Title: The Planck Satellite

Date: Jun 05, 2008 11:15 AM

URL: http://pirsa.org/08060044

Abstract:

Pirsa: 08060044 Page 1/113

irsa: 08060044

irsa: 08060044 Page 3/113

Page 4/413

The Planck concept

- to perform the "ultimate" measurement of the CMB temperature anisotropies:
 - full sky coverage & angular resolution / to survey all scales at which the CMB primary anisotropies contain information (~5)
 - sensitivity / essentially limited by ability to remove the astrophysical foregrounds
 - ⇒ enough sensitivity within large frequency range [30 GHz, 1 THz]
- get the best performances possible on the polarization with the technology available
- ⇒ Selected by ESA in 1996 as 3rd Medium size mission-H2k
- ⇒ Goal can be achieved with a small number of detectors in each frequency band, limited by the photon noise of the background (for the CMB ones)

Sensitivity goals per channel

- Two instruments, covering a range of 30 in frequency
 - LFI = Low Frequency instrument, using HEMTS
 - HFI = High Frequency instrument, using bolometers

INSTRUMENT CHARACTERISTIC	LPI HEMT arrays			HFI Bolometer arrays					
Detector Technology									
Center Frequency [GHz]	30	44	70	100	143	217	353	545	857
Bandwidth $(\Delta \nu / \nu)$	0.2	0.2	0.2	0.33	0.33	0.33	0.33	0.33	0.33
Angular Resolution (arcmin)	33	24	14	10	7.1	5.0	5.0	5.0	5.0
$\Delta T/T$ per pixel (Stokes I) ^a	2.0	2.7	4.7	2.5	2.2	4.8	14.7	147	6700
$\Delta T/T$ per pixel (Stokes $Q \& U)^a$	2.8	3.9	6.7	4.0	42	9.8	29.8		

 $^{^{2}}$ Goal (μ K/K, 1σ), 14 months integration, square pixels whose sides are given in the row "Angular Resolution".

back Risebook

Robustness of design for T Component Separation

F. R. Bouchet, IAP, CNRS & UPMC

PASCOS'08, Waterloo, Can. June 08

Goals in perspective

PLANCK LFI			HFI						
Center Freq (GHz)	30	44	70	100	143	217	353	545	857
Angular resolution (FWHM arcmin)	33	24	14	10	7.1	5.0	5.0	5	5
Sensitivity in I [μ K.deg] [$\sigma_{pix} \Omega_{pix}^{1/2}$]	2.7	2.6	2.6	1.0	0.6	1.0	2,9		
Sensitivity in Q or U $[\mu \text{K.deg}][\sigma_{\text{pix}} \Omega_{\text{pix}}^{1/2}]$	4.5	4.6	4.6	1.8	1.4	2.4	7.3		

WMAP Center Freq.	23	33	41	61	94
Angular resolution (FWHM arcmin)	49	37	29	20	12,6
Sensitivity in I [µK.deg], 1 yr (8 yr)	12.6 (4.5)	12.9 (4.6)	13.3 (4.7)	15.6 (5.5)	15.0 (5.3)

The aggregated sensitivity of Planck core CMB channels is ${\sim}0.5\mu\text{K.deg}$ in T, 1 ${\mu}\text{K.deg}$ QU

Observational site

Tightly integrated design

F. R. Bouchet, IAP, CNRS & UPMC

PASCOS'08, Waterloo, Can, June 08

Planck Cooling chain (1/4)

To Bring

☐ LFI HEMTS to 18K

☐ HFI Bolometers to 0.1K

40K: radiative cooling

≈2W

18K: H₂ J-T Sorption pumps

(JPL, USA)

≈1W

4K: He J-T Mech. Pump

(RAL, UK)

≈15mW

1.6K: J-T expansion

0.1K 3He/4He dilution

(AL, CRTBT, IAS, France)

0.5mW

0.2µW

Tightly integrated design

F. R. Bouchet, IAP, CNRS & UPMC

PASCOS'08, Waterloo, Can, June 08

Planck Cooling chain (1/4)

To Bring

☐ LFI HEMTS to 18K

☐ HFI Bolometers to 0.1K

40K: radiative cooling

≈2W

18K: H2 J-T Sorption pumps

(JPL, USA)

≈1W

4K: He J-T Mech. Pump

(RAL, UK)

≈15mW

1.6K: J-T expansion

0.1K 3He/4He dilution

(AL, CRTBT, IAS, France)

