoreland

capacity and the entanglement-assisted capacity.
This will be ;i_‘f_‘llt:l‘ailiZt_*{i later.
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The phenomenon called superdense coding lets you send two
classical bits per qubit over a noiseless quantum channel if the

sender and receiver share entanglement.

Fecetver

= } ™
/\_ CIASSIC
L] T3l

b=z

By Holevo's theorem, the bound without prior shared entanglement

1s one bit per f‘{tlh'lt.

Pirs Page 70/81
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Quantum capacity of a quantum channel.

How many qubits can yvou send from the sender to the receiver per

channel use?

Some channels (e.g. prob % erasure channel) have no quantum

capacity.

This channel can be viewed as a channel which sends the output to

the receiver with probability = and to an eavesdropper with

1

probability 5. If you could send qubits reliably through this

channel. vou could clone them.
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Formula for quantum capacity.

B b :
im —max HN®"(p)) — H((N " 21))(®,))

7 > T 2

where @, i1s a purification of p.

.'I"

This formula is not additive. so we need the limit as the number of

channel uses n goes to Infinitv.
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Now you can ask questions such as: for a given channel N'. with E
shared entanglement, how many qubits ) and how many classical

bits ' can you send.

For example. in the father protocol (Devetak, Harrow, Winter),
C' = 0 and:

_H[ p) + H(N @ I ‘I}p. ) — H(N (p) 'ﬁ_

H (p) - H(N(p)) — H(N 2 I

2) )
o))

1
2
1
2

This can be expressed more simply by

1 . .
FE 3f ( Alice: Environment)

1
Q) :Ii Alice; Bob)
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The father formmla can be combined with superdense coding to
give the entanglement-assisted capacity formula.

The father formmla can be combined with the transmission of
halves of EPR pairs to give the formula for quantum channel
capacity. capacity formmla.

There is a similar mother protocol when sender and receiver share

an entangled mixed state.

This is part of the very nice theory of resource inequalities in

quantum information.
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Now. let’s revisit the question of what things might increase the
capacity of a quantum channel which don't affect the capacity of a

.

classical channel

e Entanglement between different channel uses? Unknown. This

is equivalent to the additivity question.

e Prior entanglement shared between the sender and the receiver.

We have seen that this helps.

e A classical back channel from the receiver to the sender? This

llt_‘h“_}:- . too!

Pirs
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Why does a back channel help?

Aessurs in random

conirol —
bit %‘ I ———=> basis

data
bit e —— >

Consider a channel with two input registers. The control register is
measured in a random basis. with outcome m. and then this basis
and U, | ¢') is given to Bob, where ¢ is the input of the data

re 1__*;1:-1 LET.

If Bob can send the measurement basis to Alice. she can input half
of an EPR pair into the control bit, and measure the other half to
learn the measurement outcome m. Then she can tell Bob m. and

he can undo the unitary U,,.
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Why does a back channel help?

Messure in random

control
bazis
b ]-1_ %ﬂ + bﬂ 515

data
bt _%

Consider a channel with two input registers. The control register is
measured in a random basis. with outcome m. and then this basis
and U, | ¢¥) is given to Bob, where ¢’ is the input of the data

re ',;f;ih Ler.

If Bob can send the measurement basis to Alice. she can input half
of an EPR pair into the control bit, and measure the other half to
learn the measurement outcome m. Then she can tell Bob m, and

he can undo the unitary U,,.
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Now, let’s revisit the question of what things might increase the
capacity of a quantum channel which don't affect the capacity of a

classical channel?

e Entanglement between different channel uses? Unknown. This

is equivalent to the additivity question.

e Prior entanglement shared between the sender and the receiver.

We have seen that this helps.

e A classical back channel from the receiver to the sender? This

llt}h‘}:—é . too!
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Why does a back channel help?

Measurs in random
control ia

bat — Dbasis

data
Consider a channel with two input registers. The control register is

measured in a random basis. with outcome m. and then this basis

and U, | ¥) is given to Bob, where ¢’ is the input of the data

re 1_{;1:-1'[ ET.

If Bob can send the measurement basis to Alice. she can input half
of an EPR pair into the control bit, and measure the other half to
learn the measurement outcome m. Then she can tell Bob m, and

he can undo the unitary U,,.
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With the above type of construction. we can discover that the eight

capacities

VI
Q@ < Qs < & < G
appear to be all different. although Cg = 2Qg. They can be proved

to be different. assuming the additivity conjecture is true.

Here. (" and @ are the classical and quantum capacities.

respectively: C'g and (Qp are the capacities with a back-channel. C'g

and Qg are the capacities when the sender and receiver have shared
entanglement to ald them in communication. and Cy and ()5 are

the private and quantum capacities with a two-way side channel.
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