Title: The geometry of the AdS/CFT correspondence

Date: May 08, 2009 04:30 PM

URL: http://pirsa.org/08050063

Abstract: I will describe how the geometry of supersymmetric AdS solutions of type IIB string theory may be rephrased in terms of the geometry of generalized (in the sense of Hitchin) Calabi-Yau cones. Calabi-Yau cones, and hence Sasaki-Einstein manifolds, are a special case, and thus the geometrical structure described may be considered a form of generalized Sasaki-Einstein geometry. Generalized complex geometry naturally describes many features of the AdS/CFT correspondence. For example, a certain type changing locus is identified naturally with the moduli space of the dual CFT. There is also a generalized Reeb vector field, which defines a foliation with a transverse generalized Hermitian structure. For solutions with non-zero D3-brane charge, the generalized Calabi-Yau cone is also equipped with a canonical symplectic structure, and this captures many quantities of physical interest, such as the central charge and conformal dimensions of certain operators, in the form of Duistermaat-Heckman type integrals.

Pirsa: 08050063 Page 1/34

The geometry of the AdS/CFT correspondence

James Sparks (Oxford)

Based on work with M. Gabella, J. P. Gauntlett, E. Palti, D. Waldram

Connections in Geometry and Physics May 8-10, 2009, Perimeter Institute

Pirsa: 08050063 Page 2/3

Anti de Sitter spacetime in d + 1 dimensions is the maximally symmetric (under SO(d, 2)) solution to the Einstein equation Ric[g] = -dg. This is the Lorentz signature version of hyperbolic space (H, g_H) .

$$H \, = \, \{ x \in \mathbb{E}^{d+1} \mid |x| < 1 \} \; ,$$

$$g_{H} = \frac{4 \sum_{i=1}^{d+1} dx_{i} \otimes dx_{i}}{(1-|x|^{2})^{2}}.$$

May compactify H to $\bar{H}=\{|x|\leq 1\}$ with metric $g_{\bar{H}}=f^2g_H$, where f is a smooth positive function on H with a simple zero on $\partial \bar{H}=S^d$.

Induces the standard conformal structure $[g_{S^d}]$ on S^d .

AdS/CFT conjecture: Quantum gravity on H = conformal field theory on S^d

Pirsa: 08050063

This is best understood in string theory, or rather its supergravity limits. Here I shall focus on type IIB supergravity. This is a form of General Relativity on a ten-manifold (M,g), with a very special matter content.

In addition to the (Lorentz signature) metric g on M, there are also form fields $\phi \in \Omega^0(M,\mathbb{R})$, $H \in \Omega^3(M,\mathbb{R})$, $F_\alpha \in \Omega^\alpha(M,\mathbb{R})$, $\alpha = 1,3,5$, with $*F_5 = F_5$. These must satisfy the Bianchi identities dH = 0, $(d - H \land)F = 0$ $(F = F_1 + F_3 + F_5)$, and Einstein equations

Pirsa: 08050063 Page 4/34

This is best understood in string theory, or rather its supergravity limits. Here I shall focus on type IIB supergravity. This is a form of General Relativity on a ten-manifold (M,g), with a very special matter content.

In addition to the (Lorentz signature) metric g on M, there are also form fields $\phi \in \Omega^0(M,\mathbb{R})$, $H \in \Omega^3(M,\mathbb{R})$, $F_\alpha \in \Omega^\alpha(M,\mathbb{R})$, $\alpha = 1,3,5$, with $*F_5 = F_5$. These must satisfy the Bianchi identities dH = 0, $(d - H \land)F = 0$ $(F = F_1 + F_3 + F_5)$, and Einstein equations

