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Abstract: | will describe how the geometry of supersymmetric AdS solutions of type 1B string theory may be rephrased in terms of the geometry of
generalized (in the sense of Hitchin) Calabi-Yau cones. Calabi-Yau cones, and hence Sasaki-Einstein manifolds, are a specia case, and thus the
geometrical structure described may be considered a form of generalized Sasaki-Einstein geometry. Generalized complex geometry naturally
describes many features of the ADS/CFT correspondence. For example, a certain type changing locusisidentified naturally with the moduli space of
the dual CFT. There is also a generalized Reeb vector field, which defines a foliation with a transverse generalized Hermitian structure. For
solutions with non-zero D3-brane charge, the generalized Calabi-Y au cone is also equipped with a canonical symplectic structure, and this captures
many quantities of physical interest, such as the central charge and conformal dimensions of certain operators, in the form of Duistermaat-Heckman
type integrals.
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Anti de Sitter spacetime in d + 1 dimensions is the maximally symmetric (under
SO(d. 2)) solution to the Einstein equation Ric|[g] = —dg. This is the Lorentz
signature version of hyperbolic space (H.gn).

H={xcE*||x| <1},

4y dxi @ dx,

L =1

(1 — [x]?)?

gH=

May compactify H to H = {Ix] < 1} with metric gg = fgy, where f is a
smooth positive function on H with a simple zero on 9H = S%.

Induces the standard conformal structure [gse] on S

AdS/CFT conjecture: Quantum gravity on H = conformal field theory on S¢
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This is best understood in string theory, or rather its supergravity limits. Here |
shall focus on type |IB supergravity. This is a form of General Relativity on a
ten-manifold (M. g), with a very special matter content.

In addition to the (Lorentz signature) metric g on M, there are also form fields
6 € °(M.R), H € 2°(M.R), F, € 2%(M.R), a = 1.3.5, with

*F5 = F5. These must satisfy the Bianchi identities dH =0, (d — HA)F =0
(F = F; + F3 4+ F5), and Einstein equations
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This is best understood in string theory, or rather its supergravity limits. Here |
shall focus on type |IB supergravity. This is a form of General Relativity on a
ten-manifold (M. g), with a very special matter content.

In addition to the (Lorentz signature) metric g on M, there are also form fields
6 € 2°%(M.R), H e 2°(M.R), F, € 2(M.R), a = 1.3.5, with

*F5 = F5. These must satisfy the Bianchi identities dH =0, (d — HA)F =0
(F = F; + F3 4+ F5), and Einstein equations

1 1 1
Riclglj = 5990990+ Eez‘bFiFi — g% (e~?|H|* + e®|F3)?)
1 . . 1 =
+E (E_"’HianJ- g +e‘-”F-.mFJ. “‘“) = R Pq
N |
Vi = IRl — e HI +5e%IR%,
d(E‘_qb * H) = —FAFR+ e? Fi A xF3 .
d'(e?®F;) = e®?(H.F3). d(e®=F3)= FsAH.
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This theory is very special. In particular, the above system of second order

equations are integrability conditions for a first order system of equations for a
spinor € € I'(STM):

i i
- = w = mnpq
916 (GmnpL; _— e BT ™) &
0 = G,,kf'i"e+—(do+leq’F)1"'f )

24
Here | have defined G = —ie®/?F; — e ®/2H € 2°(M. 0).

PP R 10, generate the Clifford algebra for g: I3iIj + I = 2g;; (and
Liyooy = Jr[il; g En])

Note: when @ = H = F_, = 0, this reduces to a parallel spinor Ve = 0, which
is well-known to imply Ricci-flatness as an integrability condition.
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Definition: Any solution to the first order system is called a supersymmetric
(SUSY) supergravity solution. J

For applications to AdS/CFT, we are interested in product solutions
M = AdSs x Y, where (Y.gy) is a compact Riemannian 5-manifold, and

g = e’? (gaas + gvy) -

where A € 2°(Y.R). SO(4. 2)-invariance = all form fields are pull-backs of
forms on Y, except Fs:

Fs = f(volags + voly) .
where f € R is a constant by the Bianchi identity.

