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Abstract: Observations of the Milky Way by the SPI/INTEGRAL satellite have confirmed the presence of a strong 511 KeV gammaray line
emission from the bulge, which require an intense source of positrons in the galactic center. These observations are hard to account for by
conventional astrophysical scenarios, whereas other proposals, such as light DM, face stringent constraints from the diffuse gamma-ray background.
| will describe how light superconducting strings could be the source of the observed 511 KeV emission. The associated particle physics, at the ~ 1
TeV scale, is within reach of planned accelerator experiments, while the scenario has a distinguishing spatia distribution, proportional to the
galactic magnetic field. | will also discuss how cosmic magnetic fields of nano-Gauss strength today could have been created at the time of
baryogenesis. In addition to being astrophysically relevant, such magnetic fields, which are helical, can provide an independent probe of
baryogenesis and CP violation in particle physics.
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511 KeV emission from the Galactic Center

INTEGRAL results

@ The SPI experiment observes
a diffuse ﬂux uf
~103cm 2! at 511 KeV
from the GC xasaiseaer ec. ar.

@ Difficult to generate 10"FB e /s
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- 511 KeV emission from the Galactic Center

INTEGRAL results

@ The SPI experiment observes
a diffuse ﬂux uf
~ 10 2cm 3! at 511 KeV
from the GC zusa1seder ec. a1, o3

@ Difficult to generate 10%3e* /s
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511 KeV emission from the Galactic Center

INTEGRAL results

@ The SPI experiment observes
a diffuse flux uf
~ 10 3cm2s~! at 511 KeV
from the GC xnsaiseder ec. a1. o

o Difficult to generate 1043e™ /s |
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INTEGRAL results

@ The SPI experiment observes
a diffuse ﬂux ef
~103cm 2! at 511 KeV
from the GC xsarseder e, ar.

o Difficult to generate 10"‘3 e/s
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2008 update: X-ray binaries?

@ The disk emission is

asymmetric, like that of
LMXBS HWeidenspointner ec. al. 08

@ The bulge/disk luminosities
are still 3-9
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Astrophysical models
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Astrophysical models

@ No diffuse, extended and
intense process taking
place mainly in the bulge is
known

@ The disk component could
be mostly due to 3™ decay
of 26 Al and/or cosmic ray
interactions
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place mainly in the bulge is
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@ The disk component could
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Light Dark Matter?
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Constraints on a light DM solution

10 MeV DM

@ EGRET observations require the mass to be in a narrow
I'EHQE mﬂM o 1 . 10ME-V Beacom et. al. 05,

@ Difficult to build natural PP models
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Constraints on a light DM solution

10 MeV DM

@ EGRET observations require the mass to be in a narrow
I'ElﬂgE mﬂM L 1 = 10ME-V Beacom et. al. O

@ Difficult to build natural PP models
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Constraints on a light DM solution

Clumps of DM should be detected wooper, 2, oo 21, o
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Constraints on a light DM solution

CIUI’T‘IDS Df DM ShDU|d bE dEtEGtEd Hooper, FF, et. al. D4
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Superconducting cosmic strings
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The 511 KeV line

B from Sphaleron

Superconducting cosmic strings
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String SC

It might be energetically favorable for a bosonic field to become
non-trivial within the string. If the condensate is electrically

charged, the string becomes superconducting. «:c:e- ss

L = L[g] + LIA] + K[x] — Vs, x]

Ler(0) = 15 (8,0 — €A%, x = xo(x)e”

Fermionic fields might be coupled to the string via Yukawa. The
Dirac equation in the string background might have bound state
solutions, with dispersion relation w = k, that are responsible

for the fermion SC.
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String SC
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L= L[g] + LIAL] + K[x] = V. x]
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SC Strings in a magnetic field FF, Vachaspati 05

Strin
5 Faraday’s law

@ A current composed of zero
modes is created when strings

cut across the MW magnetic
field ~ ev.BR.

3
) % ~ EV*E";E
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SC Strings in a magnetic field FF, Vachaspati 05

Strin
’ Faraday’s law

@ A current composed of zero
modes is created when strings

cut across the MW magnetic
field ~ ev.BR.