$$\begin{split} \mathrm{Ric}[g]_{ij} \;\; &= \;\; \frac{1}{2} \partial_i \phi \partial_j \phi + \frac{1}{2} \mathrm{e}^{2\phi} \mathsf{F}_i \mathsf{F}_j - \frac{1}{8} g_{ij} \left(\mathrm{e}^{-\phi} |\mathsf{H}|^2 + \mathrm{e}^{\phi} |\mathsf{F}_3|^2 \right) \\ &\quad + \frac{1}{4} \left(\mathrm{e}^{-\phi} \mathsf{H}_{imn} \mathsf{H}_j^{\ mn} + \mathrm{e}^{\phi} \mathsf{F}_{imn} \mathsf{F}_j^{\ mn} \right) + \frac{1}{96} \mathsf{F}_{imnpq} \mathsf{F}_j^{\ mnpq} \;, \\ \nabla^2 \phi \;\; &= \;\; \mathrm{e}^{2\phi} |\mathsf{F}_1|^2 - \frac{1}{2} \mathrm{e}^{-\phi} |\mathsf{H}|^2 + \frac{1}{2} \mathrm{e}^{\phi} |\mathsf{F}_3|^2 \;, \\ \mathrm{d}(\mathrm{e}^{-\phi} * \mathsf{H}) \;\; &= \;\; -\mathsf{F}_5 \wedge \mathsf{F}_3 + \mathrm{e}^{\phi} \, \mathsf{F}_1 \wedge * \mathsf{F}_3 \;, \\ \mathrm{d}^{\dagger}(\mathrm{e}^{2\phi} \mathsf{F}_1) \;\; &= \;\; \mathrm{e}^{\phi} \langle \mathsf{H}, \mathsf{F}_3 \rangle, \qquad \mathrm{d}(\mathrm{e}^{\phi} * \mathsf{F}_3) = \; \mathsf{F}_5 \wedge \mathsf{H} \;. \end{split}$$

Pirsa: 08050063

This theory is very special. In particular, the above system of second order equations are integrability conditions for a first order system of equations for a spinor $\epsilon \in \Gamma(S^+M)$:

$$\begin{split} 0 &= \left(\nabla_{i} + \frac{i}{4} \mathrm{e}^{\phi} \, \mathsf{F}_{i} + \frac{i}{192} \mathsf{F}_{imnpq} \varGamma^{mnpq} \right) \epsilon \\ &- \frac{1}{96} \left(\mathsf{G}_{mnp} \varGamma_{i}^{\; mnp} - 9 \mathsf{G}_{imn} \varGamma^{mn} \right) \epsilon^{c} \; , \\ 0 &= \frac{i}{24} \mathsf{G}_{ijk} \varGamma^{ijk} \epsilon + \frac{i}{2} \left(\partial_{i} \phi + i \mathrm{e}^{\phi} \, \mathsf{F}_{i} \right) \varGamma^{i} \epsilon^{c} \; . \end{split}$$

Here I have defined $G \equiv -ie^{\phi/2}F_3 - e^{-\phi/2}H \in \Omega^3(M,\mathbb{C})$.

 Γ_{i_1} , $i=1,\ldots,10$, generate the Clifford algebra for g: $\Gamma_{i}\Gamma_{j}+\Gamma_{j}\Gamma_{i}=2g_{ij}$ (and $\Gamma_{i_1\cdots i_n}\equiv\Gamma_{[i_1}\cdots\Gamma_{i_n]}$).

Note: when $\phi = \mathbf{H} = \mathbf{F}_{\alpha} = \mathbf{0}$, this reduces to a parallel spinor $\nabla \epsilon = \mathbf{0}$, which is well-known to imply Ricci-flatness as an integrability condition.

Page 0/34

Definition: Any solution to the first order system is called a supersymmetric (SUSY) supergravity solution.

For applications to AdS/CFT, we are interested in product solutions $M = AdS_5 \times Y$, where (Y, g_Y) is a compact Riemannian 5-manifold, and

$$g = e^{2\Delta} (g_{AdS} + g_Y) ,$$

where $\Delta \in \Omega^0(Y, \mathbb{R})$. SO(4, 2)-invariance \Rightarrow all form fields are pull-backs of forms on Y, except F_5 :

$$F_5 = f(vol_{AdS} + vol_Y)$$
,

where $\mathbf{f} \in \mathbb{R}$ is a constant by the Bianchi identity.

Pirsa: 08050063

Each SUSY supergravity solution of this form gives rise to a (super-)conformal field theory on S^4 , via the AdS/CFT conjecture.

1010

A special class of SUSY solutions is given by taking $\phi = H = F_1 = F_3 = 0$, but F_5 (hence f) non-zero.

Then the first order supersymmetry equations reduce to

$$\left(\nabla_{\zeta} + \frac{\mathrm{i}}{2}\zeta\cdot\right)\psi = 0 \ ,$$

 $\forall \zeta \in \Gamma(\mathsf{TY})$, where \cdot denotes Clifford multiplication for $(\mathsf{Y},\mathsf{g}_{\mathsf{Y}})$, and $\psi \in \Gamma(\mathsf{SY})$ is said to be a Killing spinor on Y .

It is well-known that this is equivalent to (Y, g_Y) being a Sasaki-Einstein 5-manifold. In particular, g_Y is Einstein with positive Ricci curvature: $Ric[g_Y] = 4g_Y$. An essentially equivalent definition is

Definition: (Y, g_Y) is Sasaki-Einstein iff the metric cone $(\mathbb{R}_{>0} \times Y, dr^2 + r^2g_Y)$ is both Kähler and Ricci-flat.