0.5mW

0.2µW

Cooling chain (2/4)

Pirsa: 08060044

Cooling chain (3/4)

"20 K" Hydrogen sorption cooler (fully redundant)

- · Cools LFI to < 20K
- Provides pre-cooling to HFI at ~ 18K

Cooling chain (4/4)

"4K" ⁴He JT cooler (w. Back to back compressors)

Cools overall HFI structure to ~4K as well as LFI cold

loads

Precools gas for dilution cooler

- "0.1K" ³He-⁴He dilution cooler (using capillarity)
 - JT expansion cools filter plate to 1.6K
 - Cools bolometers to 100mK

HFI (Russian-doll) cut-away

THERMAL STABILITY?

F. R. Bouchet, IAP, CNRS & UPMC

PASCOS'08, Waterloo, Can, June 08

Planck needed breakthroughs

- The sensitivity goals of Planck requires several technological performance never achieved in space before
 - Sensitive & fast bolometers with
 - NEP< 2 10⁻¹⁷ W/Hz^{1/2} & time constants typically < 5 msec
 (thus cooling them to 100 mK, very low heat capacity & charged particles sensitivity)
 - total power read out electronics with very low noise
 - < 6nV/Hz^{1/2} from 10 mHz to 100 Hz
 - Excellent temperature stability, from 10 mHz (1 rpm) to 100 Hz (cf. Lamarre et al. 04)
 - < 10 μK/Hz^{1/2} for 4K box (30% emissivity)
 - < 30 µK/Hz^{1/2} on 1.6K filter plate (20% emissivity)
 - < 20 nK/Hz^{1/2} for detector plate (~5000 damping factor needed)
 - low noise HEMT amplifiers (⇒ cooled to 20K) & very stable cold reference loads (4K)

Additionally:

- low emissivity, very low side lobes, telescope (strongly under-illuminated)
- no windows, minimum warm surfaces between detectors and telescope
- Complex cryogenic cooling chain (50K passive+20K+4K+0.1K)
 - 20K for LFI with large cooling power K (0.7W)
 - 4K. 1.6K and 100mK for HFI
 - Thermal architecture optimised to damp thermal fluctuations (active+passive)
- NB: 100mK cooling by dilution cooler does not tolerate micro-vibrations at sub-mg level or 7.10¹⁰ He atoms accumulated on dilution heat exchanger (typically He pressure 1.10⁻¹⁰ mb)

HFI Integration & Calibration @ IAS

(reproduction of spatial and micro-wave environment)

F. R. Bouchet, IAP, CNRS & UPMC

PASCOS'08, Waterloo, Can, June 08

HFI Integration & Calibration @ IAS

(reproduction of spatial and micro-wave environment)

F. R. Bouchet, IAP, CNRS & UPMC

PASCOS'08, Waterloo, Can, June 08

HFI Integration & Calibration @ IAS

(reproduction of spatial and micro-wave environment)

WMAP would need ~500 years of survey time to reach HFI 1yr sensitivity

Pirsa: 08060044 Page 20/113

Page 21/113

irsa: 08060044

Nov 2006, HFI + LFI integration

Dec 9th 2007, Ready for vibration testing

April 7th 08: load balancing

April 18th 2008: preparing ESTEC → CSL

03/08: Antonov Nice → ESTEC

F. R. Bouchet, IAP, CNRS & UPMC

PASCOS'08, Waterloo, Can, June 08

Nov 2006. HFI+LFI integration

Dec 9th 2007, Ready for vibration testing

April 7th 08: load balancing

April 18th 2008: preparing ESTEC → CSL

F. R. Bouchet, IAP, CNRS & UPMC

PASCOS'08, Waterloo, Can, June 08

Nov 2006, HFI + LFI integration

Dec 9th 2007, Ready for vibration testing

April 7th 09: lead belonging

April 7th 08: load balancing

April 18th 2008: preparing ESTEC → CSL

03/08: Antonov Nice → ESTEC

PASCOS'08, Waterloo, Can, June 08.

- 1

Nov 2006, HFI + LFI integration

Dec 9th 2007, Ready for vibration testing

April 7th 08: load balancing

April 18th 2008: preparing ESTEC → CSL

F.R. Bouchet, IAP, CNRS & UPMC

PASCOS'08, Waterloo, Can, June 08.