3
o BV ~ ev.BL
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String dynamics in a plasma Chudnovsky #t. al. 86

Fs(p, R) ~ Farag(J, p)

@ A<R;~ \—}PJ = Vv ~ ¢, decouple and annihilate

@ R> Rc = Vierm ~ FI»J#_H’ overdamped

@ In a turbulent plasma, for R > R,, strings are carried along
with the plasma, v < v;, and get entangled until R ~ R..
The length density of strings is p; ~ jﬁ

i
p exvl
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String dynamics in a plasma Chudnovsky et. al. 86

Fs(u, R) ~ Farag(J, p)

@ A< R;~ G%J = V ~ ¢, decouple and annihilate

@ R > Rc = Vierm ~ \T?»JLH’ overdamped

@ In a turbulent plasma, for R > R,, strings are carried along
with the plasma, v < v;, and get entangled until R ~ R..
The length density of strings is p; ~ jﬁ
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Antimatter generation

@ Faraday’s law gives the rate of positron production:

3 3 7/10
iy ~ EviBL_ o E1Ez’55ﬂ?z’5!‘_ (E) (vil)12/5

dt "~ R2 13

7

@ Upto 10%e* /s could be produced by strings at the
electroweak scale. The flux tracks the galactic magnetic
field.
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Antimatter generation

@ Faraday’s law gives the rate of positron production:

dt “ e &

7

3 3 7/10
oW ev,i,BL— el BT (E) (vy)'3/3

@ Upto 10%e* /s could be produced by strings at the
electroweak scale. The flux tracks the galactic magnetic
field.
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Zero modes in a B field = ... ... o

Landau levels on a string

@ The same B field that creates
the current, changes the
dispersion relation of the zero

modes: wx = m,- tanh (ki)
@ The current saturates at

Jmax = eme- and there is no
bremsstrahlung.
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Landau levels on a string

@ The same B field that creates
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dispersion relation of the zero
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@ The current saturates at

Jmax = eme- and there is no
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Cosmic Magnetic Fields

Cosmic magnetic fields can be generated from primordial seeds
associated with a phase transition. Processes like electroweak
baryogenesis imply magnetic fields with finite helicity:

h:l/daxﬁ-vxk
Vv

Observation of helical primordial fields could be used as a
probe of particle physics and cosmology at the epoch of
baryogenesis.

Also, helicity is nearly conserved in the early universe, and
fields with a very short correlation length are transformed into
fields homogeneous on much longer scales.
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- Cosmic Magnetic Fields

Cosmic magnetic fields can be generated from primordial seeds
associated with a phase transition. Processes like electroweak
baryogenesis imply magnetic fields with finite helicity:

h:l/dax!&-vxﬂ.
Vv

Observation of helical primordial fields could be used as a
probe of particle physics and cosmology at the epoch of
baryogenesis.
Also, helicity is nearly conserved in the early universe, and
fields with a very short correlation length are transformed into
fields homogeneous on much longer scales.
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Electroweak baryogenesis and magnetic fields

Baryon number violation, B, is a crucial ingredient of all
baryogenesis scenarios. Electroweak interactions violate B
through nonperturbative sphaleron transitions.

TeV

0

This transitions are suppressed at zero tempe B
I ~ e E»/T but were frequent in the early unigs ’ el ’:
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Electroweak baryogenesis and magnetic fields

Baryon number violation, B, is a crucial ingredient of all
baryogenesis scenarios. Electroweak interactions violate B
through nonperturbative sphaleron transitions.
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This transitions are suppressed at zero temperature,
[ ~ e~ E/T but were frequent in the early universe. [ CasE
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Electroweak baryogenesis and magnetic fields v.cuscac: o

Sphalerons can be interpreted as linked loops of electroweak
Z-strings.

The loops can decay into linked electromagnetic flux:

irsa: 08060191




Electroweak baryogenesis and magnetic fields vecnasps: o

Sphalerons can be interpreted as linked loops of electroweak
Z-strings.
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Cosmic Magnetic Fields

Cosmic magnetic fields can be generated from primordial seeds
associated with a phase transition. Processes like electroweak
baryogenesis imply magnetic fields with finite helicity:

h:l/dﬂxn-vxn.
V ]y

Observation of helical primordial fields could be used as a
probe of particle physics and cosmology at the epoch of
baryogenesis.