Page 0/34

This cone metric also appears naturally in ten dimensions, for general solutions. We write the AdS_5 metric in a Poincaré patch as

$$g_{AdS} = \frac{dr^2}{r^2} + r^2 g_{\mathbb{E}^{3,1}}$$
.

Then

$$g = e^{-\frac{\phi}{2}} \left(e^{2A} g_{\mathbb{E}^{3,1}} + g_X \right) \; ,$$

where

$$e^{2A} \equiv e^{2\Delta + \frac{\phi}{2}} r^2 \; , \qquad g_X = \frac{e^{2A}}{r^4} (\mathrm{d} r^2 + r^2 g_Y) \; .$$

Hence we may equivalently think of a SUSY AdS_5 solution as a SUSY $\mathbb{E}^{3,1} \times X$ solution, where the "internal manifold" $X \cong \mathbb{R}_{>0} \times Y$ is (conformal to) a cone.

Page 9/34

(Graña-Minasian-Petrini-Tomasiello) showed all SUSY $\mathbb{E}^{3,1} \times X$ solutions require that X is generalized Calabi-Yau, in the sense of (Hitchin).

Generalized geometry studies geometry of $TX \oplus T^*X$, rather than TX.

(More generally generalized tangent bundle, an extension of TX by T^*X given by a connective structure on a gerbe with curvature the 3-form H.)

Natural O(d, d)-invariant metric on this bundle $(\dim X = d)$: $\eta(V, V) = i_{\zeta}\alpha$. Here $V = \zeta + \alpha$, $\zeta = \text{vector field}$, $\alpha = \text{one-form}$.

Lie bracket replaced by the (H-twisted) Courant bracket:

$$[\zeta + \alpha, \chi + \beta]_{\mathsf{H}} \equiv [\zeta, \chi]_{\mathrm{Lie}} + \mathcal{L}_{\zeta}\beta - \mathcal{L}_{\chi}\alpha - \frac{1}{2}\mathrm{d}(\mathsf{i}_{\zeta}\beta - \mathsf{i}_{\chi}\alpha) + \mathsf{i}_{\chi}\mathsf{i}_{\zeta}\mathsf{H} \; .$$

Note so(T
$$\oplus$$
 T*) = Λ^2 (T \oplus T*) = End(T) \oplus Λ^2 T* \oplus Λ^2 T.

In particular, there is the orthogonal B-transform

$$\zeta + \alpha \rightarrow \zeta + (\alpha - i\zeta\omega)$$
,

where ω is a two-form (think of as a skew map $\omega: T \to T^*$).

Closed B-transforms are symmetries of the Courant bracket \Rightarrow automorphism group in generalized geometry is $\mathrm{Diff}(X) \ltimes \Omega^2_{\mathrm{closed}}(X)$ (more precisely, should replace last factor with curvatures of unitary line bundles on X, gerbey).

Infinitesimally, generated by vector field χ and two-form $\omega = \mathrm{d}\beta$, then the generalized Lie derivative of $\mathbf{U} = \zeta + \alpha$ along $\mathbf{V} = \chi + \beta$ is

$$\mathbb{L}_{V}U = [\chi, \zeta]_{Lie} + (\mathcal{L}_{\chi}\alpha - i_{\zeta}d\beta) .$$

Page 1734

A generalized almost complex structure \mathcal{J} is a section of $\operatorname{End}(\mathsf{T} \oplus \mathsf{T}^*)$, orthogonal wrt η , $\mathcal{J}^2 = -1$.

 $\pm i$ eigenspaces L, $\bar{L} \subset (T \oplus T^*) \otimes_{\mathbb{R}} \mathbb{C}$ are maximal isotropic.

Example: almost complex structure I, almost symplectic form ω :

$$\mathcal{J}_1 = \begin{pmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{0} & -\mathbf{I}^* \end{pmatrix}, \ \mathcal{J}_2 = \begin{pmatrix} \mathbf{0} & \omega^{-1} \\ -\omega & \mathbf{0} \end{pmatrix}.$$

By definition, ${\mathcal J}$ is integrable iff ${\mathbf L}$ is closed under the (twisted) Courant bracket.

For H=0, \mathcal{J}_1 , \mathcal{J}_2 integrable iff I is integrable, $d\omega=0$, respectively.

Page 12/34

The standard spin representation of Spin(d, d) is simply the (complexified) bundle of forms $\mathcal{S}X = \Lambda(T^*X)$ on X. Reducible: $\mathcal{S}_{\pm}X = \Lambda^{\mathrm{even/odd}}T^*X$.

