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Abstract: If inflation is to be considered in an unbiased way, as possibly originating from one of a wide range of underlying theories,then
observations need not be simply applied to reconstructing the inflaton potential, V (phi), or a specific kinetic term, as in DBI inflation, but rather to
reconstruct the inflationary action in its entirety. | will discuss the constraints that can be placed on a generalsingle field action from measurements
of the primordial scalar and tensor fluctuation power spectra and non-Gaussianities. | will also briefly present the flow equation formalism for
reconstructing a general inflationary Lagrangian, in ageneral gauge, that reduces to canonical and DBI inflation in a specific gauge.
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Choose 1 real field for minimality, simplicity, and its
ability to capture the flavor of more complex dynamics.

V(@) . R— /{[}‘4 g}—_h;[l}{{) OO ) — 1({J}I

\K _/ ‘ 1D real manifold parameterized by

This potential results a long period of accelerated expansion (Inflation) to solve

Horizon and flatness, etc. problems. P~ —p

Maost of the likely observables are controlled by this curve.

Observables traditionally consist of the following:

*Amplitude of the curvature perturbatlons
as a function of k fPﬁ; - l 5 PL

*Amplitude of the tensor perturbation or primordial grawty waves as a

function of k (future: Spider, CMBPol?, BBO?) -
Pirsa: 08060133 P'El.
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Slow-Roll Inflationary Models PI

Potential has to have small slope and curvature.

.‘I_{E I-q{('}] 9 V"
-~ — —) <1 U — =2 —
€~ ( V(o) ) < E—1) L) <1

This leads to acceleration: -
—=(1- e)H>

(1

Can map the amplitude of curvature perturbations to
the height and the shape of the potential

Can map the amplitude of the gravity waves to the
height of the potential
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Hopeful but Limited Potential Information H

ERIMETER INSTTTL
FUR THEDEETIC AL FRTSHS

*1 D manifold V(¢) constrained by 1D manifold of data
(1deal).

* Bottom line: I[deal measurements may yield V(o)

over a range of @ if we assume single field minimal

kinetic term models

* For sufficiently smooth potentials, the potential well can
be captured by a Taylor expansion. (Analytic form.)

r | R 1 . b _.Jp-i-.l
| (@) = A4+ bo+ 3”;-}{-_}—} 1 E._lu-i 1 IG-L 'm 'rJIP

* Well known consistency relationship can still rule out
slow roll even with limited knowledge.
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Scalar Fields may have non-canonical kinetic terms and they could also
inflate the universe.

Minimal kinetic term is a symptom of a linear wave description of a

particle but integrating out momentum shells to derive Wilsonian EFT
generate higher powers

K-Inflation (C. Armendariz-Picon, T. Damour, V. Mukhanov)

SK(e) = j da* vV—glX + f .(0)}{2] A= %l“,;‘“f_'lfj“{_?

“Non-particle” description for dynamics can also correspond to non-minimal
Kinetic terms

Warped D-Brane Inflation (Alishahiha, Silverstein, and Tong)

Sppr = /rf,l"l\.. '—_y[—fl.-_)i_l \,‘,-’fl —2f(0)X — (V(o) — flo " .|]
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General framework to obtain Inflation: P[

£(X,. ) po—

= A — %if)p O b
Einstein Equations
1. Friedmann equations for homogenous
background (Enough acceleration) ga ”
ol B=2 =~ > p(o(t)) o
a
2. Linear perturbation for quantum fluctuations
(Power Spectrum: scalar, tensor) b
((z,t) < Gb(a,t) == O

CMB anisotropies and Large scale structure

3. Higher order perturbive calculation to obtain
higher order correlation functions
Pirsa: 08060133 (BiSpECtmm1 > )
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Background evolution ~
single scalar field with a lagrangian of the form H

L (X ’ O) C TX 2()!, u:‘)*“u T

iz
]