Each SUSY supergravity solution of this form gives rise to a (super-)conformal
field theory on S*, via the AdS/CFT conjecture. \
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A special class of SUSY solutions is given by taking o = H =F;, = F; = 0, but
F5 (hence f) non-zero.

Then the first order supersymmetry equations reduce to

(Vc +%C-) v=_0.

V¢ € I'(TY), where - denotes Clifford multiplication for (Y.gy), and
iy € I'(SY) is said to be a Killing spinor on Y.

It is well-known that this is equivalent to (Y.gy) being a Sasaki-Einstein
5-manifold. In particular, gy is Einstein with positive Ricci curvature:
Ric|gy] = 4gy. An essentially equivalent definition is

Definition: (Y, gy) is Sasaki-Einstein iff the metric cone (R5q x Y.dr? + r’gy)
is both Kahler and Ricci-flat.
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This cone metric also appears naturally in ten dimensions, for general solutions.
We write the AdSs metric in a Poincare patch as

d]’z
T e gz .
r
Then nj
g =e 7 (e®gm: +gx) .
where

e?A = 24a+7 2 gx = %(drz + r’gy) .

Hence we may equivalently think of 2 SUSY AdSs solution as a SUSY E3! x X
solution, where the “internal manifold” X = By g x Y is (conformal to) a cone.
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(Grafia-Minasian-Petrini- Tomasiello) showed all SUSY E*! x X solutions require
that X is generalized Calabi-Yau, in the sense of (Hitchin).

Generalized geometry studies geometry of TX &= T™ X, rather than TX.

(More generally generalized tangent bundle, an extension of TX by T™X given by
a connective structure on a gerbe with curvature the 3-form H.)

Natural O(d. d)-invariant metric on this bundle (dim X = d):
n(V.V) =ica. Here V = { + a, { = vector field, @ = one-form.

Lie bracket replaced by the (H-twisted) Courant bracket:

[€ + a.x + Bl = [€. X]uie + £3 — Lya — 3d(icB — ixa) +iyicH .
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Note so(T £ T*) = AT & T*) = End(T) € A’T" & A’T.
In particular, there is the orthogonal B-transform

C+a—(+(a—iw).
where w is a two-form (think of as a skew map w : T — T7).
Closed B-transforms are symmetries of the Courant bracket = automorphism
group in generalized geometry is Diff (X) x .Qﬁl 1(X) (more precisely, should

replace last factor with curvatures of unitary line bundles on X, gerbey).

Infinitesimally, generated by vector field x and two-form « = d3, then the
generalized Lie derivativeof U =( +aalongV =x + 3 is

LVU = [X-C]Lie -+ ([:xﬂ — icdd) .
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A generalized almost complex structure J is 3 section of End(T & T7),
orthogonal wrt n, 7% = —1.

+i eigenspaces L, L C (T & T*) @z C are maximal isotropic.

Example: almost complex structure |, almost symplectic form w:

1
Jl:(l!l —ol"‘ )"72=(—[L' ""'0 )

By definition, 7 is integrable iff L is closed under the (twisted) Courant bracket.

For H =0, J;, J> integrable iff | is integrable, dw = 0, respectively.
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The standard spin representation of Spin(d. d) is simply the (complexified)
bundle of forms SX = A(T*X) on X. Reducible: S._X = A°ven/eddT=X

Clifford action of V on spinor 2 € 2°(X.C)sV- 2 =i 2 +a N 12.

: 23 : . -
generalized almost complex structures —— pure spinor lines C A(T™X @ C).

Pure spinor {2 = spinor with maximal isotropic annihilator space

Lo C(TE&T")RC. Then J is defined by saying Lo = +1i eigenspace of 7.
We say two generalized almost complex structures 73, J> are compatible if

[71. 1] = 0 and — 71 J> = G is a generalized metric: %(1 + G) projects onto
C., where 1 is £=-ve definite on C.. May write

ot PN e | i (1
gx — Bgy'B —Bgy' -B 1 gx O e

where.gx = metric on X, B = two-form. In fact, we may identify dB =.H...