Clifford action of V on spinor $\Omega \in \Omega^*(X, \mathbb{C})$ is $V \cdot \Omega = i_{\zeta}\Omega + \alpha \wedge \Omega$.

generalized almost complex structures $\stackrel{1-1}{\longleftrightarrow}$ pure spinor lines $\subset \Lambda(\mathsf{T}^*\mathsf{X}\otimes\mathbb{C})$.

Pure spinor $\Omega =$ spinor with maximal isotropic annihilator space $L_{\Omega} \subset (T \oplus T^*) \otimes \mathbb{C}$. Then \mathcal{J} is defined by saying $L_{\Omega} = +i$ eigenspace of \mathcal{J} .

We say two generalized almost complex structures \mathcal{J}_1 , \mathcal{J}_2 are compatible if $[\mathcal{J}_1,\mathcal{J}_1]=0$ and $-\mathcal{J}_1\mathcal{J}_2\equiv \mathbf{G}$ is a generalized metric: $\frac{1}{2}(1\pm \mathbf{G})$ projects onto \mathbf{C}_{\pm} , where η is \pm -ve definite on \mathbf{C}_{\pm} . May write

$$\mathsf{G} = \left(\begin{array}{cc} \mathsf{g}_\mathsf{X}^{-1}\mathsf{B} & \mathsf{g}_\mathsf{X}^{-1} \\ \mathsf{g}_\mathsf{X} - \mathsf{B}\mathsf{g}_\mathsf{X}^{-1}\mathsf{B} & -\mathsf{B}\mathsf{g}_\mathsf{X}^{-1} \end{array} \right) = \left(\begin{array}{cc} 1 & 0 \\ -\mathsf{B} & 1 \end{array} \right) \left(\begin{array}{cc} 0 & \mathsf{g}_\mathsf{X}^{-1} \\ \mathsf{g}_\mathsf{X} & 0 \end{array} \right) \left(\begin{array}{cc} 1 & 0 \\ \mathsf{B} & 1 \end{array} \right) \;,$$

Where $g_X = \text{metric on } X$, $B = \text{two-form. In fact, we may identify } dB = H_{Page-13/34}$

The conditions for a SUSY $\mathbb{E}^{3,1} \times \mathbf{X}$ solution may be recast in terms of two compatible generalized almost complex structures \mathcal{J}_{-} , \mathcal{J}_{+} (Graña et al), or more precisely sections Ω_{-} , Ω_{+} of the corresponding pure spinor lines.

For an AdS₅ solution, after some work these may be written

$$d\Omega_{-} = 0$$
,
 $d\Omega_{+} = dA \wedge \bar{\Omega}_{+} + \frac{i}{8}e^{3A}e^{-B} \star (F_{1} - F_{3} + F_{5})$,

where $\star=$ Hodge star for g_X . Here $|\Omega_{\pm}|^2=\frac{1}{8}\mathrm{e}^{6A-2\phi}$, where the norm is given by the Mukai pairing.

In particular, $\mathrm{d}\Omega_-=0\Rightarrow\mathcal{J}_-$ is integrable, and **X** is generalized Calabi-Yau.

In general, \mathcal{J}_+ is not integrable \Rightarrow generalized Hermitian structure.

Page 14/34

We may say X, equipped with Ω_- , is a generalized Calabi-Yau cone.

Recall \exists vector field $\mathbf{r}\partial_{\mathbf{r}}$ on $\mathbf{X}=\mathbb{R}_{>0}\times\mathbf{Y}$. May show

$$\mathcal{L}_{r\partial_r}\Omega_{\pm}=3\Omega_{\pm}\;,$$

and hence

$$\mathbb{L}_{r\partial_r}\mathcal{J}_{\pm}=0\;.$$

Thus $r\partial_r$ is a generalized holomorphic vector field (for \mathcal{J}_-). Since $G = -\mathcal{J}_-\mathcal{J}_+$, also $\mathbb{L}_{r\partial r}G = 0$ and $r\partial_r$ is generalized Killing.

In general, $\mathbb{L}_V G = 0 \Rightarrow \mathcal{L}_\zeta g_X = 0$ and $\mathcal{L}_\zeta B = d\alpha$.

In the Sasaki-Einstein/Calabi-Yau case, we note that

$$\Omega_{-} = \frac{1}{8}\Omega_{3,0} ,$$

$$\Omega_{+} = -\frac{ir^{3}}{8} \exp\left(\frac{i}{r^{2}}\omega_{1,1}\right) ,$$

where $\Omega_{3,0}$ is the holomorphic (3,0)-form and $\omega_{1,1}$ is the Kähler two-form on X.