Nov 2006, HFI + LFI integration

Dec 9th 2007, Ready for vibration testing

April 7th 08: load balancing

April 18th 2008: preparing ESTEC → CSL

03/08: Antonov Nice → ESTEC

PA

PASCOS'08, Waterloo, Can, June 08

Nov 2006, HFI + LFI integration

Dec 9th 2007, Ready for vibration testing

April 7th 08: load balancing

April 18th 2008: preparing ESTEC → CSL

PASCOS'08, Waterloo, Can, June 08

Nov 2006. HFI+LFI integration

Dec 9th 2007, Ready for vibration testing

April 7th 08: load balancing

April 18th 2008: preparing ESTEC → CSL

PASCOS'08, Waterloo, Can, June 08

Nov 2006, HFI + LFI integration

Dec 9th 2007, Ready for vibration testing

April 7th 08: load balancing

April 18th 2008: preparing ESTEC → CSL

F. R. Bouchet, IAP, CNRS & UPMC

PASCOS'08, Waterloo, Can, June 08

Nov 2006, HFI + LFI integration

Dec 9th 2007, Ready for vibration testing

April 7th 08: load balancing

April 18th 2008: preparing ESTEC → CSL

03/08: Antonov Nice → ESTEC

F. R. Bouchet, IAP, CNRS & UPMC

PASCOS'08, Waterloo, Can, June 08

Nov 2006, HFI + LFI integration

Dec 9th 2007, Ready for vibration testing

April 7th 08: load balancing

April 18th 2008: preparing ESTEC → CSL

PASCOS'08, Waterloo, Can, June 08

Nov 2006, HFI + LFI integration

Dec 9th 2007, Ready for vibration testing

April 7th 08: load balancing

April 18th 2008: preparing ESTEC → CSL

PASCOS'08, Waterloo, Can, June 08

Nov 2006, HFI + LFI integration

Dec 9th 2007, Ready for vibration testing

April 7th 08: load balancing

April 18th 2008: preparing ESTEC → CSL

03/08: Antonov Nice → ESTEC

F. R. Bouchet, IAP, CNRS & UPMC

PASCOS'08, Waterloo, Can, June 08

Nov 2006, HFI + LFI integration

Dec 9th 2007, Ready for vibration testing

April 7th 08: load balancing

April 18th 2008: preparing ESTEC → CSL

03/08: Antonov Nice → ESTEC

F. R. Bouchet, IAP, CNRS & UPMC

PASCOS'08, Waterloo, Can, June 08

Nov 2006, HFI + LFI integration

Dec 9th 2007, Ready for vibration testing

April 7th 08: load balancing

April 18th 2008: preparing ESTEC → CSL

03/08: Antonov Nice → ESTEC

PASCOS'08, Waterloo, Can, June 08

Integration is getting to an end

Nov 2006. HFI+LFI integration

Dec 9th 2007, Ready for vibration testing

April 7th 08: load balancing

April 18th 2008: preparing ESTEC → CSL

03/08: Antonov Nice → ESTEC

PASCOS'08, Waterloo, Can, June 08

Integration is getting to an end

Nov 2006. HFI+LFI integration

Dec 9th 2007, Ready for vibration testing

April 7th 08: load balancing

April 18th 2008: preparing ESTEC → CSL

03/08: Antonov Nice → ESTEC

F. R. Bouchet, IAP, CNRS & UPMC

PASCOS'08, Waterloo, Can, June 08

Integration is getting to an end

Nov 2006, HFI + LFI integration

Dec 9th 2007, Ready for vibration testing

April 7th 08: load balancing

April 18th 2008: preparing ESTEC → CSL

03/08: Antonov Nice → ESTEC

PASCOS'08, Waterloo, Can, June 08

ine 08

1st & last full thermal vacuum test

19 May 2008: fitting test @ CSL

(SOVT was last week)

F. R. Bouchet, IAP, CNRS & UPMC

PASCOS'08, Waterloo, Can, June 08

11

WHAT WHEN

- Launch from Kourou planned for December 2008
- Travel for 2 months to L2 (100mK after 50d), Calibration & Performance Verification (< 2months), 14+? months of operations to complete > 2 surveys
- Early 2010 : "Early Release Point Source Catalogue" (Herschel followup)
- Early 2012 : First public data release by ESA of 14 month of data + ~50 papers
 - Clean calibrated time-ordered data
 - Full sky maps in (HFI 6+ LFI 3) frequencies
 - Maps of identified astrophysical components (1st Generation)
 - CMB
 - Galactic Emissions (sync. Free-free, dust)
 - Extragalactic sources catalogue
 - CMB characterisation (C(I), likelihood...)
- ≥ 2013 : Potential second data release (helium permitting)
- Intermediate products, ~ every 6 months, for scientific exploitation/preparation by the Planck collaboration during the operations (1.2 yr) and the analysis (1yr) and proprietary time (1 year),.

