Title The Planck Satellite
Date: Jun 05, 2008 11:15 AM

URL: http://pirsa.org/08060044
Abstract:

Pirsa: 08060044 Page 1/113



The Planck Satellite
Status & perspectives










& The Planck concept

~ to perfarm the “ultimate” measurement of the CMB
temperature aﬂISDTFOpiESZ
— full sky coverage & angular resolution/ to survey all scales at
which the CMB primary anisotropies contain informmation (~35)

SEHSJJ’W..'}/.- essentiaily limited by abh{!f}’ [0 remove ine
astropnysicai ;DFEC'FDUHC.*S

> enough sensitivity within large frequency range [30 GHz. 1 THZ]

~ getthe best performances possible on the polanzation
with the technology available

— Selected by ESA in 1996 as 3@ Medium size mission-H2k

— Goal can be achieved with a small number of detectors in
each frequency band, limited by the photon noise of the
background (for the CMB ones)




Sensitivity goals per channel

~ Two instruments, covering a
range of 30 in frequency

o

— LFI = Low Frequency instrument.
using HEMTS

— HFI = High Frequency instrument.
using bolometers

- Robustness of design for I Component Separation




Goals in perspective

PLANCK

Center Freg (&6HZI)

Angular recolution
(FWHM aremin)

ensitivity in I [uK

S
-:‘- :-'-:-r' =]
5

ensitivity in G or U
K deg][om: Dut'"]

WMAP Center Fren

Angular resolution
(FWHM arcmin)

Sensitivity in

=
L&.J2g




Observational site
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Tightly integrated design




chain (1/4)




Tightly integrated design




Planck Cooling chain (1/4)







“20 K” Hydrogen sorption cooler (fully r

e

« Cools LFl to < 20K

* PFrovides pre-cooiing to HFl at ~ 1




& Cooling chain (4/4)

~ “4K" “He JT cooler

(w. Back to back compressors)

— Coals overall HFI structure to ~4K as well as LFI cold
loads § |

— Precools gas for dilution cooler

~ “0.1K” 3He-*He dilution cooler
(using capillarity)
— JT expansion coaols filter plate
to 1.6K

— Cools bolometers to 100mK
3He/4He Dilution system




> HFI (Russian-doll) cut-away
THERMAL STABILITY ?

18K DC pipes
connection

LVHX1

Bolometers @ 100mK

4K-20K struts




Additionally:
ow emissivity, very low side lobes. telescope (strongly under-illuminated)

no windows. minimum warm surfaces between detectors and tefescope

Compilex cryogenic cooling chain (50K passive+20K+4K+0.1K)
= 20K for LF1 with large cooling power K (0.7\W)
« 4K, 1.6K and 100mK for HFI
= Thermal architecture optimised to damp thes
# ons at sub-mg levet or

— NB: 100mK cooling by dilution cooler does not lolers CIo- o
7.10" He atoms accumulated on dilution heat exchanger (typically He pressure 1.10-'9 mb)

rmal fluctuations (active+passive)




HFI Integration & Calibration @ |AS
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HFI Integration & Calibration @ |AS
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WMAP would need ~500 years of survey time to reach HFI 1yr sensitivity
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19 May 2008: fitting test @ CSL (SOVT was last week)
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2 - Potential second data release (helium permitiing)
Intermediate products, ~ every 6 months, for scientific exploitation/preparation
by the Planck collaboration during the operations (1.2 yr) and the analysis (1yr)

and proprietary time (1 year),.




xg Observational site: L2 halo orbit
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Data Processing

~ Physics - CMB sky = Frequency sky = TOI
~ TOIl = frequency maps > CMB map — Physics

»~ One needs to write and verify a model of TOI =
f(Physics) and to invert it and to assess errors.
— The frequency response is measured on the ground.

— The optical response is measured on the ground.
modelled, and partially verified on planets. Crab. etc.

— The detector chain response is measured on ground

~ One uses templates (Thermometers,

Foreground tracers) and redundancy




Data Processing

~ Physics - CMB sky =2 Frequency sky = TOI
~ TOIl = frequency maps - CMB map — Physics

»~ One needs to write and verify a model of TOIl =
f(Physics) and to invert it and to assess errors.
— The frequency response is measured on the ground.

— The optical response is measured on the ground.
maodelled, and partially verified on planets. Crab. efc.

