Title: Cosmology from CFHTLS-Wide Weak Lensing on Large Scales

Date: Jun 05, 2008 03:15 PM

URL: http://pirsa.org/08060160

Abstract: I will discuss recent results from the Cosmic Shear component of the CFHT Legacy Survey. These results reach very large scales, allowing a measurement of poper spectrum of matter fluctuations in the linear regime, and of cosmological parameters.

Pirsa: 08060160 Page 1/33

Cosmic Shear from the CFHTLS

Mike Hudson

Department of Physics & Astronomy
University of Waterloo

Pirsa: 08060160 Page 2/33

Pirsa: 08060160 Page 3/33

Pirsa: 08060160 Page 4/33

- Global Geometry and Expansion Rate
 - SNe, CMB, BAO

Pirsa: 08060160 Page 5/33

- Global Geometry and Expansion Rate
 - SNe, CMB, BAO

Growth of Fluctuations as a function of z

•	CMB	z~1	1	0	0	
	OIVID	<u>~</u> 1		_	_	,

• L	y-alpl	na	2-3
		The state of the s	

- Global Geometry and
 - SNe, CMB, BAO

Growth of Fluctuations as a function of z

•	CMB	z~11	00
	CIVID	Z 11	J

•	Ly-al	pha	2	-3
			-	-

Peculiar Velocities ~0

Dark matter and cosmic shear

Cosmic shear amplitude and coherence is closely related to that of the dark matter

Using (non-round) galaxies to measure weak lensing

The underlying assumption is that the position angles are random in the absence of lensing.

Averaged shape:

Tests of systematics

The lensing signal is caused by a gravitational potential and therefore should be curl-free (to first order). We can project the correlation functions into one that measures the divergence and one that measures the curl: E-B mode decomposition.

E-mode (curl-free)

B-mode (curl)

Scaling of the Cosmic Shear Signal

Simple case, assuming a single lens plane and $P(k) \sim \sigma_8 k^n$

$$\langle \kappa^2(\theta) \rangle = \langle \gamma^2(\theta) \rangle$$

Gravitational convergence (surface mass density)

Gravitational shear = ellipticity induced by gravitational lensing on galaxies

Cosmological parameters

$$\langle \kappa^2(\theta) \rangle^{1/2} \approx 0.01 \ \sigma_8 \Omega_{\rm m}^{0.8} \left(\frac{\theta}{\rm 1deg.}\right)^{\frac{2n+2}{2}} z_s^{0.75}$$

Redshifts of background galaxies

Pirsa: 08060160 Page 11/33

Megacam: □ 1 square degree field of view □ ~350 megapixels

Megacam: □ 1 square degree field of view □ ~350 megapixels

Very weak lensing in the CFHTLS wide: cosmology from cosmic shear in the linear regime*,**

L. Fu^{1,2}, E. Semboloni^{1,3}, H. Hoekstra^{4,***}, M. Kilbinger^{1,3}, L. van Waerbeke⁵, I. Tereno^{1,3}, Y. Mellier¹, C. Heymans^{1,5}, J. Coupon¹, K. Benabed¹, J. Benjamin⁵, E. Bertin¹, O. Doré⁶, M. J. Hudson⁷, O. Ilbert^{8,9}, R. Maoli^{1,10}, C. Marmo¹, H. J. McCracken¹, and B. Ménard⁶

A&A 479, 9

Current CFHTLS Data Set

14 Mpc/h @ z ~ 0.4

- Span 57 sq. degrees: linear regime
- (34.2 sq deg effective)
- 1.7 million galaxies

Current CFHTLS Data Set

14 Mpc/h @ z ~ 0.4

- Span 57 sq. degrees: linear regime
- (34.2 sq deg effective)
- 1.7 million galaxies

Current Results

Current Results

CFHTLS Cosmic Shear: On-going or on the « To Do » List

- Full data set: approx 3 times larger
- Photo-z, ultimately for the full Wide survey
 - Real 3-D « tomography »: evolution σ₈ of as a function of (z)
 - Dark energy
 - W(Z)
- 3-point correlation functions:
 - breaking the σ₈₋Ω_m degeneracy
- « Gastro »physics:
 - Galaxy-galaxy lensing (Parker et al. 2006)
 - Galaxy (light) Mass cross-correlation: biasing

Pirsa: 08060160 Page 26/33

CFHTLS Cosmic Shear: On-going or on the « To Do » List

- Full data set: approx 3 times larger
- Photo-z, ultimately for the full Wide survey
 - Real 3-D « tomography »: evolution σ₈ of as a function of (z)
 - Dark energy
 - W(Z)
- 3-point correlation functions:
 - breaking the σ₈₋Ω_m degeneracy
- « Gastro »physics:
 - Galaxy-galaxy lensing (Parker et al. 2006)
 - Galaxy (light) Mass cross-correlation: biasing

Pirsa: 08060160 Page 28/33

Summary

- First measurement of weak lensing in the linear regime
- Consistent with extrapolation of WMAP (3 & 5) results within LCDM
 - No evidence for unusual growth factors
- Lots of applications and better data still to come

Pirsa: 08060160 Page 29/33

Pirsa: 08060160

Peculiar Velocities

- Measure the derivative of the growth rate
- Probe very large scales
- Bulk flow (Dipole) within a 50 Mpc/h Gaussian
 - All surveys consistent*
 - V = 403 + 1/-80 km/s

	ML		BC	
Survey	$\Omega_m = 0.258$ $\chi 2$	$\sigma_8 = 0.796$ $P(> \chi 2)$	$\Omega_m = 0.28$ $\chi 2$	$\sigma_8 = 0.86$ $P(> \chi 2)$
SHALLOW	1.95	0.583	1.83	0.608
DEEP	8.75	0.033	8.32	0.040
SFI++	13.60	0.004	12.85	0.005
COMPOSITE	13.77	0.003	13.02	0.005

Pirsa: 08060160 Page 31/33

Summary

- First measurement of weak lensing in the linear regime
- Consistent with extrapolation of WMAP (3 & 5) results within LCDM
 - No evidence for unusual growth factors
- Lots of applications and better data still to come

Pirsa: 08060160 Page 32/33

Peculiar Velocities

- Measure the derivative of the growth rate
- Probe very large scales
- Bulk flow (Dipole) within a 50 Mpc/h Gaussian
 - All surveys consistent*
 - V = 403 + 1/-80 km/s

	ML		BC	
Survey	$\Omega_m = 0.258$ $\chi 2$	$\sigma_8 = 0.796$ $P(> \chi 2)$	$\Omega_m = 0.28$ $\chi 2$	$\sigma_8 = 0.86$ $P(> \chi 2)$
SHALLOW	1.95	0.583	1.83	0.608
DEEP	8.75	0.033	8.32	0.040
SFI++	13.60	0.004	12.85	0.005
COMPOSITE	13.77	0.003	13.02	0.005

Pirsa: 08060160 Page 33/33