Observational site: L2 halo orbit

F. R. Bouchet, IAP, CNRS & UPMC

PASCOS'08, Waterloo, Can, June 08

Page 42/111

irsa: 08060044 Page 44/113

Page 45/113

Page 46/412

rea: 08060044

Page 48/11

Pirea: 08060044

Page 40/113

Pirsa: 08060044

Pirea: 08060044

Page 55/113

Page 56/113

Pirsa: 08060044 Page 57/113

Pirsa: 08060044 Page 58/113

Pirsa: 08060044 Page 59/113

rea: 08060044

Page 62/113

Pirsa: 08060044 Page 63/113

Pirsa: 08060044 Page 64/11. Page 64/11.

Pirsa: 08060044

Data Processing

- Physics → CMB sky → Frequency sky → TOI
- ➤ TOI → frequency maps → CMB map → Physics
- One needs to write and verify a model of TOI = f(Physics) and to invert it and to assess errors.
 - The frequency response is measured on the ground.
 - The optical response is measured on the ground, modelled, and partially verified on planets, Crab, etc.
 - The detector chain response is measured on ground
 - ...
- One uses templates (Thermometers, Foreground tracers) and redundancy

Data Processing

- Physics → CMB sky → Frequency sky → TOI
- ➤ TOI → frequency maps → CMB map → Physics
- One needs to write and verify a model of TOI = f(Physics) and to invert it and to assess errors.
 - The frequency response is measured on the ground.
 - The optical response is measured on the ground, modelled, and partially verified on planets, Crab, etc.
 - The detector chain response is measured on ground
 - ...
- One uses templates (Thermometers, Foreground tracers) and redundancy

Pirsa: 08060044 Page 74/113

Data Processing Center preparation

- One for each instrument.
 - with exchange at the level of clean calibrated timelines for cross-checks& validation
- Developed an ad-hoc information management infrastructure
 - with requirement of traceability and efficiency
- Developed a simulation pipeline to produce a realistic rendering of data
 - plausible sky + known instrumental non-idealities
- Establishing a pre-flight minimal processing pipeline;
 - will undoubtly need be upgraded, but only where/when necessary.
- Very active (mostly) internal R&D continues to improve
 - processing steps (methods/codes challenges on speed, accuracy, robustness on benchmark data, including blind tests)
 - Assessment of magnitude of residual systematic effects and various ways to minimize them
 - (e.g. asymmetric beams, cross-polar leakage, finite knowledge of polariser angles, limited accuracy of calibration sources, etc)

WG2, WG3 & DPC Codes

CTP (WG3): map-making codes comparison,

power spectra & L codes (ongoing) comparison

WG2&3 thus provides useful guidance / performance verification to HFI DPC

F. R. Bouchet, IAP, CNRS & UPMC

PASCOS'08, Waterloo, Can, June 08

(simulated) Planck Intensity maps

+ 14 Q & U maps

F. R. Bouchet, IAP, CNRS & UPMC

PASCOS'08, Waterloo, Can, June 08

Broad science

- Primary anisotropies
 - Cosmological parameters, fundamental physics probes, non-Gaussianity
- Secondary anisotropies
 - ISW, Gravitational lensing, reionisation, galaxy clusters
- Extragalactic sources
 - Radio-sources, dusty galaxies and their background
- Galactic & solar system

PLANCK

____"Blue book" (2005)
www.rssd.esa.int/Planck

TT Forecast

25 × the sensitivity of WMAP

3 × the angular resolution

→ Planck limited by cosmic variance only well into the damping tail.

WMAP measures ~10% of the modes with SNR ≥ 1. Planck will get them all.

Top: samples drawn from a LCDM model w. n_s =0.95 versus an n_s =1 (red line) one. Bottom: residuals (red is now expectation)

TE & EE forecasts

Planck will measure polarisation about as well as WMAP measure temperature

F. R. Bouchet, IAP, CNRS & UPMC

PASCOS'08, Waterloo, Can, June 08

Accuracy forecast

1.1-0.05 0 0.05

0.1 0.12

0.1 0.12

0.1 0.12

0.05 0.1 0.15

0.05 0.1 0.15

0.05 0.1 0.15 0.9

WMAP 4 years (94 GHz) Planck 1 year (143 GHz)

Bond et al. astroph/0406195

log[1010 A,]

80

0.020.0230.025

75

log[1010 A.]