The conditions for a SUSY E3>*! x X solution may be recast in terms of two
compatible generalized almost complex structures J_, J, (Grana et a/), or more
precisely sections {2_, {2, of the corresponding pure spinor lines.

For an AdSs solution, after some work these may be written

df2_

0.
dn,

|

dAAQ++éene'B*(F1—F3+F5)-

1
where » = Hodge star for gx. Here |22+|% = §eu_2¢'. where the norm is given
by the Mukai pairing.

In particular, df2_ = 0 = J_ is integrable, and X is generalized Calabi-Yau.

In general, 7. is not integrable = generalized Hermitian structure.
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We may say X, equipped with {2_, is a generalized Calabi-Yau cone.

Recall 2 vector field rd, on X = B x Y. May show

Lo 2 =30. .

and hence

LigJ-=0.

Thus r@, is a generalized holomorphic vector field (for J_). Since
G=-J_J., also L;5:G = 0 and ré, is generalized Killing.

In general, LyG = 0 = L:gx = 0and LB = da.

irsa: 08050063

Page 15/34




In the Sasaki-Einstein/Calabi-Yau case, we note that

1
2. = —1N,.
3 3.0
ir’ [
2. = —?exp(r—zufl_l) 3

where 23 g is the holomorphic (3. 0)-form and w; ; is the K3hler two-form on X.

It is well-known that rd, is a holomorphic vector field. Moreover the Reeb vector
field

€ =1(rd,) .

where | = complex structure on X, is holomorphic, Killing, and unit length on

Y=—I—=—I1jC K
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By analogy with the Calabi-Yau case, we define
¢=T () -
Note this is now, in general, a generalized vector field. It is immediate that
Lef2_ =d(£-92_) =—id(rd - 2_) = —il,52_ = —-3N92_,
and hence L J_ = 0. Thus £ is also generalized holomorphic.
After considerable effort, one can use the other SUSY equation to prove
Lef2, =0,

implying £ is also generalized Killing. May also show that the generalized Lie
derivative of e BF vanishes = £ generates full symmetry of the solution.
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In the Sasaki-Einstein/Calabi-Yau case, we note that

1
Q._- = _Q -
3 3.0
= ir i )
= 3 m(rz-ﬁm .

where (23 g is the holomorphic (3. 0)-form and w1 ; is the K3hler two-form on X.

It is well-known that rd, is a holomorphic vector field. Moreover the Reeb vector
field

€ =1(rd,) .

where | = complex structure on X, is holomorphic, Killing, and unit length on

¥Y={x=21)C X
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By analogy with the Calabi-Yau case, we define
£=JT_(r3) .
Note this is now, in general, a generalized vector field. It is immediate that
Lef2_ =d(€-92_) =—ud(roy - 2_) = -1, 2 = —-3N902_,
and hence L J_ = 0. Thus £ is also generalized holomorphic.
After considerable effort, one can use the other SUSY equation to prove
Lef2, =0,

implying £ is also generalized Killing. May also show that the generalized Lie
derivative of e “BF vanishes = £ generates full symmetry of the solution.
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A general pure spinor {2 may be written
R=cabyA\---A\ONe

where e« = complex function, 6; are complex one-forms, and b, w are real
two-forms. Here k € N is called the type.

Assuming X is not Calabi-Yau (everywhere type 3), on 2 dense open set {2_ is
type 1:

2 =0AN E_b'm' .

where 8 = complex one-form.

The locus where {2_ becomes type 3 is precisely where a pointlike (space-filling)
probe D3-brane on X is supersymmetric. May show this locus is K3hler in the
induced structure. In AdS/CFT, this is naturally interpreted as the moduli space
of the conformal field theory.
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Let's switch to the other pure spinor, f2.. May rewrite the single complex
equation as

d(e ARef2.)

0 -~ O

d(e*Im2.) ee B 4 (F1 —F3+Fs).

Assuming Fs # 0 (& f £ 0), we see (2. is type 0. Physically, F5 # 0 says the

solution has non-zero D3-brane charge.