Similar to a hydrodynamical fluid: )
f{-“»’ = {p + f””p U, — pﬂ;:v-

p(X,0) = L(X,9).
p(X.0) = 2XLx — L(X.0)
twy, = L_{HL}__. L;{ = bL_
vV2X D X
Friedmann equations for
the background : TC
2 — L ] | T
= [_.1 ox — PX.¢)]
o P AnGG dp
X =3¢ = = : {_}g—+ 20(X. ¢))
a 3 dX
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The First Slow-roll Parameter: P[
Satisfying null energy condition: 17 + p > () e T
Requiring Acceleration:  ;(4) ~ () e P+ 3p < (] Negative
: pressure
_3lp+p) H —-Jf'f@
Bce=" Bl O sx__<l
Efficient Inflation eEL]l— p~—p
Standard canonical ) ) or X |
scalar field L=X-V(9) ==! = 75 &
gon ﬁ{r_’_‘”})z <1 Flat Potential
2 Vie)
K-Inflati o~ g xe—xy L
nflation Soeadlt =3
(C. Armendarnz-Picon, T. Damour, V. X ’ ! € << 1
Mukhanov)

Attractor solution




DBI INFLATIONARY MODEL (aishanina, Siverstein. and Tong) PI

L e o i
_f{;i‘vl —:'fl*r-l:‘i {1[‘:-'] f )
5 op
For small sound speed o — (5) 1
Slow roll parameter: M2 [1_-;{},:) )2 -
€ ~v — | —
2 Vip)
Example
+ -4
= 2 == .S S —_— .- 2 < Y/
V =Voy + f >3 > I}\flf},\ai_\
M
€~ V3—2
ng\
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Observational constraints on generalized slow-roll
parameters from the primordial spectrum

@ Considering small inhomogeneities for the scalar field : ; Z
ﬂ-‘? =

¢?{j¢ff,] = ?éﬁf} t gjg{‘l.-’f} *

@ Metricin the longitudinal gauge
% s

Einstein equations linear order (Action up to second order) : j;_S 2% j’

ds? = (1 + 2®)dt> — (1 — 2B)a’(t)y;;dx’ dx*

Curvature fluctuations : ((z.1)

o= 3p 20 @
_ Sp+3p /

( = + — a(p + p)'/? 2 P.X
JHp+p MHp+p H o — W C.ﬁ == = £ ==
. P.X 1+ 2—====

U = z{

in a flat universe after quantization one still
gets an equation of motion similar to that

Prsfestes@nonical actions (Garriga and Mukhanov)

d?uy. 2.2 1 &2z -
f"‘g - - € = ?_f""f Up =
i < i Page 11/25




Py, e 2 1'}:' " (e) n) & /1) [k |
3 T (esk® — 2(aH )" {(1 + 5 +r)(1 - 3+ 1 +9 -|-¢1;—Q+t_ Hue =0

FPERIMETER INSTITLTE
POl THEORETIC AL PRTSHS

=

g =

He
LG slow roll approximation: €.7).5.)n. KN ... << |
—’ To leading order a Bessel equation
Ak
.3 |2
ScalarPower p, - * lu ‘ “
3 P ~d
Spectrum ST 2 lesk—=aH
E B i
872 M c,¢€ lexk=aHl | B
. dinPr |
Scalar spectralindex: ». -1 = ;‘ Rl *’/
dink | _. X
~ —(2e+n+5)+O(E.en. 5y, ...)
- )
Quantum fluctuations are produced on scales ( A = 7 ) much
smallerthan sound horizon ( ¢_H —') however their amplitude is
set at sound horizon scale which is almost constant during
Inflation. Sound Horizon reduces to Hubble radius ( 77 —!) if sound speed is one.
Page 12/25
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Alternative observations will result in getting
complementary information:

Primordial Gravity Waves

Similar procedure for tensor power spectrum S H2
leave subdominant but distinct imprints in Ph = I
. : m k=aH
the CMB Polarization
Tensor spectral indexes: - "f“l"":*ré e B R
din & !.‘-'Z.‘-'r

What about Higher order correlation functions?
Three point function, Non-Gaussianity :

= 5 S = 48 .
Parameterizing non-gaussianties as ¢=Cc—=fneCe
5]

equil

: e 1
(Chen, Huang, Kachru, and Shiu) vt D = (—0.26+0.126%) (1 — _)

-

s
i
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d?u; -— o ]‘; € ) n 1 r;
=3 +{<~;k3—2{uHr-:{1+f§+ 1—-}+ + -H Houg =0
W= H'L
s slow roll approximation: €.7.5.7)y.AN... < |
—’ To leading order a Bessel equation
Ak
-3 |2
ScalarPower p_ _ * |l ‘ a
= ) P, ~d
Spectrum <7 27 lesk=aH
e -.“_"‘I'lu"f H-L',.ﬂ'zuH fl‘.ﬁH._l
s [ pl Cgz€ |
= H’ R
Scalar spectralindex: ». -1 = :f”n . Pt
dink | _. X
~ —(2e +n+ k) +”1F2.Fr;.h'_~.,-....'l

Quantum fluctuations are produced on scales ( A = % ) much
smallerthan sound horizon ( ¢ H —') however their amplitude is
set at sound horizon scale which is almost constant during
Inflation. Sound Horizon reduces to Hubble radius ( 77 —!) if sound speed is one.