It is well-known that $r\partial_r$ is a holomorphic vector field. Moreover the Reeb vector field

$$\xi \equiv I(r\partial_r)$$
,

where I = complex structure on X, is holomorphic, Killing, and unit length on $Y = \{r = 1\} \subset X$.

Page 10/34

By analogy with the Calabi-Yau case, we define

$$\xi = \mathcal{J}_{-}(r\partial_r)$$
.

Note this is now, in general, a generalized vector field. It is immediate that

$$\mathbb{L}_{\xi}\Omega_{-} = \mathrm{d}(\xi \cdot \Omega_{-}) = -\mathrm{id}(r\partial_{r} \cdot \Omega_{-}) = -\mathrm{i}\mathcal{L}_{r\partial_{r}}\Omega_{-} = -3\mathrm{i}\Omega_{-} ,$$

and hence $\mathbb{L}_{\xi} \mathcal{J}_{-} = 0$. Thus ξ is also generalized holomorphic.

After considerable effort, one can use the other SUSY equation to prove

$$L_{\xi}\Omega_{+}=0,$$

implying ξ is also generalized Killing. May also show that the generalized Lie derivative of $e^{-B}\mathbf{F}$ vanishes $\Rightarrow \xi$ generates full symmetry of the solution.

Pirsa: 08050063 Page 17/3

In the Sasaki-Einstein/Calabi-Yau case, we note that

$$\Omega_{-} = \frac{1}{8}\Omega_{3,0} ,$$

$$\Omega_{+} = -\frac{ir^{3}}{8} \exp\left(\frac{i}{r^{2}}\omega_{1,1}\right) ,$$

where $\Omega_{3,0}$ is the holomorphic (3,0)-form and $\omega_{1,1}$ is the Kähler two-form on X.

It is well-known that $r\partial_r$ is a holomorphic vector field. Moreover the Reeb vector field

$$\xi \equiv I(r\partial_r)$$
,

where I = complex structure on X, is holomorphic, Killing, and unit length on $Y = \{r = 1\} \subset X$.

Fage 10/34

By analogy with the Calabi-Yau case, we define

$$\xi = \mathcal{J}_{-}(r\partial_r)$$
.

Note this is now, in general, a generalized vector field. It is immediate that

$$\mathbb{L}_{\xi}\Omega_{-} = \mathrm{d}(\xi \cdot \Omega_{-}) = -\mathrm{i}\mathrm{d}(r\partial_{r} \cdot \Omega_{-}) = -\mathrm{i}\mathcal{L}_{r\partial_{r}}\Omega_{-} = -3\mathrm{i}\Omega_{-} ,$$

and hence $\mathbb{L}_{\xi} \mathcal{J}_{-} = 0$. Thus ξ is also generalized holomorphic.

After considerable effort, one can use the other SUSY equation to prove

$$L_{\xi}\Omega_{+}=0,$$

implying ξ is also generalized Killing. May also show that the generalized Lie derivative of $e^{-B}\mathbf{F}$ vanishes $\Rightarrow \xi$ generates full symmetry of the solution.

Pirsa: 08050063

A general pure spinor Ω may be written

$$\Omega = \alpha \theta_1 \wedge \cdots \wedge \theta_k \wedge e^{-b+i\omega}$$

where $\alpha =$ complex function, θ_i are complex one-forms, and \mathbf{b} , ω are real two-forms. Here $\mathbf{k} \in \mathbb{N}$ is called the type.

Assuming X is not Calabi-Yau (everywhere type 3), on a dense open set Ω_- is type 1:

$$\Omega_{-} = \theta \wedge e^{-b_{-} + i\omega_{-}} ,$$

where $\theta = \text{complex one-form}$.

The locus where Ω_{-} becomes type 3 is precisely where a pointlike (space-filling) probe D3-brane on X is supersymmetric. May show this locus is Kähler in the induced structure. In AdS/CFT, this is naturally interpreted as the moduli space of the conformal field theory.

Pirsa: 08050063

Page 20/34

Let's switch to the other pure spinor, Ω_+ . May rewrite the single complex equation as

$$d(e^{-A}Re\Omega_{+}) = 0,$$

 $d(e^{A}Im\Omega_{+}) = \frac{1}{8}e^{4A}e^{-B} \star (F_{1} - F_{3} + F_{5}).$

Assuming $F_5 \neq 0$ ($\Leftrightarrow f \neq 0$), we see Ω_+ is type 0. Physically, $F_5 \neq 0$ says the solution has non-zero D3-brane charge.

