Title: Quantum algorithm for solving linear systems of equations
Date: May 04, 2009 04:00 PM
URL.: http://pirsa.org/08050061

Abstract: Solving linear systems of equations is a common problem that arises both on its own and as a subroutine in more complex problems: given
amatrix A and a vector b, find a vector x such that Ax=b. Often, one does not need to know the solution x itself, but rather an approximation of the
expectation value of some operator associated with x, e.g., XMx for some matrix M. In this case, when A is sparse and well-conditioned, with
largest dimension N, the best known classical agorithms can find x and estimate X'Mx in O(N * poly(log(N))) time.

In thistalk I'll describe a quantum algorithm for solving linear sets of equations that runs in poly(log N) time, an exponential improvement over the
best classical agorithm.

Thistalk is based on my paper arXiv:0811.3171v2, which was written with Avinatan Hassidim and Seth Lloyd.

Pirsa: 08050061 Page 1/74

A Quantum algorithm for solving AX = b

Aram Harrow'! Avinatan Hassidim?® Seth Lloyd?

TUniversity of Bristol

MIT

Perimeter Institute seminar
4 May, 2009

Outline

» The problem.

» Classical solutions.

» Our quantum solution.
» How it works.

» Why it's (not so far from) optimal.

» Related work / extensions / applications.

Goal: solving linear systems of equations

» We are given A, a Hermitian N x N matrix.
» b e CNis also given as input.

» We want to (approximately) find X € CN such that AX = b.

Goal: solving linear systems of equations
» We are given A, a Hermitian N x N matrix.
» b e CNis also given as input.
» We want to (approximately) find X € CN such that AxX = b.

» If Ais not Hermitian or square, we can use (,27 '3) . Why?

¢ 9®-0

Because

Goal: solving linear systems of equations

» We are given A, a Hermitian N x N matrix.
» b e CNis also given as input.
» We want to (approximately) find X € CN such that AxX = b.

» If Ais not Hermitian or square, we can use (/?T '3) Why?

¢ 9®-0

» Some weaker goals are to estimate XTMX (for some matrix M)
or sample from the probability distribution Pr[i] o |x;|2.

Because

Goal: solving linear systems of equations

» We are given A, a Hermitian N x N matrix.
» b e CNis also given as input.
» We want to (approximately) find X € CN such that AX = b.

» If Ais not Hermitian or square, we can use (/?T '3) Why?

G 9O-O

» Some weaker goals are to estimate XTMX (for some matrix M)
or sample from the probability distribution Pr[i] o |x;|2.

Because

» This problem was introduced in middle school, and has
applications throughout high school, college, grad school and
even work.

Classical algorithms

» The LU decomposition finds X in time O(N?376 poly(log(x/¢€))).
» Here “2.376” is the matrix-multiplication exponent.
(By contrast, Gaussian elimination takes time O(N?).)
» ¢is a bound on error in X.

Classical algorithms

» The LU decomposition finds X in time O(N2-378 paly(log(x/¢))).

» Here “2.376” is the matrix-multiplication exponent.
(By contrast, Gaussian elimination takes time O(N°).)

» ¢ is a bound on error in x.

» « is the condition number.

a4 (A)

w=lAl- 1A= 2o

Here o;(A) is the i singular value and ||A|| = o1(A).
x measures how hard A is to invert, or equivalently, how
sensitively A~' depends on changes in A.

Classical algorithms

» The LU decomposition finds X in time O(N?376 poly(log(x/¢€))).
» Here “2.376" is the matrix-multiplication exponent.
(By contrast, Gaussian elimination takes time O(N?).)
» ¢ is a bound on error in X.
» « is the condition number.

ad4 (A)
on(A)

Here o;(A) is the i singular value and ||A|| = o1(A).
x measures how hard A is to invert, or equivalently, how
sensitively A~' depends on changes in A.

k= ||A] - ||A7"]| =

» lterative methods (e.g. conjugate gradient) require
O(1/xlog(1/€)) matrix-vector multiplications.

