Title: Inflationary Constraints on String Theory

Date: Jun 06, 2008 12:00 PM

URL: http://pirsa.org/08060185

Abstract: It is an important task to embed inflation in a fundamental microphysical theory such as string theory. Since string theory possesses a vast landscape of 4-dimensional theories, we would like to know which portions contain inflation and which do not. I prove a no-go theorem that inflation and de Sitter vacua are forbidden in an exponentially large number of infinite families of simple and well understood compactifications of type IIA string theory. I also mention more complicated and less well understood compactifications, which may have the ingredients for our cosmology.

Pirsa: 08060185 Page 1/61

## Inflationary Constraints on String Theory

PASCOS 08

Mark Hertzberg, MIT

- astro-ph/0709.0002: MH, Tegmark, Kachru, Shelton, Ozcan
- hep-th/0711.2512: MH, Kachru, Taylor, Tegmark

Pirsa: 08060185 Page 2/61

Pirsa: 08060185 Page 3/61

- Cosmologists are asking questions like:

What is the inflaton potential?

What is the inflaton/s?

Pirsa: 08060185 Page 4/61

- Cosmologists are asking questions like:

What is the inflaton potential?

What is the inflaton/s?

- String theorists are asking questions like:

Where in the space of string models is our universe?

What can be predicted?

Pirsa: 08060185 Page 5/61

- Cosmologists are asking questions like:

What is the inflaton potential?

What is the inflaton/s?

- String theorists are asking questions like:

Where in the space of string models is our universe?

What can be predicted?

Cosmologists and String theorists can learn from eachother!

Pirsa: 08060185 Page 6/61

# Stringlish to English

| Symbol                 | Name                                                   | Approximate meaning                                                                                                                                        |
|------------------------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\alpha'$              | Regge parameter                                        | Inverse string tension                                                                                                                                     |
| $l_s$                  | String length                                          | $=2\pi\sqrt{\alpha'}$ (in our convention)                                                                                                                  |
| κ <sub>10</sub>        | 10-d gravitational strength                            | $=\sqrt{8\pi G_{10}}=l_s^4/\sqrt{4\pi}$ , gravitational strength in 10 dims                                                                                |
| $\bar{m}_{\mathrm{P}}$ | (Reduced) Planck mass                                  | $=1/\sqrt{8\pi G}$ , mass scale of quantum gravity in 4 dims                                                                                               |
| φ                      | Dilaton                                                | Scalar field that rescales the strength of gravity                                                                                                         |
| $a_i$                  | Axions                                                 | Pseudo-scalars that appear in the 4-d theory                                                                                                               |
| $b_i$                  | Geometric moduli                                       | Scalar fields describing $\phi$ and the size & shape of the compact space                                                                                  |
|                        | - Dilaton modulus <sup>a</sup>                         | $\sim e^{-\phi}$ (explicit form is model dependent)                                                                                                        |
|                        | - Kähler moduli                                        | Scalar fields that specify the size of the compact space                                                                                                   |
|                        | - Complex structure moduli                             | Scalar fields that specify the shape of the compact space                                                                                                  |
| $\psi_i$               | Complex moduli                                         | $=a_i+ib_i$                                                                                                                                                |
| ψ                      | Complex inflaton vector                                | $=(\psi_1,,\psi_n)$ , the complex moduli-vector that can evolve during inflation                                                                           |
| φ                      | Real inflaton vector                                   | $=(a_1,b_1,,a_n,b_n)$ , the real moduli-vector that can evolve during inflation                                                                            |
| $g_s$                  | String coupling                                        | $=e^{\phi}$ , the string loop expansion parameter                                                                                                          |
| $F_p$                  | p-form field strength                                  | Generalized electromagnetic field strength carrying p-indices                                                                                              |
| $f_p$                  | Flux                                                   | $\propto \int F_p$ , (normally integer valued) equivalent to a generalized electric or magnetic charge, but can arise purely due to non-trivial topology   |
| $g_{10}/R_{10}$        | 10-d string metric/Ricci scalar                        | Metric/Ricci scalar in the fundamental 10-d action in string frame                                                                                         |
| $g_4/R_4$              | 4-d string metric/Ricci scalar                         | Metric/Ricci scalar in the effective 4-d action in string frame                                                                                            |
| $g_E/R_E$              | 4-d Einstein metric/Ricci scalar                       | Metric/Ricci scalar in the effective 4-d action after a conformal transfor-<br>mation to Einstein frame                                                    |
| Pirsa: 080601          | Metric on compact space<br>6-d volume of compact space | 2nd block of $g_{10} = \text{diag}(g_4, g_6)$ , describing the geometry of compact space $g_{10} = \int_{c_8} d^6x \sqrt{g_6}$ (cs $\equiv$ compact space) |
| 776                    | 6.1 +                                                  | A C d manifold that is Dismann flat defined by pariedic identifications                                                                                    |