ISOCURVATURE MODES

	MAP	MAP	MAP	MAP	PLANCK	PLANCK	PLANCK	PLANCK	PLANCK
	I	TP	T	TP	T	TP	T	T-P	TP
	actia	actia	all	all	adia	adia	all	all	all
	oniv	oniv	mode-	modes	only	only	modes	mode~	modes
oh/h	12.37	7.42	175.84	20.40	9.93	3:69	40.13	7.31	1.36
$\delta\Omega_b/\Omega_b$	27.76	13,34	325.38	28.57	19.37	7.26	68.85	14.42	8.61
$\delta\Omega_k$	9.79	2.72	75.32	1.55	1.92	1.83	20.56	3.59	2.18
$\partial\Omega_{\Lambda}/\Omega_{\Lambda}$	12.92	5:02	123.63	18.53	2.74	1.21	5.93	2.45	1.49
$\delta n_*/n_*$	7.02	1.62	89.89	6.53	0.73	0.37	3.92	0.900	0.70
Treson	37.39	1.81	104.81	2.23	8.25	0.41	35.35	0.74	0.56
(NIV.NIV)			114.34	11.47			43.45	1.36	1.14
BI.BI			573.46	29.71			53.29	6.16	1.23
(NID, NID)			351.79	29.87	Fee.		19.18	1.7.7	2.37
NIV.AD		140	434.70	14.06			121.59	8.21	4.69
BLAD	277	0.00	1035.02	59.25	22	76	58.75	15.03	> 97
NID. AD		100	1287.60	67.49	12-		114.39	13.87	5.77
NIV.BI)		100	601.70	32.29	4.2		46.91	7.72	3.67
(NIV.NID)			744.00	46.46			80.01	7:30	2.97
BI.NID	1151		534.32	39.11	10.		100.97	7.56	1.60

TABLE I. This table indicates the one sigma percentage errors on cosmological parameters and isocurvature mode amplitudes anticipated for the MAP and PLANCK satellite experiments. In the column headers, T denotes constraints inferred from temperature measurements alone, TP those from the complete temperature and polarisation measurements, and T-P those inferred if temperature and polarisation information is used separately without including the cross-correlation.

NB: Still assuming simple scale-invariant (initial) P(k)...

(Can add LSS, or HST+SN1A to improve Ω_k , cf. Dunkley et al. astroph/0507473, but reliance on external data)

F. R. Bouchet, IAP, CNRS & UPMC

PASCOS'08, Waterloo, Can., June 08.

33

ISOCURVATURE MODES

□ =8.10⁻¹¹

	MAP	MAP	MAP	MAP	PLANCK	PLANCK	PLANCK	PLANCK	PLANCK
	T	TP	1	TP	T	TP	Γ	T-P	TP
	actia	acita	all	all	adia	adia	ail	ail	all
	only	oniv	mode-	modes	only	only	modes	mode-	modes
oh/h	12.37	7, 42	175.84	20.40	9.93	3:69	40.13	7.31	4.36
$\delta\Omega_b/\Omega_b$	27.76	13.34	325.38	28.57	19.37	7.26	68.85	14.42	8.61
$\delta\Omega_k$	9.79	2.72	75.32	4.55	1.92	1.83	20.56	3.59	2.18
δΩ _A /Ω _A	12.92	5.02	123.63	18.53	2.74	1.21	5.93	2.45	1.49
on, n.	7.02	1.62	89.89	6.53	0.73	0.37	3.92	0.90	0.70
Tretom	37.39	1.81	104.81	2.23	8.25	0.41	35.35	0.74	0.56
NIV.NIV		11.0	114.34	11.47			43, 45	1.36	1.14
B1.B1)			573.46	29.71			53.29	6.16	4.23
NID.NID			351.79	29.87			19.48	4.77	2.37
NIV.AD		145	434.70	44.06	1		121.59	8.21	4.69
BLAD		527	1035.02	59.25	22	100	58.75	15.03	8.97
(NID,AD)		-1493	1287.60	67.49			114.39	13.87	5.77
NIV.BI)	1.1	160	601.70	32.29	22		46.91	7.72	3.67
NIV.NID			744.00	46.46			80.01	7.76	2.97
BI.NID		.+201	534.32	39.11			100.97	7.56	4.60

TABLE I. This table indicates the one sigma percentage errors on cosmological parameters and isocurvature mode amplitudes anticipated for the MAP and PLANCK satellite experiments. In the column headers, T denotes constraints inferred from temperature measurements alone, TP those from the complete temperature and polarisation measurements, and T-P those inferred if temperature and polarisation information is used separately without including the cross-correlation.