After some calculation, may show

$$\varOmega_{+} = -\frac{i}{32} f r^4 e^{-A} e^{-b_{+} + i e^{2A} r^{-4} \omega_{+}} \; . \label{eq:Omega_parameter}$$

Page 2 1/34

This implies

$$\frac{f^2}{16}e^{-2A+2\phi}r^{-4}\frac{1}{3!}\omega_+^3 = vol_X$$

is the Riemannian volume form of (X, g_X) , implying the two-form ω_+ is non-degenerate, and also

$$d\omega_+=0.$$

Thus for solutions with non-zero D3-brane charge, X is also equipped with a canonical symplectic structure! This was surprising, as Ω_+ is not integrable.

Note: In the Calabi-Yau case, $\omega_+ = \omega_{1,1}$ is simply the Kähler form.

Page 22/34

Let's switch to the other pure spinor, Ω_+ . May rewrite the single complex equation as

$$d(e^{-A}Re\Omega_{+}) = 0,$$

 $d(e^{A}Im\Omega_{+}) = \frac{1}{8}e^{4A}e^{-B} \star (F_{1} - F_{3} + F_{5}).$

Assuming $F_5 \neq 0$ ($\Leftrightarrow f \neq 0$), we see Ω_+ is type 0. Physically, $F_5 \neq 0$ says the solution has non-zero D3-brane charge.

After some calculation, may show

$$\varOmega_{+} = -\frac{i}{32} f r^{4} e^{-A} e^{-b_{+} + i e^{2A} r^{-4} \omega_{+}} .$$

Page 23/34

This implies

$$\frac{f^2}{16}e^{-2A+2\phi}r^{-4}\frac{1}{3!}\omega_+^3 = vol_X$$

is the Riemannian volume form of (X, g_X) , implying the two-form ω_+ is non-degenerate, and also

$$d\omega_+=0.$$

Thus for solutions with non-zero D3-brane charge, X is also equipped with a canonical symplectic structure! This was surprising, as Ω_+ is not integrable.

Note: In the Calabi-Yau case, $\omega_+ = \omega_{1,1}$ is simply the Kähler form.

Fage 24/34

May check $\mathcal{L}_{r\partial_r}\omega_+=2\omega_+$ and hence

$$\omega_+ = \frac{1}{2} \mathrm{d}(\mathsf{r}^2 \sigma) \; ,$$

where $\sigma = (\text{pull-back of})$ a contact one-form on $\mathbf{Y} = \{\mathbf{r} = 1\} \subset \mathbf{X}$.

Moreover,

$$\xi_{\mathsf{v}} \lrcorner \sigma = 1, \qquad \xi_{\mathsf{v}} \lrcorner \mathrm{d}\sigma = 0 \; ,$$

where $\xi_{\rm v}=$ vector component of $\xi\Rightarrow$ may call ξ a generalized Reeb vector field.

This generalizes the Sasaki-Einstein case, where all of these formulae also hold. In general, $|\xi_v|$ | $_{Y}$ is not constant, but it is nowhere zero, and hence defines a one-dimensional foliation of Y.

Pirsa: 08050063 Page 25/3

There are some nice physical applications of these formulae. The central charge $a\in\mathbb{R}$ of a solution is defined by

$$a \equiv \frac{\int_{\mathsf{Y}} e^{8\Delta} \operatorname{vol}_{\mathsf{Y}}}{2(2\pi)^5} .$$

This is an important quantity in the dual conformal field theory, essentially a count of massless degrees of freedom. In particular, if ξ_v generates a U(1) action – that is, all its orbits are closed – the field theory implies $a \in \mathbb{Q}$.

The central charge a of the dual field theory is given by the contact volume

$$a = \frac{(2\pi)^3 N^2}{4 \int_{Y} \sigma \wedge d\sigma \wedge d\sigma}.$$

Here we have imposed flux quantization:

$$\mathbb{Z} \ni \mathsf{N} = \frac{1}{(2\pi)^4} \int_{\mathsf{Y}} (\mathsf{F}_5 + \mathsf{H} \wedge \mathsf{C}_2) \;.$$

Pirsa: 08050063

Suppose ξ_V generates a U(1) action. This is locally free (since ξ_V is nowhere zero) $\Rightarrow V = Y/U(1) = \text{orbifold}$, $\mathcal{L} = Y = U(1)$ orbibundle over V. Then the contact volume is (essentially) just the Chern number $\int_V c_1(\mathcal{L})^2 \in \mathbb{Q}$. This proves $a \in \mathbb{Q}$ is essentially just a Chern number.