Pirsa: 08060185 Page 8/61

- Review Conditions for Inflation
- Type IIA String Theory
- Compactification

Pirsa: 08060185 Page 9/61

- Review Conditions for Inflation
- Type IIA String Theory
- Compactification

String Theory provides Ingredients for Inflation!

Pirsa: 08060185 Page 10/61

- Review Conditions for Inflation
- Type IIA String Theory
- Compactification

#### String Theory provides Ingredients for Inflation!

- Fluxes and Potential
- No-Go Theorem

Pirsa: 08060185 Page 11/61

- Review Conditions for Inflation
- Type IIA String Theory
- Compactification

String Theory provides Ingredients for Inflation!

- Fluxes and Potential
- No-Go Theorem

Inflation Constrains String Theory!

Pirsa: 08060185 Page 12/61

- Review Conditions for Inflation
- Type IIA String Theory
- Compactification

#### String Theory provides Ingredients for Inflation!

- Fluxes and Potential
- No-Go Theorem

#### Inflation Constrains String Theory!

- Outlook: Evading the No-Go Theorem

Pirsa: 08060185 Page 13/61

Pirsa: 08060185 Page 14/61

- To explain horizon problem, flatness, etc

Pirsa: 08060185 Page 15/61

- To explain horizon problem, flatness, etc
- Introduce scalar field  $\phi$

$$\mathcal{L} = \frac{1}{16\pi G} R - \frac{1}{2} (\partial_{\mu} \phi)^2 - V(\phi)$$

Pirsa: 08060185 Page 16/61

- To explain horizon problem, flatness, etc
- Introduce scalar field  $\phi$

$$\mathcal{L} = \frac{1}{16\pi G}R - \frac{1}{2}(\partial_{\mu}\phi)^{2} - V(\phi)$$

- Slow-roll:

$$\epsilon = \frac{\bar{m}_p^2}{2} \left( \frac{\partial \ln V}{\partial \phi} \right)^2 \ll 1$$



- To explain horizon problem, flatness, etc
- Introduce scalar field  $\phi$

$$\mathcal{L} = \frac{1}{16\pi G} R - \frac{1}{2} (\partial_{\mu} \phi)^2 - V(\phi)$$

- Slow-roll:

$$\epsilon = \frac{\bar{m}_p^2}{2} \left( \frac{\partial \ln V}{\partial \phi} \right)^2 \ll 1$$

$$\epsilon = \frac{\bar{m}_p^2}{2} \left( \left( \frac{\partial \ln V}{\partial \phi_1} \right)^2 + \left( \frac{\partial \ln V}{\partial \phi_2} \right)^2 + \dots \right)$$