Pirsa: 08060133 Page 14/25




Alternative observations will result in getting
complementary information:

Primordial Gravity Waves

Similar procedure for tensor power spectrum | S H2
leave subdominant but distinct imprints in Fh = g
- - m k=aH
the CMB Polarization
Tensor spectral indexes: ne = TBPR] oo )

i [Il k !.‘-':.‘-'r

What about Higher order correlation functions?
Three point function, Non-Gaussianity :

= = 3 5
Parameterizing non-gaussianties as C=(Co— . FenCE
_ equil o s 2, 1
(Chen, Huang, Kachru, and Shiu) fvi = (~0.26+0.12¢ (1 = —)
(2) Xhrxs)
—0.08
- MZH?
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What does a general single field Lagrangian with non-minimal kinetic P[
term look like to be consistent with inflationary phenomenology?

= /d.-r*v’—_gﬁ(]{. )

The general action is simply a 2-D manifold parameterized by ( X. o)

Vil

The question is to find the general form that satisfies the constraints
from the data.

» Ease of constructing inflationary maodels numerically for fitting
» Parameterizing objects that encode data in a transparent way
risa: csosi3ee [f there are general theoretical restrictions Page 16125




Gauge Ambiguity: P[

PERIMETER INSTITLTE
PO THEDRETIC AL PRTSHS

{6, Xs)
o= f(p)

(6. X5} = {0. X, = Xs/[0.1]*}

_ dpo(d) | _ 1
'-’lp '+ [ — t) ) d.‘{.—. . + )
_ [C}; f]'

do e

Observables should only constrain gauge independent combinations of X and
derivatives of L. We can fix gauge by adjustina f () along a particular
trajectory {s(.).x,(,)} to obtain desired Oy L or x_(N,)

1
'“.\l' {‘\-f" } Or ‘\ { *\ 5 J] 5

e.g. Ix, Lliow.)x. (v =

o | =

1l
CanonicalActon Lx =1 —— X = —¢(N.)p(Ne) —
3 qj( Py
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What does a general single field Lagrangian with non-minimal kinetic P[
term look like to be consistent with inflationary phenomenology?

S = [ dz*\/—gL(X, 0)

The general action is simply a 2-D manifold parameterized by ( X. o)

Wil

The question is to find the general form that satisfies the constraints
from the data.

» Ease of constructing inflationary models numerically for fitting
» Parameterizing objects that encode data in a transparent way
risa: csosBee [f there are general theoretical restrictions Page 18125




Gauge Ambiguity: P[

{6, Xs)
o= f(p)

(6. X4} — {0. X, = X4/[0.11%)

dp(d) _ N 1
2 *r =g

Uy —

Ix_

Observables should only constrain gauge independent combinations of X and
derivatives of L. We can fix gauge by adjustina f () along a particular
trajectory {s(,).X,(V,)} to obtain desired Oy L or x_(N,)

1
€. {_\k-r-} (:"' .‘L { .‘\ e } —_

| =

e,g. U_Y_: E'{,:{.\'t ), X (N2)} =

!

1
CanonicalActon Lx =1 —— X = —¢(N.)p(Ne) —>
3 qj( P
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Constructing Analytic Form

Assuming idealistic measurements of Curvature and Tensor
perturbation we can break the degeneracy between H(Ne) and

FPERIMETER INSTITLTE
F{R THEGEETIC AL PRTSHS

Cs(Ne).
Hierarchy of horizon flow functions Hierarchy of sound speed flow functions
(Schwarz, Terrero-Escalante, Garc'ia ) 1 d
ke
_ dinH o e R
W - e= N’ Cq d\
dlne l ff‘!
= N = —IN InH. nx. gyx. .-
For on-shell trajectory: H2(N.)
L(N,) = pi ;\", H—1+ Ef{f\;] j
3
XELx(N,) = %f{.‘.‘., )p(N.) . i ¥ e
e = L (k1) Vo
= ..1\...-\. kil - —_— G t‘g[._‘\_t_] = thl L= 1-"}
Goto the gauge: x.(v. = e L£(X, p)s
2 : ,
The boundary condition: r