One may also write

$$a = \frac{(2\pi)^3 N^2}{4 \int_X e^{-r^2/2} \frac{\omega_+^3}{3!}}.$$

This is a Duistermaat-Heckman integral, where $\mathcal{H}=\mathbf{r}^2/2=$ Hamiltonian function for $\xi_{\mathbf{v}}$: $\mathrm{d}\mathcal{H}=-\xi_{\mathbf{v}}\lrcorner\omega_{+}$.

This formerly localizes where $\xi_{\rm v}=0$, which is at the tip of the cone. One can obtain a general localization formula, in terms of Chern classes and weights, given an equivariant symplectic resolution of (X, ω_+) (Martelli-JFS-Yau). Particularly simple when (X, ω_+) is symplectic toric.

Pirsa: 08050063

Page 27/34

Also of interest are certain three-submanifolds Σ_3 of Y. The cones over these are generalized complex submanifolds of X, in the sense of (Gualtieri). This may be phrased as a generalized calibration condition.

These submanifolds may be identified with certain operators \mathcal{O}_{Σ_3} in the dual conformal field theory. Skipping the details, and the physics, these have conformal dimension (eigenvalue under rescalings)

$$\Delta(\mathcal{O}_{\Sigma_3}) = \frac{2\pi \mathsf{N} \int_{\Sigma_3} \sigma \wedge \mathrm{d}\sigma}{\int_{\mathsf{Y}} \sigma \wedge \mathrm{d}\sigma \wedge \mathrm{d}\sigma} \; .$$

The field theory again predicts these are rational numbers for ξ_v generating a U(1) isometry. Indeed, the above is essentially the Chern number $\int_{-\infty}^{\infty} c_1(\mathcal{L})$, where $\Sigma_2 = \Sigma_3/\mathsf{U}(1)$.

Pirsa: 08050063

Example: There are not many known non-Sasaki-Einstein examples. In fact it is only in recent years that Sasaki-Einstein geometry (in particular constructions, examples, obstructions) has flourished.

The (Pilch-Warner) solution is defined on $M = AdS_5 \times S^5$. In fact, it is in some sense the (end-point of a) deformation of the round Einstein metric on S^5 :

$$g_{Y} = \frac{1}{9} \left[6d\vartheta^{2} + \frac{6\cos^{2}\vartheta}{3 - \cos 2\vartheta} (\sigma_{1}^{2} + \sigma_{2}^{2}) + \frac{6\sin^{2}2\vartheta}{(3 - \cos 2\vartheta)^{2}} \sigma_{3}^{2} + 4\left(d\varphi + \frac{2\cos^{2}\vartheta}{3 - \cos 2\vartheta} \sigma_{3}\right)^{2} \right],$$

where $0 \le \vartheta \le \frac{\pi}{2}$, $0 \le \varphi \le 2\pi$, and σ_i , i=1,2,3, are left-invariant one-forms on SU(2).

We also have $e^{4\Delta} = \frac{f}{8}(3 - \cos 2\vartheta)$, and non-zero F_3 and H.

Page 29/34

One can show this solution is toric $(U(1)^3)$ invariant, and $(X, \omega_+) = \text{standard}$ toric symplectic structure on $\mathbb{R}^6 \setminus \{0\}$.

Reeb vector field is computed to be $\xi_{\rm v} = \frac{3}{2} \frac{\partial}{\partial \phi_1} + \frac{3}{4} \frac{\partial}{\partial \phi_2} + \frac{3}{4} \frac{\partial}{\partial \phi_2}$. The central charge is then easily computed by localization:

$$\frac{N^2}{4a} = \sum_{\rm fixed pts} \prod_{i=1}^3 \frac{1}{\langle \xi, u_i \rangle} = \frac{1}{\frac{3}{2} \cdot \frac{3}{4} \cdot \frac{3}{4}} = \frac{32}{27} \; ,$$

where u_i = tangent space weights, agreeing with a conformal field theory calculation.

The type changing locus of Ω_- is a copy of $\mathbb{C}^2 \subset \mathbb{R}^6$ given by $\vartheta = 0$. The dual conformal field theory is known explicitly (it is the IR fixed point of a mass deformation of $\mathcal{N}=4$ SYM), and its moduli space is indeed \mathbb{C}^2 .