Pirsa: 08060185 Page 19/61

- Fields:  $g_{AB}, \phi, H_3, F_0, F_2, F_4, \ldots, D6/O6$ 

Pirsa: 08060185 Page 20/61

- Fields:  $g_{AB}, \phi, H_3, F_0, F_2, F_4, \ldots, D6/O6$ 

$$S = \frac{1}{2\kappa_{10}^2} \int d^{10}x \sqrt{-g} e^{-2\phi} \left( R + 4(\partial_{\mu}\phi)^2 - \frac{1}{2} |H_3|^2 - e^{2\phi} \sum_p |F_p|^2 \right)$$
$$-\mu_6 \int_{D6} d^7 \xi \sqrt{-g} e^{-\phi} + 2\mu_6 \int_{O6} d^7 \xi \sqrt{-g} e^{-\phi}$$

- Fields:  $g_{AB}, \phi, H_3, F_0, F_2, F_4, \ldots, D6/O6$ 

$$S = \frac{1}{2\kappa_{10}^2} \int d^{10}x \sqrt{-g} e^{-2\phi} \left( R + 4(\partial_{\mu}\phi)^2 - \frac{1}{2} |H_3|^2 - e^{2\phi} \sum_p |F_p|^2 \right)$$
$$-\mu_6 \int_{D6} d^7 \xi \sqrt{-g} e^{-\phi} + 2\mu_6 \int_{O6} d^7 \xi \sqrt{-g} e^{-\phi}$$

Why study this?

- Fields:  $g_{AB}, \phi, H_3, F_0, F_2, F_4, \ldots, D6/O6$ 

$$S = \frac{1}{2\kappa_{10}^2} \int d^{10}x \sqrt{-g} e^{-2\phi} \left( R + 4(\partial_{\mu}\phi)^2 - \frac{1}{2} |H_3|^2 - e^{2\phi} \sum_p |F_p|^2 \right)$$
$$-\mu_6 \int_{D6} d^7 \xi \sqrt{-g} e^{-\phi} + 2\mu_6 \int_{O6} d^7 \xi \sqrt{-g} e^{-\phi}$$

#### Why study this?

 DeWolfe, Giryavets, Kachru, Taylor (DGKT) in 2005 stabilized all fields in 4D, under parametric control, on CYs

- Fields:  $g_{AB}, \phi, H_3, F_0, F_2, F_4, \ldots, D6/O6$ 

$$S = \frac{1}{2\kappa_{10}^2} \int d^{10}x \sqrt{-g} e^{-2\phi} \left( R + 4(\partial_{\mu}\phi)^2 - \frac{1}{2} |H_3|^2 - e^{2\phi} \sum_p |F_p|^2 \right)$$
$$-\mu_6 \int_{D6} d^7 \xi \sqrt{-g} e^{-\phi} + 2\mu_6 \int_{O6} d^7 \xi \sqrt{-g} e^{-\phi}$$

#### Why study this?

- DeWolfe, Giryavets, Kachru, Taylor (DGKT) in 2005 stabilized all fields in 4D, under parametric control, on CYs
- IIA with D6/O6 branes on CYs are "semi-realistic"

  e.g., can build MSSM

# Compactification I0D to 4D

Pirsa: 08060185 Page 25/61

#### Compactification I0D to 4D

- We proved 4D theory has the Lagrangian:

$$\mathcal{L} = \frac{1}{16\pi G} R_E - \left(\frac{1}{2} (\partial_\mu \phi_d)^2 + \frac{1}{2} (\partial_\mu \phi_v)^2 + \dots\right) - V(\phi_i)$$

Pirsa: 08060185 Page 26/61

#### Compactification I0D to 4D

- We proved 4D theory has the Lagrangian:

$$\mathcal{L} = \frac{1}{16\pi G} R_E - \left(\frac{1}{2} (\partial_\mu \phi_d)^2 + \frac{1}{2} (\partial_\mu \phi_v)^2 + \ldots\right) - V(\phi_i)$$

Einstein gravity

Dilaton 6D Volume

All other "moduli" size & shape

Pirsa: 08060185 Page 28/61

- Potential typically needs some fine tuning

$$V(\phi) = \frac{1}{2}m^2\phi^2 + \phi^4 \sum_{n\geq 1} c_n \left(\frac{\phi}{m_p}\right)^n$$

