Title: Quantum algorithm for solving linear systems of equations

Date: May 04, 2009 04:00 PM

URL: http://pirsa.org/08050061

Abstract: Solving linear systems of equations is a common problem that arises both on its own and as a subroutine in more complex problems: given a matrix A and a vector b, find a vector x such that Ax=b. Often, one does not need to know the solution x itself, but rather an approximation of the expectation value of some operator associated with x, e.g., x'Mx for some matrix M. In this case, when A is sparse and well-conditioned, with largest dimension N, the best known classical algorithms can find x and estimate x'Mx in O(N * poly(log(N))) time.

In this talk I'll describe a quantum algorithm for solving linear sets of equations that runs in poly(log N) time, an exponential improvement over the best classical algorithm.

This talk is based on my paper arXiv:0811.3171v2, which was written with Avinatan Hassidim and Seth Lloyd.

Pirsa: 08050061 Page 1/74

A Quantum algorithm for solving $A\vec{x} = \vec{b}$

Aram Harrow¹ Avinatan Hassidim² Seth Lloyd²

¹University of Bristol

²MIT

Perimeter Institute seminar 4 May, 2009

Outline

- ▶ The problem.
- Classical solutions.
- Our quantum solution.
- How it works.
- Why it's (not so far from) optimal.
- Related work / extensions / applications.

- ▶ We are given A, a Hermitian $N \times N$ matrix.
- ▶ $\vec{b} \in \mathbb{C}^N$ is also given as input.
- ▶ We want to (approximately) find $\vec{x} \in \mathbb{C}^N$ such that $A\vec{x} = \vec{b}$.

Pirsa: 08050061 Page 4/74

- ▶ We are given A, a Hermitian $N \times N$ matrix.
- ▶ $\vec{b} \in \mathbb{C}^N$ is also given as input.
- ▶ We want to (approximately) find $\vec{x} \in \mathbb{C}^N$ such that $A\vec{x} = \vec{b}$.
- If A is not Hermitian or square, we can use $\begin{pmatrix} 0 & A \\ A^{\dagger} & 0 \end{pmatrix}$. Why? Because

$$\begin{pmatrix} 0 & A \\ A^{\dagger} & 0 \end{pmatrix} \begin{pmatrix} 0 \\ \vec{x} \end{pmatrix} = \begin{pmatrix} \vec{b} \\ 0 \end{pmatrix}.$$

- ▶ We are given A, a Hermitian $N \times N$ matrix.
- ▶ \vec{b} ∈ \mathbb{C}^N is also given as input.
- ▶ We want to (approximately) find $\vec{x} \in \mathbb{C}^N$ such that $A\vec{x} = \vec{b}$.
- If A is not Hermitian or square, we can use $\begin{pmatrix} 0 & A \\ A^{\dagger} & 0 \end{pmatrix}$. Why? Because

$$\begin{pmatrix} 0 & A \\ A^{\dagger} & 0 \end{pmatrix} \begin{pmatrix} 0 \\ \vec{x} \end{pmatrix} = \begin{pmatrix} \vec{b} \\ 0 \end{pmatrix}.$$

Some weaker goals are to estimate $\vec{x}^{\dagger}M\vec{x}$ (for some matrix M) or sample from the probability distribution $\Pr[i] \propto |x_i|^2$.

- ▶ We are given A, a Hermitian $N \times N$ matrix.
- ▶ $\vec{b} \in \mathbb{C}^N$ is also given as input.
- ▶ We want to (approximately) find $\vec{x} \in \mathbb{C}^N$ such that $A\vec{x} = \vec{b}$.
- If A is not Hermitian or square, we can use $\begin{pmatrix} 0 & A \\ A^{\dagger} & 0 \end{pmatrix}$. Why? Because

$$\begin{pmatrix} 0 & A \\ A^{\dagger} & 0 \end{pmatrix} \begin{pmatrix} 0 \\ \vec{x} \end{pmatrix} = \begin{pmatrix} \vec{b} \\ 0 \end{pmatrix}.$$

- Some weaker goals are to estimate $\vec{x}^{\dagger}M\vec{x}$ (for some matrix M) or sample from the probability distribution $\Pr[i] \propto |x_i|^2$.
- This problem was introduced in middle school, and has applications throughout high school, college, grad school and even work.

- ▶ The LU decomposition finds \vec{x} in time $O(N^{2.376} \text{ poly}(\log(\kappa/\epsilon)))$.
 - Here "2.376" is the matrix-multiplication exponent.
 (By contrast, Gaussian elimination takes time O(N³).)
 - ightharpoonup is a bound on error in \vec{x} .

Pirsa: 08050061 Page 8/74

- ▶ The LU decomposition finds \vec{x} in time $O(N^{2.376} \text{ poly}(\log(\kappa/\epsilon)))$.
 - Here "2.376" is the matrix-multiplication exponent.
 (By contrast, Gaussian elimination takes time O(N³).)
 - $ightharpoonup \epsilon$ is a bound on error in \vec{x} .
 - k is the condition number.

$$\kappa = \|A\| \cdot \|A^{-1}\| = \frac{\sigma_1(A)}{\sigma_N(A)}$$

Here $\sigma_i(A)$ is the i^{th} singular value and $||A|| = \sigma_1(A)$. κ measures how hard A is to invert, or equivalently, how sensitively A^{-1} depends on changes in A.