Classical algorithms

» The LU decomposition finds X in time O(N?376 poly(log(x/¢€))).
» Here “2.376" is the matrix-multiplication exponent.
(By contrast, Gaussian elimination takes time O(N?).)
» ¢is a bound on error in X.
» « is the condition number.

a1(A)
on(A)

Here o;(A) is the i singular value and ||A|| = o1(A).
~ measures how hard A is to invert, or equivalenily, how
sensitively A~' depends on changes in A.

k= [|A] - |A7"]| =

» lterative methods (e.g. conjugate gradient) require
O(1/xlog(1/€)) matrix-vector multiplications.
» |f Ais s-sparse (i.e. has < s nonzero entries per row) then the
total time is O(Ns,/klog(1/¢)).

Classical algorithms

» The LU decomposition finds X in time O(N?376 poly(log(x/¢€))).
» Here “2.376" is the matrix-multiplication exponent.
(By contrast, Gaussian elimination takes time O(N?).)
» ¢is a bound on error in x.
» « is the condition number.

o1(A)
on(A)

Here o;(A) is the i singular value and || A|| = o1(A).
x measures how hard A is to invert, or equivalently, how
sensitively A~' depends on changes in A.

k= [|A] - |A7"]| =

» lterative methods (e.g. conjugate gradient) require
O(y/xlog(1/€)) matrix-vector multiplications.
» |f Ais s-sparse (i.e. has < s nonzero eniries per row) then the
total time is O(Ns,/klog(1/e)).
> |support(b)| - (s/€)°V= - poly(log(N)) is also possible.

Our results

» Quantum Algorithm. Suppose that
> |b) = N, b;|i) is a unit vector that can be prepared in time Tj;

Our results

» Quantum Algorithm. Suppose that

. M — Zfi . bi |i) is a unit vector that can be prepared in time Tg;
» Ais s-sparse, efficiently row-computable and =/ < |A| < |

Our results

» Quantum Algorithm. Suppose that
> [l = Zf‘i . bi |1) is a unit vector that can be prepared in time T5;
» Ais s-sparse, efficiently row-computable and '/ < |A| < /

>~ |x) = A" |b) and |x) = L.

Our results

» Quantum Algorithm. Suppose that
> |b) = 3"~ b;|i) is a unit vector that can be prepared in time Tg;
» Ais s-sparse, efficiently row-computable and =/ < |A| < /
> |x') = A" |b) and |x) — \/—%
Then our (quantum) algorithm produces |x) and (x| x’), both up
to error ¢, in time

O(xTg + log(N)s?k? /e).

Our results

» Quantum Algorithm. Suppose that
> |b) = 3. b;|i) is a unit vector that can be prepared in time Tg;
» Ais s-sparse, efficiently row-computable and =/ < |A| < |

> — = — —IiL
x) = A7'|b) and |x) = .
Then our (quantum) algorithm produces |x) and (x’|x’), both up
to error ¢, in time

O(xTg + log(N)s®x2/e).

Reminder: classical algorithms output the entire vector X in
time O(min(N%376 Ns/k, (s/€)°V*))). This is exponentially
slower when s = O(1) and s = poly log(N).

Our results

» Quantum Algorithm. Suppose that
> |b) = 3N b;|i) is a unit vector that can be prepared in time Tg;
» Ais s-sparse, efficiently row-computable and =/ < |A| < |
! —1 x’
- X'y = A" |b) and\x):\/—%.
Then our (quantum) algorithm produces |x) and (x| x’), both up
to error ¢, in time

O(xTg + log(N)s?k? /e).

Reminder: classical algorithms output the entire vector X in
time O(min(N%378, Ns\/x, (s/€)°V*))). This is exponentially
slower when s = O(1) and & = poly log(N).

Our results

» Quantum Algorithm. Suppose that
> |b) = 3N b;|i) is a unit vector that can be prepared in time Tg;
» Ais s-sparse, efficiently row-computable and s/ < |A| < |
N _ A _ X))
» XY =A""|b)and |x) = JE

Then our (quantum) algorithm produces |x) and (x| x’), both up
to error ¢, in time

O(xTg + log(N)s®x2/e).

Reminder: classical algorithms output the entire vector X in
time O(min(N2378, Ns\/k, (s/€)9(V¥))). This is exponentially
slower when s = O(1) and x = poly log(N).

» Optimality. Given plausible complexity-theoretic assumptions,
these run-times (both quantum and classical) cannot be
improved by much. Argument is based on BQP-hardness of the
matrix inversion problem.

Algorithm idea

Algorithm idea

» Based on two key primitives:

» Hamiltonian simulation. Trotter techniques’ can be used to
simulate ! in time O(ts®log(N)).