Pirsa: 08060185 Page 29/61

- Potential typically needs some fine tuning

$$V(\phi) = \frac{1}{2}m^2\phi^2 + \phi^4 \sum_{n\geq 1} c_n \left(\frac{\phi}{m_p}\right)^n$$

 So perhaps we should search for some symmetry e.g., Silverstein & Westphal (monodromy)

Pirsa: 08060185 Page 30/61

- Potential typically needs some fine tuning

$$V(\phi) = \frac{1}{2}m^2\phi^2 + \phi^4 \sum_{n\geq 1} c_n \left(\frac{\phi}{m_p}\right)^n$$

 So perhaps we should search for some symmetry e.g., Silverstein & Westphal (monodromy)

Or perhaps just get lucky...

Pirsa: 08060185 Page 31/61

Pirsa: 08060185 Page 32/61

- Typically 100's of fields  $\phi_i$  (100D field space to explore)

Pirsa: 08060185 Page 33/61

- -Typically 100's of fields  $\phi_i$  (100D field space to explore)
- Typically 100's of fluxes  $\int F_p = f_p$  (N^100 different potentials to explore)

Pirsa: 08060185 Page 34/61

- -Typically 100's of fields  $\phi_i$  (100D field space to explore)
- Typically 100's of fluxes  $\int F_p = f_p$  (N^100 different potentials to explore)
- At least millions of CYs (Many topologies to explore)

Pirsa: 08060185 Page 35/61

- -Typically 100's of fields  $\phi_i$  (100D field space to explore)
- Typically 100's of fluxes  $\int F_p = f_p$  (N^100 different potentials to explore)
- At least millions of CYs (Many topologies to explore)

In Summary; we explore an exponentially large number of infinite (10^500) families of 4D models

# The Potential V

Pirsa: 08060185 Page 37/61

#### The Potential V



Maxwell 2-form

$$V_2 = |\mathbf{E}|^2 = \frac{q^2}{R^4}$$

p-form

$$\frac{q^2}{R^{2p}}$$

#### The Potential V



- We proved rigorously (using K and W, or direct dimensional reduction) that in the Einstein frame:  $(R \Leftrightarrow \psi_v)$ 

$$\begin{split} V &= V_3 + \sum_p V_p + V_{D6} + V_{O6} \\ &= \frac{A_3(\phi_j)}{\psi_d^2 \psi_v^3} + \sum_p \frac{A_p(\phi_j)}{\psi_d^4 \psi_v^{p-3}} + \frac{A_{D6}(\phi_j)}{\psi_d^3} - \frac{A_{O6}(\phi_j)}{\psi_{d_{Page} \, 39/6}^3} \end{split}$$

Pirsa: 08060185

Pirsa: 08060185 Page 40/61

$$V = \frac{A_3(\phi_j)}{\psi_d^2 \psi_v^3} + \sum_p \frac{A_p(\phi_j)}{\psi_d^4 \psi_v^{p-3}} + \frac{A_{D6}(\phi_j)}{\psi_d^3} - \frac{A_{O6}(\phi_j)}{\psi_d^3}$$

$$\psi_d = \exp\left(\frac{\phi_d}{\sqrt{2}\,m_p}\right)$$

Where: 
$$\psi_d = \exp\left(\frac{\phi_d}{\sqrt{2}\,m_p}\right)$$
  $\psi_v = \exp\left(\frac{\sqrt{2}\,\phi_v}{\sqrt{3}\,m_p}\right)$ 

$$V = \frac{A_3(\phi_j)}{\psi_d^2 \psi_v^3} + \sum_p \frac{A_p(\phi_j)}{\psi_d^4 \psi_v^{p-3}} + \frac{A_{D6}(\phi_j)}{\psi_d^3} - \frac{A_{O6}(\phi_j)}{\psi_d^3}$$

Where: 
$$\psi_d = \exp\left(\frac{\phi_d}{\sqrt{2}\,m_p}\right)$$
  $\psi_v = \exp\left(\frac{\sqrt{2}\,\phi_v}{\sqrt{3}\,m_p}\right)$ 

Fact: 
$$-3\psi_d\frac{\partial V}{\partial\psi_d}-\psi_v\frac{\partial V}{\partial\psi_v}=9V+\sum_p p\,V_p\geq 9V$$

Pirsa: 08060185

$$V = \frac{A_3(\phi_j)}{\psi_d^2 \psi_v^3} + \sum_p \frac{A_p(\phi_j)}{\psi_d^4 \psi_v^{p-3}} + \frac{A_{D6}(\phi_j)}{\psi_d^3} - \frac{A_{O6}(\phi_j)}{\psi_d^3}$$

Where: 
$$\psi_d = \exp\left(\frac{\phi_d}{\sqrt{2}\,m_n}\right)$$
  $\psi_v = \exp\left(\frac{\sqrt{2}\,\phi_v}{\sqrt{3}\,m_n}\right)$ 

$$\psi_v = \exp\left(\frac{\sqrt{2}\,\phi_v}{\sqrt{3}\,m_p}\right)$$

Fact: 
$$-3\psi_d \frac{\partial V}{\partial \psi_d} - \psi_v \frac{\partial V}{\partial \psi_v} = 9V + \sum_p p \, V_p \ge 9V$$

$$m_p \left| 3\sqrt{2} \left( \frac{\partial \ln V}{\partial \phi_d} \right) + \sqrt{\frac{3}{2}} \left( \frac{\partial \ln V}{\partial \phi_v} \right) \right| \ge 9$$

$$\epsilon \ge \frac{27}{13}$$
 whenever  $V > 0$ 

- First slow-roll parameter always large so no inflation!

Pirsa: 08060185 Page 44/61

$$V = \frac{A_3(\phi_j)}{\psi_d^2 \psi_v^3} + \sum_p \frac{A_p(\phi_j)}{\psi_d^4 \psi_v^{p-3}} + \frac{A_{D6}(\phi_j)}{\psi_d^3} - \frac{A_{O6}(\phi_j)}{\psi_d^3}$$

$$\psi_d = \exp\left(\frac{\phi_d}{\sqrt{2}\,m_p}\right)$$

Where: 
$$\psi_d = \exp\left(\frac{\phi_d}{\sqrt{2}\,m_p}\right)$$
  $\psi_v = \exp\left(\frac{\sqrt{2}\,\phi_v}{\sqrt{3}\,m_p}\right)$ 

Fact: 
$$-3\psi_d \frac{\partial V}{\partial \psi_d} - \psi_v \frac{\partial V}{\partial \psi_v} = 9V + \sum_p p V_p \ge 9V$$

$$m_p \left| 3\sqrt{2} \left( \frac{\partial \ln V}{\partial \phi_d} \right) + \sqrt{\frac{3}{2}} \left( \frac{\partial \ln V}{\partial \phi_v} \right) \right| \ge 9$$

$$\epsilon \ge \frac{27}{13}$$
 whenever  $V > 0$ 

- First slow-roll parameter always large so no inflation!

Pirsa: 08060185 Page 46/61

- First slow-roll parameter always large so no inflation!
- Many many vacua  $\neq$  inflation (structure)

Pirsa: 08060185 Page 47/61

- First slow-roll parameter always large so no inflation!
- Many many vacua  $\neq$  inflation (structure)
- Corollary: no de Sitter solutions (extreme slow-roll)

Pirsa: 08060185 Page 48/61

- First slow-roll parameter always large so no inflation!
- Many many vacua  $\neq$  inflation (structure)
- Corollary: no de Sitter solutions (extreme slow-roll)
- Cosmology: Field vector rolls quickly to AdS vacuum

Pirsa: 08060185 Page 49/61

- First slow-roll parameter always large so no inflation!
- Many many vacua  $\neq$  inflation (structure)
- Corollary: no de Sitter solutions (extreme slow-roll)
- Cosmology: Field vector rolls quickly to AdS vacuum



- First slow-roll parameter always large so no inflation!
- Many many vacua  $\neq$  inflation (structure)
- Corollary: no de Sitter solutions (extreme slow-roll)
- Cosmology: Field vector rolls quickly to AdS vacuum



- First slow-roll parameter always large so no inflation!
- Many many vacua  $\neq$  inflation (structure)
- Corollary: no de Sitter solutions (extreme slow-roll)
- Cosmology: Field vector rolls quickly to AdS vacuum

Page 52/61



- First slow-roll parameter always large so no inflation!
- Many many vacua  $\neq$  inflation (structure)
- Corollary: no de Sitter solutions (extreme slow-roll)
- Cosmology: Field vector rolls quickly to AdS vacuum



- First slow-roll parameter always large so no inflation!
- Many many vacua  $\neq$  inflation (structure)
- Corollary: no de Sitter solutions (extreme slow-roll)
- Cosmology: Field vector rolls quickly to AdS vacuum



You are not here

Inflation Constrains
String Theory!

Page 54/61

Pirsa: 08060185 Page 55/61

$$-3\psi_d \frac{\partial V}{\partial \psi_d} - \psi_v \frac{\partial V}{\partial \psi_v} = 9V + \sum_p p \, V_p \ge 9V$$

In order to inflate, a IIA compactification must contain some additional structure which gives a term whose scaling leads to a RHS with a coefficient < 9 if positive or > 9 if negative

Pirsa: 08060185 Page 56/61

$$-3\psi_d \frac{\partial V}{\partial \psi_d} - \psi_v \frac{\partial V}{\partial \psi_v} = 9V + \sum_p p \, V_p \ge 9V$$

In order to inflate, a IIA compactification must contain some additional structure which gives a term whose scaling leads to a RHS with a coefficient < 9 if positive or > 9 if negative

e.g., NS5-branes, (non)geometric flux, D8, O4 etc

- Guiding us to tackle less well understood ingredients

Pirsa: 08060185 Page 57/61

$$-3\psi_d \frac{\partial V}{\partial \psi_d} - \psi_v \frac{\partial V}{\partial \psi_v} = 9V + \sum_p p \, V_p \ge 9V$$

In order to inflate, a IIA compactification must contain some additional structure which gives a term whose scaling leads to a RHS with a coefficient < 9 if positive or > 9 if negative

e.g., NS5-branes, (non)geometric flux, D8, O4 etc

- Guiding us to tackle less well understood ingredients



You are not here

Pirsa: 08060185 Page 58/61

$$-3\psi_d \frac{\partial V}{\partial \psi_d} - \psi_v \frac{\partial V}{\partial \psi_v} = 9V + \sum_p p \, V_p \ge 9V$$

In order to inflate, a IIA compactification must contain some additional structure which gives a term whose scaling leads to a RHS with a coefficient < 9 if positive or > 9 if negative

e.g., NS5-branes, (non)geometric flux, D8, O4 etc

- Guiding us to tackle less well understood ingredients



Maybe you are here

- First slow-roll parameter always large so no inflation!
- Many many vacua  $\neq$  inflation (structure)
- Corollary: no de Sitter solutions (extreme slow-roll)
- Cosmology: Field vector rolls quickly to AdS vacuum



$$-3\psi_d \frac{\partial V}{\partial \psi_d} - \psi_v \frac{\partial V}{\partial \psi_v} = 9V + \sum_p p \, V_p \ge 9V$$

In order to inflate, a IIA compactification must contain some additional structure which gives a term whose scaling leads to a RHS with a coefficient < 9 if positive or > 9 if negative

e.g., NS5-branes, (non)geometric flux, D8, O4 etc

- Guiding us to tackle less well understood ingredients



You are not here

Pirsa: 08060185 Page 61/61