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Science Questions

X Uninteresting question:

AWhat happens when | crash two gold
nuclei together?

v Interesting question:

»Are there new states of matter at the
highesttemperatures and densities?

$ Compelling question:

=" What fundamental thermal/ properties
of our gauge theories of nature
can be investigated experimentally?
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RHIC would create
a quark-gluon plasma:
— 3 “gas’” of weakly
interacting
quarks and gluons
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o Latlice within ~80% of “ideal gas” Stefan-Bolzmann limit

—~ Quark-Gluon Plasma is a weakly coupled ‘plasma’




o Latlice within ~80% of “ideal gas™ Stefan-Bolzmann limit

—~ Quark-Gluon Plasma is a weakly coupled ‘plasma’

16.0 Recall per =(7) o
- _ﬂTr*jassaless g9 1 74 — 30
il 1
12.0 | T —_) ’

8.0 - D. Kaczmarel et al.. Phys. Rev. D 2. 034021(2000) | |

6.0 - 3 flavour

4.0 1 2 flavour —————

20 7
T/,

@a:@PGO
41 N 1 5 3 N 3 K 3 M o R = A O



The Plan circa 2000

* U.e- RHIC’s unprecedented capabilities

ad LargevVs =
¢ Access to reliable pQCD probes
# Clear separation of valence baryon number and glue

¢ To provide definitive experimental evidence for/against
Quark Gluon Plasma (QGP)

2 Polarized p+p collisions




The Plan circa 2000

» Ué;-RHIC’s unprecedented capabilities
ad Large Vs =

¢ Access to reliable pQCD probes
# Clear separation of valence baryon number and glue

& To provide definitive experimental evidence for/against
Quark Gluon Plasma (QGP)

2 Polarized p+p collisions

e Two small detectors, two large detectors
a2 Comy




The Plan circa 2000
e Use RHIC’s unprecedented capabilities
ad Large Vs =

¢ Access to reliable pQCD probes
& Clear separation of valence baryon number and glue

& To provide definitive experimental evidence for/against
Quark Gluon Plasma (QGP)

a Polarized p+p collisions

e Two small detectors, two large detectors
a2 Complementary capabilities
2 Small detectors envisioned




The Plan circa 2000
e Use RHIC’s unprecedented capabilities
ad Large Vs =

¢ Access to reliable pQCD probes
# Clear separation of valence baryon number and glue

¢ To provide definitive experimental evidence for/against
Quark Gluon Plasma (QGP)

a Polarized p+p collisions

e Two small detectors, two large detectors
a2 Complementary capabilities

a2 Small detectors envisioned to have 3-5 year lifetime
a Large detectors ~ faciliti




The Plan circa 2000

. UeRHlC’s unprecedented capabilities
a LargevVs =

¢ Access to reliable pQCD probes
& Clear separation of valence baryon number and glue

¢ To provide definitive experimental evidence for/against
Quark Gluon Plasma (QGP)

a Polarized p+p collisions

e Two small detectors, two large detectors
a Complementary capabilities
a2 Small detectors envisioned to have 3-5 year lifetime

a Large detectors ~ facilities
¢ Major capital inve




The Plan circa 2000

P UeRHIC’s unprecedented capabilities
ad LargevVs =

¢ Access to reliable pQCD probes
# Clear separation of valence baryon number and glue

¢ To provide definitive experimental evidence for/against
Quark Gluon Plasma (QGP)

a Polarized p+p collisions

e Two small detectors, two large detectors
a2 Complementary capabilities
a Small detectors envisioned to have 3-5 year lifetime

a Large detectors ~ facilities
¢ Major capital investments
¢lLo




=% The Plan circa 2000

E UeRlC’s unprecedented capabilities
ad LargevVs =

¢ Access to reliable pQCD probes
& Clear separation of valence baryon number and glue

¢ To provide definitive experimental evidence for/against
Quark Gluon Plasma (QGP)

a Polarized p+p collisions

e Two small detectors, two large detectors
a2 Complementary capabilities
a Small detectors envisioned to have 3-5 year lifetime

a Large detectors ~ facilities
¢ Major capital investments
¢ Longer lifetir




== The Plan circa 2000

i

. UeRHIC’s unprecedented capabilities
ad LargevVs =

¢ Access to reliable pQCD probes
& Clear separation of valence baryon number and glue