'D.W. Berry, G. Ahokas, R. Cleve and B.C. Sanders. Efficient Quantum
algarithms for sparse Hamiltonians. CMP 2007, quant-ph/05081389.

8050061 Page 21/74

Algorithm idea

» Based on two key primitives:
» Hamiltonian simulation. Trotter techniques’ can be used to
simulate ! in time O(ts2log(N)).
» Phase estimation. Applying €*! for a carefully chosen
superposition® of times from 0 to # can be used to produce
A=A+ O0(1/h).

'D.W. Berry, G. Ahokas, R. Cleve and B.C. Sanders. Efficient Quantum
algorithms for sparse Hamiltonians. CMP 2007, quant-ph/05081389.

2\. Buzek, R. Derka and S. Massar. Optimal quantum clocks. PRL 1999,
quant-ph/8808042.

: 0805006

Algorithm idea
» Based on two key primitives:
» Hamiltonian simulation. Trotter techniques’ can be used to
simulate ! in time O(ts?log(N)).
» Phase estimation. Applying €*! for a carefully chosen
superposition® of times from 0 to #, can be used to produce

A=~ A+ O0(1/h).
» Phase estimation on &4’ automatically resolves |b) into the
eigenbasis of A by (approximately) measuring A.

'D.W. Berry, G. Ahokas, R. Cleve and B.C. Sanders. Efficient Quantum
algorithms for sparse Hamiltonians. CMP 2007, quant-ph/05081389.
2V. Buzek, R. Derka and S. Massar. Optimal quantum clocks. PRL 1999,

grsa ant_PWQBUBMZ. Page 23/74

: 0805006

Algorithm idea

» Based on two key primitives:

» Hamiltonian simulation. Trotter techniques’ can be used to
simulate ! in time O(ts®log(N)).

» Phase estimation. Applying €*! for a carefully chosen
superposition® of times from 0 to #, can be used to produce
A=A+ 0(1/h).

» Phase estimation on e’ automatically resolves |b) into the
eigenbasis of A by (approximately) measuring A.

» Doing this coherently can (approximately) map |b) to

0) ® VI—c2A2|b) + 1)@ cA~' |b),

where c is chosen so that ||cA—1|| < 1.

'D.W. Berry, G. Ahokas, R. Cleve and B.C. Sanders. Efficient Quantum
algorithms for sparse Hamiltonians. CMP 2007, quant-ph/05081389.
2\. Buzek, R. Derka and S. Massar. Optimal quantum clocks. PRL 1999,
uant-ph/9808042.

Pitsa: 0805006

Algorithm idea

» Based on two key primitives:
» Hamiltonian simulation. Trotter techniques’ can be used to
simulate e in time O(ts® log(N)).
» Phase estimation. Applying €*! for a carefully chosen
superposition® of times from 0 to { can be used to produce
A= A+ O0(1/1).
» Phase estimation on e’ automatically resolves |b) into the
eigenbasis of A by (approximately) measuring A.
» Doing this coherently can (approximately) map |b) to

0) ® VI— c2A2|b)+ 1)@ cA~' |b),

where c is chosen so that |[cA~ || < 1.
» Measure the first qubit. Upon outcome “1” we are left with | x).

'D.W. Berry, G. Ahokas, R. Cleve and B.C. Sanders. Efficient Quantum
algorithms for sparse Hamiltonians. CMP 2007, quant-ph/05081389.
2V. Buzek, R. Derka and S. Massar. Optimal quantum clocks. PRL 1999,
uant-ph/9808042.

Pitsa: 0805006

Algorithm details |
Let [b) =D, by |uy). |

Algorithm details
Let [b) = >, by |uy).
1. Prepare control register in superposition of |t) over 0 < t < f.

Algorithm details
Let |b) = >, ba |uy).
1. Prepare control register in superposition of |t) over 0 < t < f.
2. Use Hamiltonian simulation to apply >, |t)(t| ® .

Algorithm details
Let |b) =), by |Uy).
1. Prepare control register in superposition of |f) over 0 < t < f.
2. Use Hamiltonian simulation to apply >, |t)(t| ® 4.
3. Fourier transform first register, yielding

Z a5 ‘;i> ® by |uy) ,

b5

with |, ;| small unless X = \.