Pirsa: 08050063 Page 30/34

Some open problems/questions:

- One can perform a generalized reduction (in the sense of (Bursztyn-Cavalcanti-Gualtieri)) of X along ξ, to obtain a transverse generalized Hermitian structure to the corresponding foliation of Y. This structure is a generalization of Fano Kähler-Einstein geometry (in progress).
- In the Sasaki-Einstein case, one can also write $\frac{N^2}{4a} = \lim_{t \searrow 0} t^3 \sum_{i=0} \exp(-t\lambda_i)$, where $\{\lambda_i\}_{i=1}^\infty$ denotes the holomorphic spectrum on X. That is, the λ_i are weights of holomorphic functions on X under $r\partial_r$. Does this generalize to a sum over generalized holomorphic objects, or more precisely generalized cohomology of $\bar{\partial}_{\mathcal{J}_-}$?
- For the Sasaki-Einstein case, (Gauntlett-Martelli-JFS-Yau) showed that small eigenvalues λ_i can obstruct the existence of Sasaki-Einstein metrics (via the Lichnerowicz bound). Is there an analogue in generalized geometry?

Pirsa: 08050063 Page 31/3

- In (Martelli-JFS-Yau) we showed that the Einstein-Hilbert action on metrics on \mathbf{Y} , restricted to Sasakian metrics, is a function of the Reeb vector field $\boldsymbol{\xi}_{\mathbf{v}}$. This is strictly convex, provided $\Omega_{-} = \frac{1}{8}\Omega_{3,0}$ has weight 3, and if a Sasaki-Einstein metric exists on \mathbf{Y} with this fixed complex structure on \mathbf{X} , it is the unique critical point. Moreover, this action was shown to be a rational function of $\boldsymbol{\xi}_{\mathbf{v}}$, with rational coefficients. Hence the critical point is algebraic. The field theory predicts this. I expect all of this to generalize.
- Can one reduce the transverse generalized Hermitian structure to some kind of Monge-Ampère equation, analogous to Fano Kähler-Einstein? Can one prove an existence theorem for solutions in the toric case?
- In the Sasaki-Einstein case, if the Calabi-Yau cone admits a crepant resolution X the dual CFT is a quiver gauge theory, where the category Rep(Γ, W) of the quiver Γ with superpotential W is derived equivalent to the category Coh(X). What is the generalized analogue of this?

o · · ·

Some open problems/questions:

- One can perform a generalized reduction (in the sense of (Bursztyn-Cavalcanti-Gualtieri)) of X along ξ, to obtain a transverse generalized Hermitian structure to the corresponding foliation of Y. This structure is a generalization of Fano Kähler-Einstein geometry (in progress).
- In the Sasaki-Einstein case, one can also write $\frac{N^2}{4a} = \lim_{t \searrow 0} t^3 \sum_{i=0} \exp(-t\lambda_i)$, where $\{\lambda_i\}_{i=1}^\infty$ denotes the holomorphic spectrum on X. That is, the λ_i are weights of holomorphic functions on X under $r\partial_r$. Does this generalize to a sum over generalized holomorphic objects, or more precisely generalized cohomology of $\bar{\partial}_{\mathcal{J}_-}$?
- For the Sasaki-Einstein case, (Gauntlett-Martelli-JFS-Yau) showed that small eigenvalues λ_i can obstruct the existence of Sasaki-Einstein metrics (via the Lichnerowicz bound). Is there an analogue in generalized geometry?

Pirsa: 08050063 Page 33/3

- In (Martelli-JFS-Yau) we showed that the Einstein-Hilbert action on metrics on \mathbf{Y} , restricted to Sasakian metrics, is a function of the Reeb vector field $\boldsymbol{\xi}_{\mathbf{v}}$. This is strictly convex, provided $\Omega_{-}=\frac{1}{8}\Omega_{3,0}$ has weight 3, and if a Sasaki-Einstein metric exists on \mathbf{Y} with this fixed complex structure on \mathbf{X} , it is the unique critical point. Moreover, this action was shown to be a rational function of $\boldsymbol{\xi}_{\mathbf{v}}$, with rational coefficients. Hence the critical point is algebraic. The field theory predicts this. I expect all of this to generalize.
- Can one reduce the transverse generalized Hermitian structure to some kind of Monge-Ampère equation, analogous to Fano Kähler-Einstein? Can one prove an existence theorem for solutions in the toric case?
- In the Sasaki-Einstein case, if the Calabi-Yau cone admits a crepant resolution \tilde{X} the dual CFT is a quiver gauge theory, where the category $\operatorname{Rep}(\Gamma,W)$ of the quiver Γ with superpotential W is derived equivalent to the category $\operatorname{Coh}(\tilde{X})$. What is the generalized analogue of this?

...