NB: Still assuming simple scale-invariant (initial) P(k)...

(Can add LSS, or HST+SN1A to improve Ω_k , cf. Dunkley et al. astroph/0507473, but reliance on external data)

F. R. Bouchet, IAP, CNRS & UPMC

PASCOS'08; Waterloo, Can., June 08

33

B polarisation forecasts

(Assuming no unforgiving foregrounds 3)

WMAP5 $\rightarrow \tau \sim 0.17/2$, $z_{inst} = 11 \pm 1.4$

Planck will be limited by its (polarisation) sensitivity (~60 µK.arcmin at best)

Indeed, it was conceived to be limited by unpolarised foregrounds confusion

Science with Planck

- Of course Planck will improve on standard constraints... when the data is at hand!
 - -r
 - $-\Sigma m_v$
 - N_{eff}
 - w1, w2...
- Planck lesser reliance on external dataset (often with complicated astrophysical processing) will allowing cross-checks of parameters and assumptions and provide a foundation for future dedicated project (e.g. on w)

Departures from Isotropic Gaussian...

- A broad topics...
- Will undoubtly be found owing to processing weaknesses, since the observed sky is NG
 - Well known astrophysical sources (point sources, Galaxy)
 - Secondary effect (kinetic effect, Lensing)
 - Inhomogeneous/correlated noise, systematics...
- We will search for the signature of
 - non-trivial topologies
 - primordial magnetic field
 - f_{NL} (see below)
 - topological defects, eg cosmic strings
 - New physics

Secondary anisotropies - Lensing

10'x 10' T field lensed by a 10^{15} M_{\odot} at z=.4

Planck will have a highly significant detection of gravitational lensing, but reconstruction of deflection field difficult

Departures from Isotropic Gaussian...

- A broad topics...
- Will undoubtly be found owing to processing weaknesses, since the observed sky is NG
 - Well known astrophysical sources (point sources, Galaxy)
 - Secondary effect (kinetic effect, Lensing)
 - Inhomogeneous/correlated noise, systematics...
- We will search for the signature of
 - non-trivial topologies
 - primordial magnetic field
 - f_{NL} (see below)
 - topological defects, eg cosmic strings
 - New physics

Secondary anisotropies - Lensing

10'x 10' T field lensed by a 10^{15} M_{\odot} at z=.4

Planck will have a highly significant detection of gravitational lensing, but reconstruction of deflection field difficult

Quadratic Reconstruction

→ Low z constraints on curvature, m_v, dark energy...

f_{NL}

- Parameterize non-Gaussianity as Φ=Φ_L+f_{NL}Φ_L² as in (Salopek & Bond 1990)
 - Φ_L~10⁻⁵ is a Gaussian, linear curvature perturbation in the matter era
 - Therefore, f_{NL}<100 means that the distribution of Φ is consistent with a Gaussian distribution to ~100×(10⁻⁵)²/(10⁻⁵)=0.1% accuracy at 95% CL.

Non-Gaussianity from Inflation

- f_{NL} ~ 0.05 canonical inflation (single field, couple of derivatives) (Maldacena 2003, Acquaviva et al 2003)
- f_{NL} ~ 0.1--100 → higher order derivatives
 - ~100: DBI inflation (Alishahiha, Silverstein and Tong 2004)
 - ~0.1: UV cutoff (Creminelli and Cosmol, 2003)
- f_{NL} >10 curvaton models (Lyth, Ungarelli and Wands, 2003)
- f_{NL} ~100 ghost inflation (Arkani-Hamed et al., Cosmol, 2004)
- Your name here
- Of course, oversimplified, propagation corrections...