Algorithm details
Let |b) =D, by |uy).
1. Prepare control register in superposition of |f) over 0 < t < §. |
2. Use Hamiltonian simulation to apply >, |t)(t| ® . |
3. Fourier transform first register, yielding |

Z a5 ‘.X> ® by |uy) ,

A

with |a, 5| small unless A ~ .
4. Conditioned on), adjoin state

V1 - C2A-2|0)+ CA 1 |1).

Algorithm details
Let |b) =D, by |Uy).
1. Prepare control register in superposition of |f) over 0 < t < f.
2. Use Hamiltonian simulation to apply >, |t)(t| ® €.
3. Fourier transform first register, yielding

Z a3 ‘X> ® by |uy) ,

2

with |a, 5| small unless A ~ .
4. Conditioned on), adjoin state

V1 —C2Xx-2|0) + CXx'|1).

5. Undo steps 1-3

Algorithm details
Let |b) =), by |Uy).
1. Prepare control register in superposition of |f) over 0 < t < f.
2. Use Hamiltonian simulation to apply >, |t)(t| ® €.
3. Fourier transform first register, yielding

Za,\:j‘ ‘X> & bA ‘U)J ;
%

with |a, 5| small unless A ~ .
4. Conditioned on X, adjoin state

V1 —C23-2|0)+ CA~ 1 [1).

5. Undo steps 1-3

6. Measure ancilla qubit and start over if outcome isn't 1.
(Technically, use amplitude amplication.)

Analysis of the algorithm

» The Hamiltonian simulation produces negligible error. (Error ¢

incurs overhead of exp(O(y/log(1/¢))) = ¢ °(").) Recall that it
takes time O((log N)s%t).

Analysis of the algorithm

» The Hamiltonian simulation produces negligible error. (Error ¢
incurs overhead of exp(O(y/log(1/¢))) = ¢ °(").) Recall that it
takes time O((log N)s%t).

» Phase estimation produces error of O(1 /) with tail probability
dying off fast enough to not bother us.

Analysis of the algorithm

» The Hamiltonian simulation produces negligible error. (Error ¢
incurs overhead of exp(O(y/log(1/¢))) = ¢ °(").) Recall that it
takes time O((log N)s%t).

» Phase estimation produces error of O(1 /1) with tail probability
dying off fast enough to not bother us.

» An additive error of 1/1y in A translates into an error in A~ of
A2 /1ty < K?/1y. Thus, we can take fy ~ k% /e.

Analysis of the algorithm

» The Hamiltonian simulation produces negligible error. (Error ¢
incurs overhead of exp(O(y/log(1/¢))) = ¢ °(").) Recall that it
takes time O((log N)s°1p).

» Phase estimation produces error of O(1 /) with tail probability
dying off fast enough to not bother us.

» An additive error of 1/f in A translates into an error in A~ of
A~2/fy < k%/ty. Thus, we can take fy ~ &°/e.

» We can take C = 1/2x to guarantee that ||CA~"|| < 1/2.
(C = 1/« should work, but the analysis is more painful.)

Analysis of the algorithm

» The Hamiltonian simulation produces negligible error. (Error ¢
incurs overhead of exp(O(/log(1/¢))) = ¢ °(").) Recall that it
takes time O((log N)s%1p).

» Phase estimation produces error of O(1 /) with tail probability
dying off fast enough to not bother us.

» An additive error of 1/f; in A translates into an error in A~ of
A2 /1ty < K?/1y. Thus, we can take fy ~ &2 /e.

» We can take C = 1/2x to guarantee that ||CA~"|| < 1/2.
(C = 1/k should work, but the analysis is more painful.)

» Thus post-selection succeeds with probability at least O(1/x2)
and blows up error by at most O(x). With enough algebra, the
run-time magically stays at O(x2/e).

Analysis of the algorithm

» The Hamiltonian simulation produces negligible error. (Error ¢
incurs overhead of exp(O(+/log(1/¢))) = € °11)) Recall that it
takes time O((log N)s®1p).

» Phase estimation produces error of O(1/fy) with tail probability
dying off fast enough to not bother us.

» An additive error of 1/fy in A translates into an error in A~ of
A2 /tg < K?/ty. Thus, we can take fy ~ x°/e.

» We can take C = 1/2x to guarantee that ||CA~'|| < 1/2.
(C = 1/k should work, but the analysis is more painful.)