¢ To provide definitive experimental evidence for/against
Quark Gluon Plasma (QGP)

a Polarized p+p collisions

e Two small detectors, two large detectors
a2 Complementary capabilities
a Small detectors envisioned to have 3-5 year lifetime

a Large detectors ~ facilities
¢ Major capital investments
¢ Longer lifetimes
¢ Potential for upgrades in response to discoveries




RHIC and Its Experiments




ts
=

Y BRAHM

=
0
E
0
o
>
ny
N |
H.
T
c
0
O
-
Y &







iments

7y 0
I

<t
| - T

-
QO
p.
X |
L |
28
=
ok
C
o g
OFf
ol
va

PH ENI

AbdEEuE

-Ft‘




RHIC and Its Experiments




RHIC and Its Experiments

v
!




w

-
-

Tt n hoi b B S5




Since Then...

e Accelerator complex

e Experiments:

e Science

¢ Future



e Accelerator compiex

dJ Routine operation at 2-4 x design luminosity (Au+Au)
a Extraon

e Experiments:

e Science

¢ Future




e

s Since Then...

e Accelerator compiex

dJ Routine operation at 2-4 x design luminosity (Au+Au)
a Extraordinary variety of operational modes
¢ Sp

e Experiments:

e Science

¢ Future




Since Then...

e Accelerator compiex

3 Routine operation at 2-4 x design luminosity (Au+Au)
a Extraordinary variety of operational modes
& Species: Au+Au,d+Au, (

e Experiments:

e Science

o Future



Since Then...

e Accelerator compiex

3 Routine operation at 2-4 x design luminosity (Au+Au)

O Extraordinary variety of operational modes
¢ Species: Au+Au, d+Au, Cu+Cu,gT+p’

& Energies: 22 GeV (Au+Au,ﬁﬁCu+Cu, pl), 56 GeV (Au+Au),
62 GeV (Au+Au,Cu+Cu, pT+pT) , 130 GeV (Aut+Au), "
200 GeV (Au+Au, Cu+Cu, d+AuflpT +pT), 410 GeV (pT), 500 GeV (pT)

e Experiments:

e Science

e Future




e S

.

ij Since Then...

e Accelerator compiex

dJ Routine operation at 2-4 x design luminosity (Au+Au)
O Extraordinary variety of operational modes
& Species: Au+Au, d+Au, Cu+Cu,

¢ Energies: 22 GeV (Aut+Au, Cu+Cu,pl),
62 GeV (Au+Au,Cu+Cu, pT+pT)
200 GeV (Au+Au, Cu+Cu, d+A

e Experiments:

56 GeV (Au+Au),
, 130 GeV (Au+Au), X
,410 GeV (pT), 500 GeV (pT)

e Science

o Future




c e e

Sy Since Then...

e Accelerator compilex

dJ Routine operation at 2-4 x design luminosity (Au+Au)

a Extraordinary variety of operational modes
& Species: Au+Au, d+Au, Cu+Cu,

& Energies: 22 GeV (Au+Au,ACu+Cu, pl), 956 GeV (Aut+Au),
62 GeV (Au+Au,Cu+Cu, pT+pT) , 130 GeV (Au+Au), R
200 GeV (Au+Au, Cu+Cu, d+A ,410 GeV (p1), 500 GeV (pT)

e Experiments:
aJ Worked !

e Science
d More

e Future




Since Then...

e Accelerator compiex
dJ Routine operation at 2-4 x design luminosity (Au+Au)
a0 Extraordinary variety of operational modes

& Species: Au+Au, d+Au, Cu+Cu,

& Energies: 22 GeV (Au+Au,ACu+Cu, pl), 56 GeV (Aut+Au),
62 GeV (Au+Au,Cu+Cu, pT+pT) , 130 GeV (Au+Au),
200 GeV (Au+Au, Cu+Cu, d+A-, 410 GeV (pT), 500 GeV (pT)

e Experiments:
aJ Worked !

e Science
aJ More than 200 refereed publications, among them 100+ PRL’s
a M:

e Future




Since Then...

