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Abstract: Solving linear systems of equations is a common problem that arises both on its own and as a subroutine in more complex problems: given
amatrix A and a vector b, find a vector x such that Ax=b. Often, one does not need to know the solution x itself, but rather an approximation of the
expectation value of some operator associated with x, e.g., XMx for some matrix M. In this case, when A is sparse and well-conditioned, with
largest dimension N, the best known classical agorithms can find x and estimate X'Mx in O(N * poly(log(N))) time.

In thistalk I'll describe a quantum algorithm for solving linear sets of equations that runs in poly(log N) time, an exponential improvement over the
best classical agorithm.

Thistalk is based on my paper arXiv:0811.3171v2, which was written with Avinatan Hassidim and Seth Lloyd.
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» We are given A, a Hermitian N x N matrix.
» b e CNis also given as input.
» We want to (approximately) find X € CN such that AX = b.

» If Ais not Hermitian or square, we can use (/?T '3) Why?
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» Some weaker goals are to estimate XTMX (for some matrix M)
or sample from the probability distribution Pr[i] o |x;|2.

Because

» This problem was introduced in middle school, and has
applications throughout high school, college, grad school and
even work.
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(By contrast, Gaussian elimination takes time O(N?).)
» ¢is a bound on error in X.
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Classical algorithms

» The LU decomposition finds X in time O(N?376 poly(log(x/¢€))).
» Here “2.376" is the matrix-multiplication exponent.
(By contrast, Gaussian elimination takes time O(N?).)
» ¢is a bound on error in x.
» « is the condition number.

o1(A)
on(A)

Here o;(A) is the i singular value and || A|| = o1(A).
x measures how hard A is to invert, or equivalently, how
sensitively A~' depends on changes in A.

k= [|A] - |A7"]| =

» lterative methods (e.g. conjugate gradient) require
O(y/xlog(1/€)) matrix-vector multiplications.
» |f Ais s-sparse (i.e. has < s nonzero eniries per row) then the
total time is O(Ns,/klog(1/e)).
> |support(b)| - (s/€)°V= - poly(log(N)) is also possible.
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Our results

» Quantum Algorithm. Suppose that
> |b) = 3N b;|i) is a unit vector that can be prepared in time Tg;
» Ais s-sparse, efficiently row-computable and s/ < |A| < |
N _ A _ X))
» XY =A""|b)and |x) = JE

Then our (quantum) algorithm produces |x) and (x| x’), both up
to error ¢, in time

O(xTg + log(N)s®x2/e).

Reminder: classical algorithms output the entire vector X in
time O(min(N2378, Ns\/k, (s/€)9(V¥))). This is exponentially
slower when s = O(1) and x = poly log(N).

» Optimality. Given plausible complexity-theoretic assumptions,
these run-times (both quantum and classical) cannot be
improved by much. Argument is based on BQP-hardness of the
matrix inversion problem.
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» Based on two key primitives:

» Hamiltonian simulation. Trotter techniques’ can be used to
simulate ! in time O(ts®log(N)).

'D.W. Berry, G. Ahokas, R. Cleve and B.C. Sanders. Efficient Quantum
algarithms for sparse Hamiltonians. CMP 2007, quant-ph/05081389.
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» Hamiltonian simulation. Trotter techniques’ can be used to
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A=A+ 0(1/h).

» Phase estimation on e’ automatically resolves |b) into the
eigenbasis of A by (approximately) measuring A.

» Doing this coherently can (approximately) map |b) to

0) ® VI—c2A2|b) + 1)@ cA~' |b),

where c is chosen so that ||cA—1|| < 1.

'D.W. Berry, G. Ahokas, R. Cleve and B.C. Sanders. Efficient Quantum
algorithms for sparse Hamiltonians. CMP 2007, quant-ph/05081389.
2\. Buzek, R. Derka and S. Massar. Optimal quantum clocks. PRL 1999,
uant-ph/9808042.

Pitsa: 0805006




Algorithm idea

» Based on two key primitives:
» Hamiltonian simulation. Trotter techniques’ can be used to
simulate e in time O(ts® log(N)).
» Phase estimation. Applying €*! for a carefully chosen
superposition® of times from 0 to { can be used to produce
A= A+ O0(1/1).
» Phase estimation on e’ automatically resolves |b) into the
eigenbasis of A by (approximately) measuring A.
» Doing this coherently can (approximately) map |b) to

0) ® VI— c2A2|b)+ 1)@ cA~' |b),

where c is chosen so that |[cA~ || < 1.
» Measure the first qubit. Upon outcome “1” we are left with | x).