» Thus post-selection succeeds with probability at least O(1/52)
and blows up error by at most O(x). With enough algebra, the
run-time magically stays at O(x?/¢).

» We couldn’t figure out how to make variable-length run-time a /a
0811.4428 work. Our best lower bound is /k.

Algorithm details
Let |b) =, by |uy).
1. Prepare control register in superposition of |f) over 0 < t < f.
2. Use Hamiltonian simulation to apply >, |t)(t| ® .
3. Fourier transform first register, yielding

Za;\:i ‘:\> & b)\ ‘U)J ;
23

with |a, 5| small unless A ~ .
4. Conditioned on), adjoin state

V1 - C23-2|0)+ CA 1),

5. Undo steps 1-3

6. Measure ancilla qubit and start over if outcome isn't 1.
(Technically, use amplitude amplication.)

Analysis of the algorithm

» The Hamiltonian simulation produces negligible error. (Error €
incurs overhead of exp(O(1/log(1/¢))) = ¢ °{").) Recall that it
takes time O((log N)s%1).

» Phase estimation produces error of O(1 /) with tail probability
dying off fast enough to not bother us.

Analysis of the algorithm

» The Hamiltonian simulation produces negligible error. (Error ¢
incurs overhead of exp(O(+/log(1/¢))) = € °11)) Recall that it
takes time O((log N)s®1p).

» Phase estimation produces error of O(1 /) with tail probability
dying off fast enough to not bother us.

» An additive error of 1/1y in A translates into an error in A~ of
A2 /tg < K?/1y. Thus, we can take fy ~ &2 /e.

Analysis of the algorithm

» The Hamiltonian simulation produces negligible error. (Error €
incurs overhead of exp(O(+/log(1/¢))) = € °11)) Recall that it

takes time O((log N)s?fy).

» Phase estimation produces error of O(1/fy) with tail probability
dying off fast enough to not bother us.

» An additive error of 1/fy in A translates into an error in A~ of
A~2/fy < k?/ty. Thus, we can take fy ~ &°/e.

» We can take C = 1/2x to guarantee that || CA~"|| < 1/2.
(C = 1/k should work, but the analysis is more painful.)

» Thus post-selection succeeds with probability at least O(1/x2)
and blows up error by at most O(x). With enough algebra, the
run-time magically stays at O(x2/e).

» We couldn’t figure out how to make variable-length run-time a /a
0811.4428 work. Our best lower bound is /k.

Analysis of the algorithm

» The Hamiltonian simulation produces negligible error. (Error ¢
incurs overhead of exp(O(+/log(1/¢))) = ¢ °(1)) Recall that it
takes time O((log N)s%1p).

» Phase estimation produces error of O(1 /1) with tail probability
dying off fast enough to not bother us.

» An additive error of 1/f; in X translates into an error in A~ of
A2 /ty < K?/1y. Thus, we can take fy ~ &2 /e.

» We can take C = 1/2x to guarantee that ||[CA~"|| < 1/2.
(C = 1/k should work, but the analysis is more painful.)

» Thus post-selection succeeds with probability at least O(1/x2)
and blows up error by at most O(x). With enough algebra, the
run-time magically stays at O(s2/e).

» We couldn’t figure out how to make variable-length run-time a /a
0811.4428 work. Our best lower bound is /x.

Q-sampling |x) vs. computing X
Types of solutions: roughly from strongest to weakest

1. Output X = (X3, ..., Xn)- Classical algorithms
2. Produce |x) = 3N, x; |i). Our algorithm
3. Sample i according to p; ~ | {i|x) |°.

4. Estimate (x| M |x) for some (perhaps diagonal) matrix M.

Q-sampling |x) vs. computing X
Types of solutions: roughly from strongest to weakest
1. Output X = (X3, ..., Xn)- Classical algorithms
2. Produce |x) = SN, x; |i). Our algorithm

3. Sample i according to p; ~ | (i|x) |°.
4. Estimate (x| M |x) for some (perhaps diagonal) matrix M.

Compare with classical Monte Carlo algorithms

The old-fashioned way to get an exponential speed-up.
» They work with a sample drawn from p = (p1, ..., pn).

» If Ais stochastic and sparse then p — Ap is efficient.
> If —1 <my,...,my <1, then . m;p; can be estimated to
error ¢ using O(1/¢%) samples.