)

e Accelerator compilex

3 Routine operation at 2-4 x design luminosity (Au+Au)

a Extraordinary variety of operational modes
& Species: Au+Au, d+Au, Cu+Cu,

& Energies: 22 GeV (Au+Au,ACu+Cu,p ),
62 GeV (Au+Au,Cu+Cu, pT+pT)
200 GeV (Aut+Au, Cu+Cu, d+A

e Experiments:
aJ Worked !

e Science

aJ More than 200 refereed publications, among them 100+ PRL’s
O Major discove

e Future

56 GeV (Au+Au),
. 130 GeV (Au+Au),
,410 GeV (pT), 500 GeV (pT)



Since Then...

e Accelerator compiex

dJ Routine operation at 2-4 x design luminosity (Au+Au)

O Extraordinary variety of operational modes
& Species: Au+Au, d+Au, Cu+Cu,

& Energies: 22 GeV (Au+Au,ACu+Cu,p ),
62 GeV (Au+Au,Cu+Cu, pT+pT)
200 GeV (Au+Au, Cu+Cu, d+A

e Experiments:
aJ Worked !

e Science
aJ More than 200 refereed publications, among them 100+ PRL’s
O Major discoveries

o Future

56 GeV (Au+Au),
, 130 GeV (Aut+Au), "
,410 GeV (pT), 500 GeV (pT)



Since Then...

e Accelerator compiex

3 Routine operation at 2-4 x design luminosity (Au+Au)

O Extraordinary variety of operational modes
& Species: Au+Au, d+Au, Cu+Cu,

& Energies: 22 GeV (Au+Au,ACu+Cu, pl), 56 GeV (Aut+Au),
62 GeV (Au+Au,Cu+Cu, pT+pT) , 130 GeV (Aut+Au), "
200 GeV (Au+Au, Cu+Cu, d'!-AL., 410 GeV (pT), 500 GeV (pT)

e Experiments:
2 Worked !
e Science

aJ More than 200 refereed publications, among them 100+ PRL’s
O Major discoveries

e Future

d Demonstrated ability to upgrade
a Keyscienc




_.._,;r_..q-:r-_-——.E;ih“_‘_

 Saimw) ¥ Since Then...

e Accelerator compiex

a1 Routine operation at 2-4 x design luminosity (Au+Au)

a Extraordinary variety of operational modes
& Species: Au+Au, d+Au, Cu+Cu,

¢ Energies: 22 GeV (Aut+Au, Cu+Cu,pl), 56 GeV (Au+Au),
62 GeV (Au+Au,Cu+Cu, pT+pT) 130 GeV (Au+Au),
200 GeV (Au+Au, Cu+Cu, d+A- 410 GeV (pT), 500 GeV (pT)

e Experiments:
O Worked !
e Science

aJ More than 200 refereed publications, among them 100+ PRL’s
O Major discoveries

¢ Future

J Demonstrated ability to upgrade
a Key science questions identi




Since Then...

e Accelerator compiex

3 Routine operation at 2-4 x design luminosity (Au+Au)

O Extraordinary variety of operational modes
& Species: Au+Au, d+Au, Cu+Cu,

& Energies: 22 GeV (Aut+Au,Cu+Cu,pl), 56 GeV (Au+Au),
62 GeV (Au+Au,Cu+Cu, pT+pT) , 130 GeV (Aut+Au),
200 GeV (Au+Au, Cu+Cu, d'l'Al.‘, 410 GeV (pT), 500 GeV (pT)

e Experiments:
aJ Worked !

e Science
3 More than 200 refereed publications, among them 100+ PRL’s
3 Major discoveries

e Future

J Demonstrated ability to upgrade
1 Key science questions identified

a Accelerator and experimental upgrade program
underway to perform that science
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Hydrodynamic flow
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initial spatial asymmetries

| 1. Final State
Yields of produced particles
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dense
matter




Assertion

- Iﬁ thése complicated events, we have
(a posteriori) control over the event geometry:

O Degree of overiap- e.g. [0-10%] “most central” events

“Central™ “Peripheral”

a Orientation with respect to overiap
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Does the huge abundance of final state
particles reflect a {fiermal distribution?:

I el

Yields of produced particles
Thermalization, Hadrochemist
Consistent with
thermal production

T~170 Ma\/ 1. ~ 20 RMa\/
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3. Initial State
Hydrodynamic flow
from
initial spatial asymmetries
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O Strong evidence that final state bulk behavior
reflects the initial state geometry
e Because the initial azimuthal asymmeing
persists in the final state
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e = += (PHENIX) <= p+p (PHENIX)
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e Roughly: 0, T*V =0 — Work-energy theorem
— | VP d(vol) = AE,x = m;— my=AKE;
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o0 Probes of Dense Matter

Q. How dense is the matier?
A. Do pQCD Rutherford scattering on deep interior using
“auto-generated” probes:

dense
matter




Consider measurement of »%sin ptp
collisions at RHIC.

Compare to pQCD calculation
do = for (e, 1) f5,5(26, p1”7)

«parton distribution functions,
for partonsa and b
*measured in DIS, universality

@dolatb—>cid)

perturbative cross-section (NLO)
*requires hard scale

factorization between pdf andcross
section

X D c(Z;:_,ﬂz)

-fragmentation function
*measured in e+e-

Phys. Rev. Lett. 91, 241803 (2003)

d a/dp” (mb GeV ~ ¢?)

(Data-QCD)YQCD

o
e
pr (GeV/c)y
s —
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Why n/s Matters

e Any engineer will tell you

1 Kinematic viscosity n / p ~ [Velocity] x [Length]
is what matters

e Any relativist will tell you
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e Any thermodynamicist will tell you
Q+p=Ts (atpz=0)

e So
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e The initial discoveries at RHIC
clearly demonstrated:

= Essentially perfect fluid behavior
of extraordinarily dense matter

‘=~ Matter about as far away from
“asymptotically free gas” as possible

o How to quantify these statements?
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Viscosity 101
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e Parameterizes o x f
momentum transport
between “layers”

= Viscosity ~ mean free path

n~np4i,
aSmall viscosity = Small A o
Q “ldeal hydro” = Ay —>0 2 >0
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Exploit Maldacena’s
“D-dimensional strongly coupled gauge theory < (D+1)-dimensional

stringy gravity”
Thermalize with massive black brane

Calculate viscosity 1 = “Area”16nG
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How Was The Bound Derived?

Exploit Maldacena’s
“D-dimensional strongly coupled gauge theory < (D+1)-dimensional

stringy gravity™ h
Thermalize with massive black brane g
Calculate viscosity 1| = “Area”161G \ Au
o Tnfinite
Normalize by entropy (density) s =“Area”/ 4G “Area” !
Dividing ouft the infinite “areas” : Q T ( h ) |
s k 4rx

See next talk: K. Rajagopal

Conjeciured to be a lower bound “for all relativistic quantum field
theories at finite temperature and zero chemical potential’.

See“ Viscosity in strongly interacting quantum field theories from
black hole physics”, P. Kovtun, D.T. Son, A.O. Starinets,
Phys.Rev.Lett.94:111601, 2005, hep-th/0405231
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e Damping of
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cold Fermigas

(All figures courtesy
John Thomas,
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Causal,

second-order expansion:

a1 Relativistic Fluid Dynamics:
Physics for
Many Different Scales

e Neglectvarious terms
atyourownrisk:

2 Natsuume and Okamura,
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Visual Summary

e EFACH

a Indicative
of strong
coupled
“QGP”

2 Elliptic flow in Au + Au collisions at
VS= 130 GeV,

STAR Collaboration, (K.H.
Ackermann efal).

Phys.Rev.Lett. 86:402-407.2001

2 345 citations

1 Suppression of hadrons with large
transverse momentum in central
Au+Au collisions at Vg,,, =130 GeV,
PHENIX Collaboration (K. Adcox ef
al.), Phys.Rev.Lett. 88:022301.2002

1 429 citations
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