— The detector chain response is measured on ground

~ One uses templates (Thermometers,
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Data Processing Center preparation

ion pipeline to produc

T rT 1rre =i o — — ¥ g
NSIrLmernial arn-rgeasines

Establishing a pre-flight minimal processing pipeline;

wilf undoubtly need be upgraded. bul WNen necessary

wart

Very active (mastly) internal R&D continues to improve

processing steps (methods/codes

benchmark data. including blind tests)
- ays (o rmnim

Assessment of magnitude of residual system
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powerf specira & L co
(ongoing) comparison

WG2: Blind
Component
Separation
Challenge,
as of Jan 07

WG2&3 thus provides useful guidance / performance verification to HFl DPC
’i: : A SCOS0E Vaoserics, Can, Jumss 08
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& Broad science

~ Primary anisotropies
— Cosmological parameters.
fundamental physics
probes. non-Gaussianity
~ Secondary anisotropies
— ISW. Grawvitational lensing,
reionisation, galaxy clusters
~ Extragalactic sources

— Radio-sources. dusty
galaxies and their
background

~ Galactic & solar system




TT Forecast
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Planck has ~

« 25 x the sensitivity of WMAP

« 3 x the angular resolution

= Planck limited by cosmic varnance only well into the damping tail.

WMAP measures ~10% of the modes with SNR = 1. Planck will get them all_

Top: samples drawn from a LCDM maodel w. n,=0.95 versus an n.=1 (red line) one.
Bottom: residuals (red is now expectation)
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TE & EE forecasts

AN

Flanck will measure polarisation about as well as WMAFPF measure temperature
’c ASCOS 08 ™o ] e b5 |




Accuracy forecast

WMAP 4 years (94 GHz)

Planck 1




ISOCURVATURE MODES
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Assumingr=T/S=0.1
tau=0.17

WMAPS > 1~0.17/2, z,,,~11+1 4

Planck will be limited by its (polarisation) sensitivity ( ~60 yK.arcmin at best)

Indeed, it was conceived to be limited by unpolarised fcr‘e;grcrunds confusion




Science with Planck

~ Of course Planck will improve on standard
constraints... when the data is at hand!

~ Planck lesser reliance on external dataset (often
with complicated astrophysical processing) will
allowing cross-checks of parameters and

assumptions and provide a foundation for future
dedicated project (e.g. on w)




Departures from Isotropic Gaussian...

~ A broad topics...

~ Will undoubtly be found owing to processing
weaknesses, since the observed sky is NG
— Well known astrophysical sources (point sources.,
Galaxy)
— Secondary effect (kinetic effect. Lensing)
— Inhomogeneous/correlated noise, systematics...
~ \We will search for the signature of
— non-trivial topologies
— primordial magnetic field
— fa (S€ee below)
— topological defects. eg cosmic strings
— New physics




Secondary anisotropies - Lensing
10x 10’ T field lensed by a 10> M. at z=.4

— B . S

~ Planck will have a highly significant detection of
gravitational lensing, but reconstructiopn of deflection
field difficult

<




Departures from Isotropic Gaussian...

~ A broad topics...

~ Will undoubtly be found owing to processing
weaknesses, since the observed sky is NG
— Well known astrophysical sources (point sources.
Galaxy)
— Secondary effect (kinetic effect. Lensing)
— Inhomogeneous/correlated noise, systematics...
~ \We will search for the signature of
— non-trivial topologies
— primordial magnetic field
— fy (see below)
— topological defects. eg cosmic strings
— New physics




Secondary anisotropies - Lensing
10'x 10’ T field lensed by a 10> M. at z=.4

_ — r S

~ Planck will have a highly significant detection of
gravitational lensing, but reconstructiopn of deflection
field difficult

w




Quadratic Reconstruction

— Low z constraints on curvature, m,, dark energy...
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=0.1% accuracy

~ Parameterize non-Gaussianity as =9, +fy, ®,? as in

= i o D | - 2l
(Salopek & Bond 71990)
s a Gaussian.

47 r — b P ¥ Fr i,
< 1T0UU rmears nat tne aisirioution oi

ussian distribution fto ~100=(10-=2)</(10-

~ Non-Gaussianity from Inflation
— fu.~ 0.05 canonical inflation (single field, couple of denvatives)

(Maldacena 2003, Acquaviva etal 2003 )

— fu~ 0.1—-100 > higher order derivatives

~100: DBI inflation (Alishahiha, Silverstein and Tong 2004)

UV cutoff (Creminedli and Cosmoi. 2003

~).1 - 1
>10 curvaton models (Lyth. Ungarelli and Wands. 2003)
, ~100 ghost inflation (Arkani-Hamed et al., Casmol, 2004)

F-.
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M

... Your name here
~ Of course, oversimplified, propagation corrections...