Q-sampling |x) vs. computing X
Types of solutions: roughly from strongest to weakest

1. Output X = (X3, ..., Xn)- Classical algorithms
2. Produce |x) = 3N, x; |i). Our algorithm
3. Sample i according to p; ~ | (i|x) |°.

4. Estimate (x| M |x) for some (perhaps diagonal) matrix M.

Compare with classical Monte Carlo algorithms

The old-fashioned way to get an exponential speed-up.
» They work with a sample drawn from p = (p1, ..., pn).

» If Ais stochastic and sparse then p — Ap is efficient.
> If —1 < my,...,my <1,then 3. m;p; can be estimated to
error e using O(1/¢%) samples.

irsa: 08050061

Is matrix inversion easier if we only need to estimate X'Mx?

BQP-hardness of matrix inversion

Consider a quantum circuit on n qubits that starts in the state |0)®”,
applies two-qubit gates U,, .. ., Ur and then measures the first qubit.

BQP-hardness of matrix inversion

Consider a quantum circuit on n qubits that starts in the state |0)*”,
applies two-qubit gates U, .. ., Ur and then measures the first qubit.

Theorem

Estimating the acceptance probability of this circuit reduces to
estimating (x| M | x) where M is diagonal, Ax = b, b = |0), A has
dimension N = O(T2") and & = O(T?).

BQP-hardness of matrix inversion

Consider a quantum circuit on n qubits that starts in the state |0)*”,
applies two-qubit gates U,, .. ., Ur and then measures the first qubit.
Theorem

Estimating the acceptance probability of this circuit reduces to
estimating (x| M | x) where M is diagonal, Ax = b, b = |0), A has
dimension N = O(T2") and & = O(T?).

Corollary

» A classical poly(log(N), <) algorithm for estimating (x| M |x) to
constant accuracy would imply BPP=BQP.

» |Improving our quantum run-time to K2 - poly log(N) would
imply that BQP=PSPACE.

Q-sampling |x) vs. computing X
Types of solutions: roughly from strongest to weakest

1. Output X = (X3, ..., Xn)- Classical algorithms
2. Produce |x) = 3N, x; |i). Our algorithm
3. Sample i according to p; ~ | (i|x) |°.

4. Estimate (x| M |x) for some (perhaps diagonal) matrix M.

Compare with classical Monte Carlo algorithms

The old-fashioned way to get an exponential speed-up.
» They work with a sample drawn from p = (p1, ..., pn).

» If Ais stochastic and sparse then p — Ap is efficient.
> If —1 < my,...,my <1, then 3. m;p; can be estimated to
error e using O(1/€%) samples.

irsa: 08050061

Is matrix inversion easier if we only need to estimate XTMx?

BQP-hardness of matrix inversion

Consider a quantum circuit on n qubits that starts in the state |0)®”,
applies two-qubit gates U, . . ., Ur and then measures the first qubit.

Theorem

Estimating the acceptance probability of this circuit reduces to
estimating (x| M | x) where M is diagonal, AX = b, b = |0), A has
dimension N = O(T2") and & = O(T?).

Corollary

» A classical poly(log(N), <) algorithm for estimating (x| M |x) to
constant accuracy would imply BPP=BQP.

» Improving our quantum run-time to K2 - poly log(N) would
imply that BQP=PSPACE.

Q-sampling |x) vs. computing X
Types of solutions: roughly from strongest to weakest

1. Output X = (X3, ..., Xn)- Classical algorithms
2. Produce |x) = ZL X; |i). Our algorithm
3. Sample i according to p; ~ | (i|x) |°.

4. Estimate (x| M |x) for some (perhaps diagonal) matrix M.

Compare with classical Monte Carlo algorithms

The old-fashioned way to get an exponential speed-up.
» They work with a sample drawn from p = (p1, ..., pn).

» If Ais stochastic and sparse then p — Ap is efficient.
> If —1 < my,...,my <1, then 3. m;p; can be estimated to
error ¢ using O(1/€%) samples.

irsa: 08050061

Is matrix inversion easier if we only need to estimate X'Mx?

BQP-hardness of matrix inversion

Consider a quantum circuit on n qubits that starts in the state |0)®”,
applies two-qubit gates U,, .. ., Uy and then measures the first qubit.

