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Abstract: Loop quantum cosmology is a non-perturbative canonical quantization of simple cosmological models based on loop quantum gravity. In
recent years, a greater control on the underlying quantum theory has revealed a picture where the big bang is replaced by a quantum bounce at
Planck scale. The evolution across the bounce is unitary and non-singular without a need of choice of exotic potential or matter. By analysis of an
exactly solvable model of a homogeneous and isotropic spacetime we will describe how the backward evolution of our universe with the quantum
constraint leads to a pre big bang branch. We will also discuss the way it predicts modifications to Friedman dynamics at high curvatures, contrasts
with the Wheeler-DeWitt scenario and semi-classicality across the bounce.
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® Universe at low curvature is extremely well described by the Friedman
dynamics. However, GR is inadequate at high curvatures.

Evolve the Universe backwards: For a — (0, energy density and
curvature x a” (n <0) — oc.

= Big Bang singularity. Evolution Stops.
Result of powerful singularity theorems.

Classical GR fails to describe the birth of our Universe. Need of new physics.

» Example from Quantum Theory:
— Rutherford’'s model of Atom is unstable.

— Bohr's model: Energy levels discrete. Finite minimum energy
Brin —— (e |2)_ RS B — O Eisu —> —0®0

Can a quantum theory of gravity/geometry resolve the Big Bang singularity?
If yes, What is on the other side?

P[;.r, rse. Hawking Upll's)
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Can a quantum theory of gravity/geometry resolve the Big Bang singularity?
If yes, What is on the other side?

Penrose, Hawking (1960's)
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® Universe at low curvature is extremely well described by the Friedman
dynamics. However, GR is inadequate at high curvatures.
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Can a quantum theory of gravity/geometry resolve the Big Bang singularity?
If yes, What is on the other side?

Penrose, Hawking (1960's)
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Wheeler-DeWitt Quantum Cosmology

Based on Metric based canonical (Hamiltonian) quantization.”
— Basic variables: Metric ¢,.;,, Momentum ;f‘*‘

— To extract physics - isolate a ‘time’ variable, find an inner product, physical
Hilbert space and Dirac observables, study their evolution.

— Hamiltonian constraint non-polynomial, difficult to quantize.

Simplifications for cosmological models (only finitely many degrees of freedom).
— Standard quantum mechanical quantization possible.

Geometry — a. p.(o a(t)), Matter — o. ps.
Quantum States: ¥(a, ¢), a ¥(a, @) = a¥(a. o), ...
Quantum Hamiltonian:

3 .9

paa” V(a.p) = const. H; ¥(a, @)
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Example: Massless Scalar Field H,, = p>/2a*. o is monotonic — a good clock.
Relational dynamics.

=

0 ™0F 208 5 TIE ot 5ol

All classical solutions are singular.

Wheeler-DeWitt Equation:

H? | S
i U(iv.0) = ——V(a.0). a=Iloga
o= o= -
irsa:ﬂw All states follow the classical trajectories into the big bang. Page 9/16
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Loop Quantum Cosmology

Canonical quantization of cosmological spacetimes based on loop quantum gravity.
New phase space variables:

— Connection (SU(2)) A, : Matrix valued vector potential (encodes time derivative of
spatial metric)

— Triad EY: Three orthonormal vectors (encode metric). Analogous to Electric field.

Hamiltonian constraint:

= - i (prad bk )/ \
{: !'::ra\' — — / {-E :P _-\. L-‘é_jif-; 'Fﬂb | E {J E - \.: | {li_l't E | .Jl
oSV

Elementary variables:

- Holonomies of connection along a curve: /( A) (Fundamental excitations of

quantum geometry)
- Flux across surface: F'(E)

Express the constraint in terms of holonomies and fluxes and quantize.
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An important distinction from WDW: Geometrical operators have discrete specira

Massless scalar Model: Use ¢ as a clock. Observables — ps, Vs, pls
Quantum constraint: * 92U (v. ) = —OU(v. o)
OU(v. o) .= |CT(v)¥(v +4.0) + C°(v)¥(v.0) + C (v)¥(v—4, 0

Constraint similar to the massless Klein-Gordon equation in static spacetime.
® — Laplacian-type operator (Is self-adjoint and positive definite).

Hilbert space can be constructed as in Klein-Gordon theory (Positive frequency
solutions). Features:

— Difference equation in constant steps of eigenvalues of the volume operator.

— Non-singular for all states.

— Crae — O™ with natural factor ordering for |v

- ]

— We obtain GR at low curvatures, departures from GR at high curvatures.

O B R (SRR - = = I
Ashtekar. Pawlowski.

T iy T
= (U6)
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Exactly Solvable Model

In the connection representation: °

sin(Ab) @ sin(Ab)

A Ob X Ob
A is the discreteness parameter from LQG, A = afp, o ~ O(1).
— Introduce » := (127G) Y2 In(tan(\b/2))

—

(b)x(b.0) = —12nG x(b. ) = — 02 x(b, @)

Features:

Volume observable: |
( ,{._1' X i — 1[;._ V127G | 7 —VIT7Cs

, (V4 are constants > 0)

—As ¢ — +o¢, (V],) — oc. The Universe is infinitely large in asymptotic past and
future. There exists a non-zero minimum volume. The universe bouncesl!

Energy density: There exists a supremum p...: = 0.82pp.

Fluctuations: Remain small across the bounce, semiclassicality is preserved. -
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Numerical Simulations: Quantum Bounce
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Comparison of Evolution
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Some Features of New Physics:

— Quantum dynamics described by an effective Hamiltonian. Leads to a modified
Friedman® and Raichaudhuri equation:

Sl

H? = pl1———

— Rich phenomenology.” © = "¢ "/

?Coincidentally also in some braneworld models: Sahni. Shtanov (02)
bi:yclic & Pre-Big Bang models: PS, Vandersloot, Vereshchagin (06); De Risi, Maartens, PS (07
“Big Rip avoidance: Sami. PS, Tsujikawa (06)

9Scaling solutions: PS (06)

®Inflationary models: Zhang, Ling (07); Copeland, Mulryne, Nunes. !

g TN ¥ N7
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"Tachyon & Quintom Models: Sen (06); Wei, Zhang (07); Xiong, Qiu, Cai, Zhang (07)
9Phantom Models: Samart, Gumijudpai (07); Naskar, Ward (C
"Scale invariant thermal fluctuations: Magueijo, PS (07

‘Einstein Static Universes: Parisi. Bruni. Maartens. Vandersloot
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Summary

® Unlike singular Wheeler-DeWitt quantization, non-perturbative loop quantization
of homogeneous models reveals quantum bounce at the Planck scale.
Emerging picture from simple models: Big bang not the beginning, big crunch
not the end. Two classical regions of spacetime joined by a quantum geometric
bridge.

#® Quantum gravity makes curvature non-local at the Planck scale. This plays an
important role to yield a non-singular evolution across the classical singularity.
No need to infroduce any exotic matter/ad-hoc assumptions/fine tuning.

® Bounce occurs for states in a dense subspace of the physical Hilbert space
when p = p.ie = 0.82pp;. When quantum discreteness i.e. A ~ Gh — 0,
Perit — 0. Bounce disappears if no quantum geometry!

®» A very similar picture in presence of massive scalars (inflaton) and cosmological
constant.

$» Work in progress: Include anisotropies and inhomogenities. (Bianchi models
and Gowdy spacetimes). Quantum geomteric effects on cosmological
perturbations.
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