Liguorn. Yadav. Hansen. Komatsu. Matarrese. Wandeilt 2007




[ iguori. Yadav. Hansen. Komatsu. Matarmrese. Wandelt 2007




[ iguori. Yadav. Hansen. Komatsu. Matarrese. Wandeit 2007




f, = 100

Positive fne = More Cold Spots

[ iguori. Yadav. Hansen. Komatsu. Matarrese. Wandelft 2007




[ iguori. Yadav. Hansen. Komatsu. Matarrese. Wandelt 2007




[ iguori. Yadav. Hansen. Komatsu. Matarrese. Wandelt 2007
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Yadav, Komatsu, Wandeit. L, i, H n. Matarrese 2007 — Creminedli et al. corrected and
genecralizedito [+

Hansen YKW esiimaior

~ Till recently only upper limits

-58<fy,
-S5d< oy,

<137 (95%) WMAFP 1 yr

<1714 (95%) WMAF 3 yr refined to -3 e <100 (95%6) by Cremineili etal 06
NB: this is for the local form (ekpyrotic, curvaton), weaker constraints exist for
equilateral configuration (Ghost condensation. DBI low speed of sound modeis)



Tantalising evidence 7

Rediscovery of other
non Gaussian signais?

Noise fluctuation?

Primordial?

27 < fy '@ < 147 (95%CL, a 2.5c result)

Yadav & Wandeit Phys. Rev. Lett. 100, 181301 (2008)
Komatsu et al. have more generous efror bars...




~ |ldeal CMB experiment, using temperature & polarization
could reach Afy ~ 1

»~ For Planck. the Cramer Rao limit is Af,

Yadav, Komatsu and Wandeit. astro-ph/0701921

NB: WMAP-8yr couid reach ~21 (/30 w. 3yr data)




Planck starts from there__.




‘data in less than a yearl + 3 intensive ye
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sign goals

s <

Cosmological science: moving from confirming broad expectations (fiat.
Gaussian, adiabatic, power-law, scale-invanant) to actually detecting highly
revealing deviations.

Possibilities include Q, f,;, (Gu...), Q,sc. . . e 3.04, 1+w, w

— NB: Cosmoiogy has a record of surprises. t DM&DE._ in which CMB played prominent role

Of course other cosmological probes will remain needed
— Toconfirm paradigm by crass-checks (not many now)
— Break FE'?‘?E.’.’T-'F".'Q ﬂ&”EFE’:C.E‘S. in particular low-z possibie vanations of w
‘Planck prior” is assumed by future projects {eg JOEM concepts. Caosmic infiation Probe. CMBFaol)

Planck legacy will also be a unigue set of maps of the microwave polarized sky,
with all induced spin-offs "a la IRAS™




‘A. Frais‘se. C. Ringevald, D. Spergel

& F. R. Bouchetr arXiv:0708.1162
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clusions
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Cosmological science: moving from confirming broad expectations (fiat.
Gaussian, adiabatic, power-law, scale-invanant) to actually detecting highly
revealing deviations.

Possibilities include Q, f,;, (Gu... N1, n,..r. Z2m, Nefi-3.04, 1+w,, v

— NB: Caosmuoilogy has a record of surpn . not | DMEDE_ in which CMB plaved praminent rofe

Of course other cosmological probes will remain needed
— To confirm paradi Q'F‘L..r‘ cross-checks (nat many now)
— Break remsai "?.'F"'Q degeneracies. Iin partircuiar o low-7Z possible vanations of w
‘Planck prior” is assumed by future projects {eg JOEM concepts. Casmuic inflation Probe. CMEBFaoli)

Planck legacy will also be a unigue set of maps of the microwave polarized sky,
with all induced spin-offs “a la IRAS™




‘A. Frais;se. C. Ringevald, D. Spergel

& F. R. Bouchetr arXiv:0708.1162
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CMB unique in tigi
:Hmﬂar"”‘“'ai \

Cosmological science: moving from confirming broad expeciations (flai.
Gaussian, adiabatic, power-law, scale-invanant) to actually detecting highly
revealing deviations.

Possibilities include Q, f,, (Gu...), q, ~1,.n,.. r. 2m, Nefi-3.04, 1+w, w

W= r - E i i T =T —= P —
— NB: Cosmuoiogy | a record of su DMEDE. in which CME playved prominent role

Of course other cosmological probes will remain needed
— To confirm paradi gnT Dy cross-ciecKs (nat many now)
— Breask FE""“E"’?.'F‘Q degeneracies. In particular low-£ possiDie vanahons of w
Planck priar” is assumed by future projects (eg JOEM concepts. Casmuc infliation Probe. CMBFai

Planck legacy will also be a unigue set of maps of the microwave polarized sky,
with all induced spin-offs “a la IRAS™
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lori=ntion) semsitivity ( —60 pk orcmin

Plamck will be limited by iTs

Lnceed, 1T was concerved To o2 imrted Dy enoclartssed Torsgrounads confuss:




