Title: Inflationary Constraints on String Theory
Date: Jun 06, 2008 12:00 PM
URL.: http://pirsa.org/08060185

Abstract: It is an important task to embed inflation in a fundamental microphysical theory such as string theory. Since string theory possesses a vast
landscape of 4-dimensional theories, we would like to know which portions contain inflation and which do not. | prove a no-go theorem that
inflation and de Sitter vacua are forbidden in an exponentialy large number of infinite families of simple and well understood compactifications of
type 1A string theory. | also mention more complicated and less well understood compactifications, which may have the ingredients for our
cosmology.
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Stringlish to English

Symbol |[Name Approximate meaning
a’ |Regge parameter Inverse string tension
ls |Strning length = 2rv/a’ (in our convention)
k10 |10-d gravitational strength = /87G1o = I3 /V4x. gravitational strength in 10 dims

PHeeed

gm,f Rio
ga/Ra
ge/Re

~Gs
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(Reduced) Planck mass
Dilaton
Axions
Geometric moduli

— Dilaton modulus®

— Kahler moduli

— Complex structure moduli
Complex moduli
Complex inflaton vector
Real inflaton vector
String coupling
p-form field strength
Fhax

10-d string metric/Ricel scalar
4-d string metric/Ricci scalar
4-d Einstein metric/Ricei scalar

Metric on compact space
6-d volume of compact space

______

= f“ d‘:r:\/ﬁ (cs = compact space)

= 1/v/8xG, mass scale of quantum gravity in 4 dims

Scalar field that rescales the strength of gravity

Pseudo-scalars that appear in the 4-d theory

Scalar fields describing ¢ and the size & shape of the compact space

~ e~ ¥ (explicit form is model dependent)

Scalar fields that specify the size of the compact space

Scalar fields that specify the shape of the compact space

=ai+ib;

= (¥1, .... ¥n), the complex moduli-vector that can evolve during inflation
= (ay, by, ..., @n. by), the real moduli-vector that can evolve during inflation
= ¢®, the string loop expansion parameter

Generalized electromagnetic field strength carrving p-indices

x [ Fp, (normally integer valued) equivalent to a generalized electric or
magnetic charge, but can arise purely due to non-trivial topology
Metric/Riccl scalar in the fundamental 10-d action in string frame
Metric/Ricel scalar in the effective 4-d action in string frame
Metric/Ricei scalar in the effective 4-d action after a conformal transfor-
mation to Einstein frame

2nd block of g0 = diag( g4, ge), describing the geometry of compact space
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- Review Conditions for Inflation
- Type llA String Theory
- Compactification

- Fluxes and Potential
- No-Go Theorem

- Outlook: Evading the No-Go Theorem
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Cosmological Inflation

- To explain horizon problem, flatness, etc
- Introduce scalar field @
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Type llA String Theory

gas, ¢, Hs, Fo, Fy, Fy, ..., D6/O6
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Type llA String Theory

gam, ¢, Hs, Fo, Fy, Fy, ..., D6/06
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VWhy study this?
- DeWoIfe Glryavets Kachru Taylor (DGI(T) in 2005
stabilized all fields in 4D, under atric ,on CYs

- A with D6/O6 branes on CYs are
e.g., can build MSSM
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- We proved 4D theory has the Lagrangian:
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Compactification 10D to 4D

- We proved 4D theory has the Lagrangian:

| 1
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Elnstem gravity / /

Dilaton 6D Volume

All other “moduli”
size & shape

Fluxes, Branes & Planes




Naively, why this approach fail?




Naively, why this approach fail?

- Potential typically needs some fine tuning

_ [, é\"
Ko mid ity q (—)
p

- n>1




Naively, why this approach fail?

- Potential typically needs some fine tuning
|74 — —chDQ + @ Cn | —
gessd o)

- So perhaps we should search for some symmetry
e.g., Silverstein & Westphal (monodromy)




Naively, why this approach fail?

- Potential typically needs some fine tuning
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- So perhaps we should search for some symmetry
e.g., Silverstein & Westphal (monodromy)

Or perhaps just get lucky...
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Naively, why this approach wc

- Typically 100’s of fields ¢;
(100D field space to explore)

- Typically 100’s of fluxes /F fp
(N2 100 different potentials to explore)

- At least millions of CYs
(Many topologies to explore)

In Summary, we explore an exponentially > number of
nit ) families of 4D models
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e.g.,
R Maxwell 2-form p-form

P
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The Potential V

e-g-’
R Maxwell 2-form p-form
2 2
o ; . q
Va = |E|” = R4 R2p

- We proved rigorously (using K and W, or direct dimensional
reduction) that in the Einstein frame: (R < v,,)
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No-Go Theorem
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