BQP-hardness of matrix inversion

Consider a quantum circuit on n qubits that starts in the state |0)*”,
applies two-qubit gates U,, .. ., Uy and then measures the first qubit.
Theorem

Estimating the acceptance probability of this circuit reduces to
estimating (x| M | x) where M is diagonal, Ax = b, b = |0), A has
dimension N = O(T2") and & = O(T?).

Corollary

» A classical poly(log(N), <) algorithm for estimating (x| M |x) to
constant accuracy would imply BPP=BQP.

» Improving our quantum run-time to KZ - poly log(N) would
imply that BQP=PSPACE.

Further consequences of BQP-completeness |

Relative to oracles

BQP-hardness of matrix inversion

Consider a quantum circuit on n qubits that starts in the state |0)®”,
applies two-qubit gates U, .. ., Ur and then measures the first qubit.
Theorem

Estimating the acceptance probability of this circuit reduces to
estimating (x| M | x) where M is diagonal, AXx = b, b = |0), A has
dimension N = O(T2") and « = O(T?).

Corollary

» A classical poly(log(N),) algorithm for estimating (x| M |x) to
constant accuracy would imply BPP=BQPF.

» Improving our quantum run-time to K2 - poly log(N) would
imply that BQP=PSPACE.

Further consequences of BQP-completeness

Relative to oracles

» No quantum algorithm can run in time K2 - poly log(N).

Further consequences of BQP-completeness

Relative to oracles

» No quantum algorithm can run in time K2 - poly log(N).
» No classical algorithm can run in time No(1)20(V%),

Further consequences of BQP-completeness

Relative to oracles

» No quantum algorithm can run in time K2 - poly log(N).
» No classical algorithm can run in time No(1)20(V%),

» No iterative method can use o(./x) matrix-vector multiplies.
(Although we already knew this by taking A to be the adjacency
matrix of a random cycle of length /x.).

Further consequences of BQP-completeness

Relative to oracles

» No quantum algorithm can run in time K2 - poly log(N).
» No classical algorithm can run in time No(1)29(vVk),

» No iterative method can use o(./x) matrix-vector multiplies.
(Although we already knew this by taking A to be the adjacency
matrix of a random cycle of length /x.).

Error scaling

» Improving our quantum run-time to poly(x, log(N),log(1/¢))
would imply BQP=PP.

Further consequences of BQP-completeness

Relative to oracles

» No quantum algorithm can run intime = z - poly log(N).
» No classical algorithm can run in time No(1)29(Vx)

» No iterative method can use o(./x) matrix-vector multiplies.
(Although we already knew this by taking A to be the adjacency
matrix of a random cycle of length /x.).

Error scaling

» Improving our quantum run-time to poly(x, log(N), log(1/¢))
would imply BQP=PP.

» And even improving it to N°(1) /¢2(1) is impossible relative to an
oracle.

Proof of BQP-hardness

An idea that almost works
» Our quantum circuit is Ur - - - U;.

Proof of BQP-hardness

An idea that almost works

» Qur quantum circuit is Ur - - - U;.
» On the space C” @ C? define

_
V=Y [t+1 (mod 7)) (f| ® U is unitary

=1
1

A=I—-e TV hass < T

Proof of BQP-hardness

An idea that almost works

» Qur quantum circuit is Ut - - - U;.
» On the space C” @ C? define

:
V=Y [t+1 (mod T)) (| ® U is unitary
=1
A=l—e TV hask < T
» Expand

A=Y =V
k=0
Sothat s 'A-1|1) |¢) has Q(1/T) overlap with

VT 1) [¢) = 1) Ur--- Uy |9) .

But undesirable terms coniribute too.

Proof of BQP-hardness

The correct version
» Define

Ues— —Ug— ™

LJZT-H :U-i'j-"::r‘JGT:UI

sothat Usr... Uy = /®"and U;... U; = Ur... U; whenever
F<i<cZl.