Positive fnL = More Cold Spots

Positive fnL = More Cold Spots

f_{NL} Bi-spectrum

Natural probe

- $< T^3 > \propto 0 + f_{NI} \Phi_1^3$, $< T^4 > \propto < T^2 > 2 + f_{NI} \Phi_1^4 + HOT$
- Nearly all the f_{nl} information (Babich 2005)

Polishing (& using) the estimator

- Komatsu & Spergel 2001 CMB bispectrum from fNL
- Komatsu, Wandelt, Spergel, Banday, Gorski 2001 fNL from COBE
- Komatsu Spergel & Wandelt 2003 fast fNL estimator
- Komatsu et al (WMAP team) 2003 WMAP1 analysis using KSW
- Babich and Zaldarriaga 2004 temperature + polarization
- Creminelli, Nicolis, Senatore, Tegmark, Zaldarriaga 2006 introduce linear term to improve KSW estimator
- Spergel et al (WMAP team) 2006 WMAP3 analysis using KSW
- Creminelli, Senatore, Tegmark, Zaldarriaga 2006 apply cubic + linear term to WMAP3 data
- Yadav Komatsu & Wandelt 2007 KSW generalized to T+P
- Liguori, Yadav, Hansen, Komatsu, Matarrese, Wandelt 2007 calibrate YKW estimator against non-Gaussian simulations
- Yadav, Komatsu, Wandelt, Liguori, Hansen, Matarrese 2007 Creminelli et al. corrected and generalized to T+P

Till recently only upper limits

- -58< f_{NL} <137 (95%) WMAP 1 yr
- -54< f_{NL} <114 (95%) WMAP 3 yr refined to -36< f_{NL} <100 (95%) by Creminelli etal 06
- NB: this is for the local form (ekpyrotic, curvaton), weaker constraints exist for equilateral configuration (Ghost condensation, DBI, low speed of sound models)

Tantalising evidence?

Is it:

- Instrument systematics?
- > Foregrounds?
- Secondary anisotropies?
- Rediscovery of other non Gaussian signals?
- Noise fluctuation?
- > Primordial?

27 < f_{NL}^(local) < 147 (95%CL, a 2.5σ result)

Yadav & Wandelt Phys. Rev. Lett. 100, 181301 (2008) Komatsu et al. have more generous error bars...

F. R. Bouchet, IAP, CNRS & UPMC

PASCOS'08, Waterloo, Can. June 08.

43

f_{NL} quest

- ightharpoonup Ideal CMB experiment, using temperature & polarization could reach $\Delta f_{NL} \sim 1$
- \succ For Planck, the Cramer Rao limit is $\Delta f_{NL} \sim 3$.

Yadav, Komatsu and Wandelt, astro-ph/0701921

NB: WMAP-8yr could reach ~21 (/30 w. 3yr data)

WMAP-5 summary

TABLE 2
Summary of the 95% confidence limits on deviations from the simple (flat, Gaussian, adiabatic, power-law) ACDM model

Section	Name	Type	WMAP 5-year	WMAP+BAO+SN
8 3.2	Gravitational Wave	No Running Ind.	r < 0.43 ^b	r < 0.20
§ 3.2 § 3.1.3 § 3.4	Running Index Curvature ^d	No Grav. Wave	$-0.090 < dn_s/d \ln k < 0.019^{\circ}$ $-0.063 < \Omega_k < 0.017^{\circ}$	$-0.0728 < dn_s/d \ln k < 0.0085$ $-0.0175 < \Omega_k < 0.0085$
3	Curvature Radius ⁹	Positive Curv. Negative Curv.	$R_{\text{curv}} > 12 h^{-1}\text{Gpe}$ $R_{\text{curv}} > 23 h^{-1}\text{Gpe}$	$R_{\text{curv}} > 23 \ h^{-1}\text{Gpc}$ $R_{\text{curv}} > 33 \ h^{-1}\text{Gpc}$
§ 3.5	Gaussianity	Local	$-9 < f_{NL}^{local} < 111^h$	N/A
		Equilateral	$-151 < f_{NL}^{\rm equil} < 253^{\circ}$	N/A
§ 3.6	Adiabaticity	Action Curvaton	$\alpha_0 < 0.16^j$ $\alpha_{-1} < 0.011^l$	$\alpha_0 < 0.067^k$ $\alpha_{-1} < 0.0037^m$
8 4	Parity Violation	Chern-Simons ⁿ	$-5.9^{\circ} < \Delta \alpha < 2.4^{\circ}$	N/A
4 5	Dark Energy	Constant w° Evolving w(z)	$-1.37 < 1 + w < 0.32^p$ N/A	-0.11 < 1 + w < 0.14 $-0.38 < 1 + w_0 < 0.14$
§ 6.1 § 6.2	Neutrino Mass ⁵ Neutrino Species		$\sum m_{\nu} < 1.3 \text{ eV}^t$ $N_{\text{eff}} > 2.3^{\circ}$	$\sum m_{\nu} < 0.61 \text{ eV}^u$ $N_{\text{eff}} = 4.4 \pm 1.5^{\text{to}} (68\%)$

Komatsu et al 0803.0547

Planck starts from there...