Also, helicity is nearly conserved in the early universe, and
fields with a very short correlation length are transformed into
fields homogeneous on much longer scales.
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Electroweak baryogenesis and magnetic fields vecnaspa: o

Sphalerons can be interpreted as linked loops of electroweak
Z-strings.
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EVOIUﬁOn On the Iattice Copi, FF, Vachaspati, Achucarro 08

Q@ Discretize the Higgs-SU(2) x U(1) equations of motion:

.y p 4 p_
YM:' Wj - UF - E:g ES ﬂx{EErng. TAX/2

© Set up numerically a configuration like the ew sphaleron.

© Go to unitary gauge to measure the electromagnetic field
strength and compute helicity.

Ay = sin 8y n*WS + cos 6,8,
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Electroweak baryogenesis and magnetic fields

Baryon number violation, B, is a crucial ingredient of all
baryogenesis scenarios. Electroweak interactions violate B
through nonperturbative sphaleron transitions.
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© Discretize the Higgs-SU(2) x U(1) equations of motion:

.y p 5 p_
YM:' Wj . UF - E:g ES ﬂx{EE;ng. TAX/2

© Set up numerically a configuration like the ew sphaleron.

© Go to unitary gauge to measure the electromagnetic field
strength and compute helicity.

A, = sinfyn®W; + cos 6,8,
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EVOIUtiO'n On the Iattice Copi, FF, Vachaspati, Achucarro 08

Q Discretize the Higgs-SU(2) x U(1) equations of motion:

.y p 5 p_
YM:' Wj . UF - E:g ES ﬂx{EEfng. TAX/2

© Set up numerically a configuration like the ew sphaleron.

© Go to unitary gauge to measure the electromagnetic field
strength and compute helicity.

Ay = sinfyn* WS + cos 6,8,
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Numerical results

B violation transitions do indeed generate helical magnet[c
fields. The value of electrumagnetlc hellclty (3




Numerical results

B violation transitions do indeed generate helical magnetic

fields. The value of electromagnetic helicity (= 2.5) is much

less than the value estimated analytically (=~ 200). Detalls n Casn
oo 1€ INStADIlItY decay channel might matter.




Bound on baryogenesis from B?

We can estimate that Brec ~ 1072 G, assuming proportionality
to net B, N — Np.

However, every baryon number violating reaction produces
magnetic fields, which should be proportional to

Ny + Np = 2N, — . Some of the magnetic fields might cancel
out, but an enhancement could be in place, Brec ~ r1i0~2G.
BBN bounds r < 10'°.

For the SM, H ~ 10%°, which results in r ~ 10'° for

Brownian evolution, or r ~ 104 if the magnetic field is
conserved!
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@ The e™ source at the GC is not known. Bulge/disk ratio
hard to explain in astrophysical scenarios and light DM
solution is very constrained.

@ SC strings can explain the observed emission. The flux

tracks the B field, and other zero modes could produce
correlated signals (p at GeV, HEAT excess, ...). Related to
new (non-perturbative) physics at the EW scale.

@ Helical magnetic fields are generated by baryon violating
processes at the electroweak scale. It may be possible to
derive constraints on particle physics from limits on cosmic
magnetic fields.
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String SC

It might be energetically favorable for a bosonic field to become
non-trivial within the string. If the condensate is electrically

charged, the string becomes superconducting. «:c:e- ss

L= L[g] + LIAL] + K[x] = V. x]

Ler(0) = 15 (8,0 — eA,)?, x = xo(x)e”

Fermionic fields might be coupled to the string via Yukawa. The
Dirac equation in the string background might have bound state
solutions, with dispersion relation w = k, that are responsible

for the fermion SC.
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Constraints on a light DM solution

Clumps of DM should be detected wocper, 2, oo 21, o
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511 KeV emission from the Galactic Center
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INTEGRAL results

@ The SPI experiment observes
a diffuse ﬂux uf
~103cm 25! at 511 KeV
from the GC zuss1seder oo, a1, o3

o Difficult to generate 10“‘3 et/s
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511 KeV emission from the Galactic Center

INTEGRAL results

@ The SPI experiment observes
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