Proof of BQP-hardness

The correct version
» Define

Uy ==y =—P*

LJ2T+1 :U-I'j-"saL,GT:UI

sothat Usr...U; = P"and U;... U; = Ur... U; whenever
T <E<Z2I.
» Now define (on the space C37 ® C?") the operators

37
V=Y |t+1 (mod 3T))(t| ® U

=1
1

A=I1—e TV

Proof of BQP-hardness

The correct version
» Define

tees— — Uiy —

Uors1 = UL,...,Usr = U}

sothat Us7...U; = ®"and U;... U; = Ur... U; whenever
T<ficdi
» Now define (on the space C37 ® C?") the operators

3T
V=Y |t+1 (mod 3T))(t|® U

=1
A—f iV

» This time s~ A= |1) |) has Q(1) overlap with successful
computations (i.e. [[) @ Ur... Uy |¢) for T < t < 2T) and there
ek N0 €XEra error from wrap-around.

Proof of BQP-hardness

An idea that almost works

» Qur quantum circuit is Ut - - - U;.
» On the space C’ ® C?" define

-
V=Y [t+1 (mod 7)) (| ® U is unitary
—1
A—F =1 hask < T
» Expand

A=V
k=0
Sothat s 'A~1|1) |¢) has Q(1/T) overlap with

VI [1) [¢) = 1) Ur--- Uy [4) .

But undesirable terms coniribute too.

Proof of BQP-hardness

The correct version
» Define

s U

LJ2T-|-1 :U;'aalJGT:UI

sothat Usr...U; = P"and U;... Uy = Ur... U; whenever
T<ri<?l.

Related work

» [L. Sheridan, D. Maslov and M. Mosca. Approximating
Fractional Time Quantum Evolution. 0810.3843] show how
access to U can be used to simulate U' for non-integer t.

» [S.K. Leyton and T.J. Osborne. A quantum algorithm to solve
nonlinear differential equations. 0812.4423] requires time
polylogarithmic in the number of variables, but exponential in
the integration time.

» [S. P. Jordan and P. Wocjan. Efficient quantum circuits for
arbitrary sparse unitaries. arXiv:0904.2211] is also based on
Hamiltonian simulation.

» [D. Janzing and P. Wocjan. Estimating diagonal entries of
powers of sparse symmetric matrices is BQP-complete.
arXiv:quant-ph/0606229] is similar to our BQP-hardness resuli.

Extensions/applications

Mostly things we don’t know how to solve!

» If Ais ill-conditioned, we can choose « arbitrarily, invert the part
with eigenvalues > 1/x and flag the bad part with eigenvalues
< 1/k.

However, we cannot determine exactly which eigenvalues are
> 1/x and which are < 1 /..

Extensions/applications

Mostly things we don’t know how to solve!

» If Ais ill-conditioned, we can choose « arbitrarily, invert the part
with eigenvalues > 1/x and flag the bad part with eigenvalues
< 1/k.

However, we cannot determine exactly which eigenvalues are
> 1/x and which are < 1/k.

» If ||A]| > 1, then we should be able to rescale A and disregard
large eigenvalues of A that contribute very little to A=".

This appears to require more careful analysis of errors in
Hamiltonian simulation protocols.

Extensions/applications

Mostly things we don’t know how to solve!

» If Ais ill-conditioned, we can choose « arbitrarily, invert the part
with eigenvalues > 1/x and flag the bad part with eigenvalues
< 1/k.

However, we cannot determine exactly which eigenvalues are
> 1/ and which are < 1 /..

» If || Al > 1, then we should be able to rescale A and disregard
large eigenvalues of A that contribute very little to A=".

This appears to require more careful analysis of errors in
Hamiltonian simulation protocols.

» B is a preconditioner if x(AB) < &(A). If B is sparse, then BA is
as well, and we can apply (BA)~' to B|b). Preconditioners are
crucial to practical (classical) iterative methods and we would
like to make use of them with our algorithm.

Extensions/applications

Mostly things we don’'t know how to solve!

» If Ais ill-conditioned, we can choose « arbitrarily, invert the part
with eigenvalues > 1/x and flag the bad part with eigenvalues
< 1/k.

However, we cannot determine exactly which eigenvalues are
> 1/« and which are < 1/k«.

» If || Al > 1, then we should be able to rescale A and disregard
large eigenvalues of A that contribute very little to A=".

This appears to require more careful analysis of errors in
Hamiltonian simulation protocols.

» B is a preconditioner if s(AB) <« s(A). If B is sparse, then BA is
as well, and we can apply (BA)~' to B|b). Preconditioners are
crucial to practical (classical) iterative methods and we would
like to make use of them with our algorithm.

» Future work. Find applications! Candidates are deconvolution,
solving elliptical PDE’s and speeding up linear programming.