Conclusions

- CMB unique in tightening together so many fundamental elements (Fundamental laws, census, i.e. cosmography and cosmogony)
 - Mining polarisation will surely be challenging, but in proportion to the potential pay-offs
- First survey data in less than a year! + 3 intensive years of data massaging.
 - Theorists hurry if you prefer pre-dictions to post-dictions
- Planck is in line with design goals
 - but nothing like the real sky...
- Cosmological science: moving from confirming broad expectations (flat, Gaussian, adiabatic, power-law, scale-invariant) to actually detecting highly revealing deviations.
 - Possibilities include Ω_k , f_{NI} (Gµ...), α_{ISO} , n_s -1, n_{run} , r, Σm_v Neff-3.04, 1+w₀, w₁...
 - NB: Cosmology has a record of surprises, not least DM&DE, in which CMB played prominent role
- Of course other cosmological probes will remain needed
 - To confirm paradigm by cross-checks (not many now)
 - Break remaining degeneracies, in particular low-z possible variations of w
 "Planck prior" is assumed by future projects (eg JDEM concepts, Cosmic Inflation Probe, CMBPol)
- Planck legacy will also be a unique set of maps of the microwave polarized sky, with all induced spin-offs "à la IRAS"

Pige 103/113

Conclusions

- CMB unique in tightening together so many fundamental elements (Fundamental laws, census, i.e. cosmography and cosmogony)
 - Mining polarisation will surely be challenging, but in proportion to the potential pay-offs
- First survey data in less than a year! + 3 intensive years of data massaging.
 - Theorists hurry if you prefer pre-dictions to post-dictions
- Planck is in line with design goals
 - but nothing like the real sky...
- Cosmological science: moving from confirming broad expectations (flat, Gaussian, adiabatic, power-law, scale-invariant) to actually detecting highly revealing deviations.
 - Possibilities include Ω_k , f_{NL} (Gµ...), α_{ISO} , n_s -1, n_{run} , r, Σm_v Neff-3.04, 1+w₀, w₁...
 - NB: Cosmology has a record of surprises, not least DM&DE, in which CMB played prominent role
- Of course other cosmological probes will remain needed
 - To confirm paradigm by cross-checks (not many now)
 - Break remaining degeneracies, in particular low-z possible variations of w
 "Planck prior" is assumed by future projects (eg JDEM concepts, Cosmic Inflation Probe, CMBPol)
- Planck legacy will also be a unique set of maps of the microwave polarized sky, with all induced spin-offs "à la IRAS"

Page 105/113

Conclusions

- CMB unique in tightening together so many fundamental elements (Fundamental laws, census, i.e. cosmography and cosmogony)
 - Mining polarisation will surely be challenging, but in proportion to the potential pay-offs
- First survey data in less than a year! + 3 intensive years of data massaging.
 - Theorists hurry if you prefer pre-dictions to post-dictions
- Planck is in line with design goals
 - but nothing like the real sky...
- Cosmological science: moving from confirming broad expectations (flat, Gaussian, adiabatic, power-law, scale-invariant) to actually detecting highly revealing deviations.
 - Possibilities include Ω_k , f_{NL} (G μ ...), α_{ISO} , n_s -1, n_{run} , r, Σm_v Neff-3.04, 1+ w_0 , w_1 ...
 - NB: Cosmology has a record of surprises, not least DM&DE, in which CMB played prominent role
- Of course other cosmological probes will remain needed
 - To confirm paradigm by cross-checks (not many now)
 - Break remaining degeneracies, in particular low-z possible variations of w
 "Planck prior" is assumed by future projects (eg JDEM concepts, Cosmic Inflation Probe, CMBPol)
- Planck legacy will also be a unique set of maps of the microwave polarized sky, with all induced spin-offs "à la IRAS"

Pirsa: 08060044 Page 107/113

irsa: 08060044 Page 108/113

Pirsa: 08060044 Page 109/113

Pirsa: 08060044 Page 110/113

Pirsa: 08060044 Page 111/113

Page 112/113

Pirsa: 08060044 Page 113/113