After some calculation, may show
Q+ i _Lfri!e—ﬁe—h.;.mmr*‘u.,_ )

32
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This implies

fz A2 _—=2 1 3
1-6-8' . ‘#r —'3'T-JJ+ = Vle

is the Riemannian volume form of (X.gx), implying the two-form w_ is
non-degenerate, and also

di.l.?.[_ =D.

Thus for solutions with non-zero D3-brane charge, X is also equipped with a
canonical symplectic structure! This was surprising, as {2 is not integrable.

Note: In the Calabi-Yau case, w. = wy; is simply the K3hler form.
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Let's switch to the other pure spinor, £2.. May rewrite the single complex
equation as

(o I =]

d(e ARef2.)

d(e*Imf2.) e e B L (Fi —F3 +Fs).

Assuming F5 # 0 (& f £ 0), we see (2. is type 0. Physically, F5 3% 0 says the

solution has non-zero D3-brane charge.

After some calculation, may show
2, = —Lfr“e‘“e—h*'**u'*‘“’*“ .

32
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This implies

fz A2 —42 1 3
—IE-E' a ‘#r "3'Tq.?+ = Vl)lx

is the Riemannian volume form of (X.gx), implying the two-form w_ is
non-degenerate, and also

dhﬂ_}_ =0-

Thus for solutions with non-zero D3-brane charge, X is also equipped with a
canonical symplectic structure! This was surprising, as {2, is not integrable.

Note: In the Calabi-Yau case, w. = wy; is simply the K3hler form.
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May check L5 w, = 2w, and hence

Wy = %d(rzcr) .

where o = (pull-back of) a contact onefoormon ¥ = {r =1} C X.

Moreover,

6"_10- p— 1- Eu_da p— 0 -
where £, = vector component of £ = may call £ a generalized Reeb vector field.
This generalizes the Sasaki-Einstein case, where all of these formulae also hold. In

general, |&,| |y is not constant, but it is nowhere zero, and hence defines a
one-dimensional foliation of Y.
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There are some nice physical applications of these formulae. The central charge
a € R of a solution is defined by

1 fY 34 voly
2(2w)?

This is an important quantity in the dual conformal field theory, essentially a
count of massless degrees of freedom. In particular, if §, generates a U(1) action
— that is, all its orbits are closed — the field theory implies a € Q.

The central charge a of the dual field theory is given by the contact volume

(27)>N2

& — -
4fYa'Ada'Ada'

Here we have imposed flux quantization:

ZBN—(ZW)4f(F5+HﬁCz)
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Suppose &, generates a U(1) action. This is locally free (since &, is nowhere

zero) = V = Y /U(1) = orbifold, £ =Y = U(1) orbibundle over V. Then the

contact volume is (essentially) just the Chern number / ci(L£)? € Q. This

v
proves a € Q) is essentially just a Chern number.

One may also write
(2m)>N?
a= .
w?
4 fx e_rzﬂ_‘fit

This is a Duistermaat-Heckman integral, where H = r*/2 = Hamiltonian
function for §,: dH = —&, w ..

This formerly localizes where €, = 0, which is at the tip of the cone. One can
obtain a general localization formula, in terms of Chern classes and weights, given
an equivariant symplectic resolution of (X. w.) (Martelli-JFS-Yau). Particularly
simple when (X. w_) is symplectic toric.
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Also of interest are certain three-submanifolds X3 of Y. The cones over these are
generalized complex submanifolds of X, in the sense of (Guzltieri). This may be
phrased as a generalized calibration condition.

These submanifolds may be identified with certain operators Oy, in the dual
conformal field theory. Skipping the details, and the physics, these have
conformal dimension (eigenvalue under rescalings)

Zirﬂfzja/\da
IYJAdJAda »

A(OI-':) =

The field theory again predicts these are rational numbers for £, generating a
U(1) isometry. Indeed, the above is essentially the Chern number / ;1 (L),

25
where X, = X3 /U(1).
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Example: There are not many known non-Sasaki-Einstein examples. In fact it is
only in recent years that Sasaki-Einstein geometry (in particular constructions,
examples, obstructions) has flourished.