'D.W. Berry, G. Ahokas, R. Cleve and B.C. Sanders. Efficient Quantum
algorithms for sparse Hamiltonians. CMP 2007, quant-ph/05081389.
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Algorithm details
Let |b) =), by |Uy).
1. Prepare control register in superposition of |f) over 0 < t < f.
2. Use Hamiltonian simulation to apply >, |t)(t| ® €.
3. Fourier transform first register, yielding

Za,\:j‘ ‘X> & bA ‘U)J ;
%

with |a, 5| small unless A ~ .
4. Conditioned on X, adjoin state

V1 —C23-2|0)+ CA~ 1 [1).

5. Undo steps 1-3

6. Measure ancilla qubit and start over if outcome isn't 1.
(Technically, use amplitude amplication.)
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takes time O((log N)s%1p).
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Further consequences of BQP-completeness

Relative to oracles

» No quantum algorithm can run intime = z - poly log(N).
» No classical algorithm can run in time No(1)29(Vx)

» No iterative method can use o(./x) matrix-vector multiplies.
(Although we already knew this by taking A to be the adjacency
matrix of a random cycle of length /x.).

Error scaling

» Improving our quantum run-time to poly(x, log(N), log(1/¢))
would imply BQP=PP.

» And even improving it to N°(1) /¢2(1) is impossible relative to an
oracle.
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An idea that almost works

» Qur quantum circuit is Ut - - - U;.
» On the space C” @ C? define

:
V=Y [t+1 (mod T)) (| ® U is unitary
=1
A=l—e TV hask < T
» Expand

A=Y =V
k=0
Sothat s 'A-1|1) |¢) has Q(1/T) overlap with
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Proof of BQP-hardness

The correct version
» Define

tees— — Uiy —

Uors1 = UL,...,Usr = U}

sothat Us7...U; = ®"and U;... U; = Ur... U; whenever
T<ficdi
» Now define (on the space C37 ® C?") the operators

3T
V=Y |t+1 (mod 3T))(t|® U

=1
A—f iV

» This time s~ A= |1) |) has Q(1) overlap with successful
computations (i.e. [[) @ Ur... Uy |¢) for T < t < 2T) and there
ek N0 €XEra error from wrap-around.
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Proof of BQP-hardness

The correct version
» Define

s U

LJ2T-|-1 :U;'aalJGT:UI

sothat Usr...U; = P"and U;... Uy = Ur... U; whenever
T<ri<?l.




Related work

» [L. Sheridan, D. Maslov and M. Mosca. Approximating
Fractional Time Quantum Evolution. 0810.3843] show how
access to U can be used to simulate U' for non-integer t.

» [S.K. Leyton and T.J. Osborne. A quantum algorithm to solve
nonlinear differential equations. 0812.4423] requires time
polylogarithmic in the number of variables, but exponential in
the integration time.

» [S. P. Jordan and P. Wocjan. Efficient quantum circuits for
arbitrary sparse unitaries. arXiv:0904.2211] is also based on
Hamiltonian simulation.

» [D. Janzing and P. Wocjan. Estimating diagonal entries of
powers of sparse symmetric matrices is BQP-complete.
arXiv:quant-ph/0606229] is similar to our BQP-hardness resuli.
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Extensions/applications

Mostly things we don’'t know how to solve!

» If Ais ill-conditioned, we can choose « arbitrarily, invert the part
with eigenvalues > 1/x and flag the bad part with eigenvalues
< 1/k.

However, we cannot determine exactly which eigenvalues are
> 1/« and which are < 1/k«.

» If || Al > 1, then we should be able to rescale A and disregard
large eigenvalues of A that contribute very little to A=".

This appears to require more careful analysis of errors in
Hamiltonian simulation protocols.

» B is a preconditioner if s(AB) <« s(A). If B is sparse, then BA is
as well, and we can apply (BA)~' to B|b). Preconditioners are
crucial to practical (classical) iterative methods and we would
like to make use of them with our algorithm.

» Future work. Find applications! Candidates are deconvolution,
solving elliptical PDE’s and speeding up linear programming.