= AN TEER A

dx L
X, 1{

e o M3
\;"jl',_:l,.‘[.-x'(}z—zf—’
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Analytic Form for Action Consistent with Data? p“[

L‘:ﬂ-ﬁs . | |

1) Extract (P(N.) X (V)= ) _— L
Ox_ L .

o |1 PIN)XIN, -.=‘_"i,i !

a2 p
Ix = | s ard
. {@(N ) XN, ) ==}

2) Choose an “arbitrary” function Q( o. X )

A T4 4
g(X, 0) + L (li ) —q (JI m)
4 4 4
v e (F0) - (Fo0)| (x- )
1 M2 M3 A%
[t () oo (280)] (x-2)

Remember we can ol o (—0.26+0.12:2) (1 - %)
extend this if measure

Answer. L(X.0)

L-‘.‘

1-3 ~
o8 (&) Xhxxx
€ -MEIHZ

Pirsa: 08060133 Page 21/25




Simple example: H

Suppose i
. € v —— j = _ = =
measurements give 2N, {:_ C 1 0 ) |
-(13) = MLH{(1 - Hi¢")
H = H, expi /.\ % = HI-"—.I 2 Lx [ ;,J = H]'I.U_'_II.
L [ 1)) - OMAHES
- 0 -3 0 = . iy
f{ — {} ' £1(X, 0) ~ I_‘l.ir}-.,rhrlj' —Ilfffle_':l]'—ki 15 X"
L_r'..“u.--' = {_:1'.";.!-"
q = AX3 ’ + x!r_r-‘-_1—%.1'_%._25_1'_;:}

Both satisfy the equation of motion at X=1/2 and fitc.an €
At this level (2X derivatives), the two are observationally
indistinguishable. |
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Lesson: Need more observables! P[
In retrospect obvious once one fixes the gauge, ., x -+
the determination of all jgcev .. from
measurement Is equivalent to specifying all Taylor
expansion coefficients in the direction X.

Possibilities:

1) tree-lev terms in 3-point func.

1) Higher order correlation functions.

2) Loop corrections (probably too small)

All these calculations can break down if the perturbative
expansion around an inflating background does not
remain valid (L. Leblond, S. Shandera)
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Inflationary flow equations PI

PERIMETER INSTITLTE
M THEGRETIC L PRSI

How to construct inflationary models numerically for fitting data?
*Dirctly work in the slow-roll parameter space in terms of e-folding number:

“I-IJH
H . e=—— 1 de,

d
, a Coy R= ———., KN.---
il e I o 8 : :
I = i = . Il H My B . f'_.‘- frl..-\

AN edN

*Fora Canonical action if we assume that slow-roll parameters can be truncated
at some order then we could estimate H(¢) and consequently V(o) witha
Taylor expansion (Kinney)- (Liddle, Parsons, and Barrow)

For a general action however:
H(o) and ¢ (@) can only be estimated if the gauge is fixed.

I (R
I g = ————

(2 (1o _""-

H(6) = Ho+ M,H} (f‘__) +/ S o

\

Jtn’ IH[""” (,_J‘_”_) i . i
Vi dN, _ H (r.‘x)"” B
=TX——=== dine l!'_

|f——l;‘

dN e dN
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Conclusion: H

INSTITLTE

-The slow-roll approximation in its general form can be applied to non- "
canonical actions to obtain inflation.

*General single field actions (a 2D manifold parameterized by (V.©)) can
be written as Taylor expansion in the X direction which is orthogonal to
the 1D manifold (parameterized by ® ) encoding the information from the
data. (A surprisingly simple result for general parameterization.)

*Unlike in the case of minimal kinetic terms, even with ideal data for
3-point function for “all” N-efolds and fixed reheating scenarios, the
set of models which are consistent with data forms an infinite set.
Good news is that the infinite set organizes itself in a simple
manner.

*Higher order correlation function measurements should narrow the set
by constraining more terms for Taylor expansion in the X direction.
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