The (Pilch-Warner) solution is defined on M = AdSs x S°. In fact, it is in some
sense the (end-point of a) deformation of the round Einstein metric on S°:

6 cos? ) . 6 sin® 20 .
-+ o
3 — cos2v (3 — cos2v)? ?

(0'%'{"‘"2)
4 (g 260820 zl
.. - _
L 3 — cos2v 8

1 g2

, 0 < ¢ < 2w, and a;, | = 1.2.3, are left-invariant
2).

where 0 < v <
one-forms on SU

ST

—

We also have e*2 = §(3 — cos 2v}), and non-zero F3 and H.
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One can show this solution is toric (U(1)? invariant), and (X.w.) = standard
toric symplectic structure on R® \ {0}.

Reeb vector field is computed to be &, = aﬂ - %79% = %3%3—. The central

charge is then easily computed by Iocallzatlon

N? 1 32
E= Z H(ﬁﬂi) 3.3 3=ﬁ'

fixed ptsi=1 ‘> vV 2 3 13

where U; = tangent space weights, agreeing with a conformal field theory
calculation.

The type changing locus of £2_ is a copy of C?> C R® given by ¥ = 0. The dual

conformal field theory is known explicitly (it is the IR fixed point of a2 mass
deformation of A" = 4 SYM), and its moduli space is indeed C2.
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Some open problems/questions:

@ One can perform a generalized reduction (in the sense of
(Bursztyn-Cavalcanti-Gualtieri)) of X along £, to obtain a transverse
generalized Hermitian structure to the corresponding foliation of Y. This
structure is a generalization of Fano K3hler-Einstein geometry (in progress).

>0
@ In the Sasaki-Einstein case, one can also write % = !j\rgez exp(—tA;),
i=0

where {A;}. =, denotes the holomorphic spectrum on X. That is, the A; are
weights of holomorphic functions on X under rd,. Does this generalize to a
sum over generalized holomorphic objects, or more precisely generalized
cohomology of d 7 ?

@ For the Sasaki-Einstein case, (Gauntlett-Martelli-JES-Yau) showed that
small eigenvalues A; can obstruct the existence of Sasaki-Einstein metrics
(via the Lichnerowicz bound). Is there an analogue in generalized geometry?
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@ In (Martelli-JFS-Yau) we showed that the Einstein-Hilbert action on metrics
on Y, restricted to Sasakian metrics, is a function of the Reeb vector field
£,. This is strictly convex, provided {2_ = %Q}_u has weight 3, and if a
Sasaki-Einstein metric exists on Y with this fixed complex structure on X, it
is the unique critical point. Moreover, this action was shown to be a rational
function of £,, with rational coefficients. Hence the critical point is
algebraic. The field theory predicts this. | expect all of this to generalize.

@ Can one reduce the transverse generalized Hermitian structure to some kind
of Monge-Ampere equation, analogous to Fano K3hler-Einstein? Can one

prove an existence theorem for solutions in the toric case’?

@ In the Sasaki-Einstein case, if the Calabi-Yau cone admits a crepant
resolution X the dual CFT is a quiver gauge theory, where the category
Rep(I'.W) of the quiver I' with superpotential W is derived equivalent to
the category Coh(X). What is the generalized analogue of this?

@ ---
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@ In (Martelli-JFS-Yau) we showed that the Einstein-Hilbert action on metrics
on Y, restricted to Sasakian metrics, is a function of the Reeb vector field
£,. This is strictly convex, provided {2_ = %Q}_g has weight 3, and if a
Sasaki-Einstein metric exists on Y with this fixed complex structure on X, it
is the unique critical point. Moreover, this action was shown to be a rational
function of £,, with rational coefficients. Hence the critical point is
algebraic. The field theory predicts this. | expect all of this to generalize.

@ Can one reduce the transverse generalized Hermitian structure to some kind
of Monge-Ampere equation, analogous to Fano K3hler-Einstein? Can one

prove an existence theorem for solutions in the toric case’?
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the category Coh(X). What is the generalized analogue of this?
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