Pirsa: 08050061 Page 9/74

- ▶ The LU decomposition finds \vec{x} in time $O(N^{2.376} \text{ poly}(\log(\kappa/\epsilon)))$.
 - Here "2.376" is the matrix-multiplication exponent. (By contrast, Gaussian elimination takes time O(N³).)
 - ightharpoonup is a bound on error in \vec{x} .
 - k is the condition number.

$$\kappa = \|A\| \cdot \|A^{-1}\| = \frac{\sigma_1(A)}{\sigma_N(A)}$$

Here $\sigma_i(A)$ is the i^{th} singular value and $||A|| = \sigma_1(A)$. κ measures how hard A is to invert, or equivalently, how sensitively A^{-1} depends on changes in A.

lterative methods (e.g. conjugate gradient) require $O(\sqrt{\kappa} \log(1/\epsilon))$ matrix-vector multiplications.

Pirsa: 08050061 Page 10/74

- ▶ The LU decomposition finds \vec{x} in time $O(N^{2.376} \text{ poly}(\log(\kappa/\epsilon)))$.
 - Here "2.376" is the matrix-multiplication exponent.
 (By contrast, Gaussian elimination takes time O(N³).)
 - ightharpoonup is a bound on error in \vec{x} .
 - k is the condition number.

$$\kappa = \|A\| \cdot \|A^{-1}\| = \frac{\sigma_1(A)}{\sigma_N(A)}$$

Here $\sigma_i(A)$ is the i^{th} singular value and $||A|| = \sigma_1(A)$. κ measures how hard A is to invert, or equivalently, how sensitively A^{-1} depends on changes in A.

- lterative methods (e.g. conjugate gradient) require $O(\sqrt{\kappa}\log(1/\epsilon))$ matrix-vector multiplications.
 - If A is s-sparse (i.e. has $\leq s$ nonzero entries per row) then the total time is $O(Ns\sqrt{\kappa}\log(1/\epsilon))$.

Prisa: 08050061 Page 11//4

- ▶ The LU decomposition finds \vec{x} in time $O(N^{2.376} \text{ poly}(\log(\kappa/\epsilon)))$.
 - Here "2.376" is the matrix-multiplication exponent. (By contrast, Gaussian elimination takes time O(N³).)
 - ightharpoonup is a bound on error in \vec{x} .
 - k is the condition number.

$$\kappa = \|A\| \cdot \|A^{-1}\| = \frac{\sigma_1(A)}{\sigma_N(A)}$$

Here $\sigma_i(A)$ is the i^{th} singular value and $||A|| = \sigma_1(A)$. κ measures how hard A is to invert, or equivalently, how sensitively A^{-1} depends on changes in A.

- lterative methods (e.g. conjugate gradient) require $O(\sqrt{\kappa}\log(1/\epsilon))$ matrix-vector multiplications.
 - If A is s-sparse (i.e. has $\leq s$ nonzero entries per row) then the total time is $O(Ns\sqrt{\kappa}\log(1/\epsilon))$.
 - ▶ $|\text{support}(\vec{b})| \cdot (s/\epsilon)^{O(\sqrt{\kappa})} \cdot \text{poly}(\log(N))$ is also possible.

- Quantum Algorithm. Suppose that
 - ▶ $|b\rangle = \sum_{i=1}^{N} b_i |i\rangle$ is a unit vector that can be prepared in time T_B ;

Pirsa: 08050061 Page 13/74

- Quantum Algorithm. Suppose that
 - $|b\rangle = \sum_{i=1}^{N} b_i |i\rangle$ is a unit vector that can be prepared in time T_B ;
 - ▶ A is s-sparse, efficiently row-computable and $\kappa^{-1}I \leq |A| \leq I$

Pirsa: 08050061 Page 14/74

- Quantum Algorithm. Suppose that
 - $|b\rangle = \sum_{i=1}^{N} b_i |i\rangle$ is a unit vector that can be prepared in time T_B ;
 - ▶ A is s-sparse, efficiently row-computable and $\kappa^{-1}I \leq |A| \leq I$
 - $|x'\rangle = A^{-1} |b\rangle \text{ and } |x\rangle = \frac{|x'\rangle}{\sqrt{\langle x'|x'\rangle}}.$

Pirsa: 08050061 Page 15/74

- Quantum Algorithm. Suppose that
 - $|b\rangle = \sum_{i=1}^{N} b_i |i\rangle$ is a unit vector that can be prepared in time T_B ;
 - ▶ A is s-sparse, efficiently row-computable and $\kappa^{-1}I \leq |A| \leq I$
 - $|x'\rangle = A^{-1} |b\rangle \text{ and } |x\rangle = \frac{|x'\rangle}{\sqrt{\langle x'|x'\rangle}}.$

Then our (quantum) algorithm produces $|x\rangle$ and $\langle x'|x'\rangle$, both up to error ϵ , in time

$$\tilde{O}(\kappa T_B + \log(N)s^2\kappa^2/\epsilon)$$
.

University of

Pirsa: 08050061 Page 16/74

- Quantum Algorithm. Suppose that
 - $|b\rangle = \sum_{i=1}^{N} b_i |i\rangle$ is a unit vector that can be prepared in time T_B ;
 - ▶ A is s-sparse, efficiently row-computable and $\kappa^{-1}I \leq |A| \leq I$
 - $|x'\rangle = A^{-1} |b\rangle \text{ and } |x\rangle = \frac{|x'\rangle}{\sqrt{\langle x'|x'\rangle}}.$

Then our (quantum) algorithm produces $|x\rangle$ and $\langle x'|x'\rangle$, both up to error ϵ , in time

$$\tilde{O}(\kappa T_B + \log(N)s^2\kappa^2/\epsilon).$$

Reminder: classical algorithms output the entire vector \vec{x} in time $\tilde{O}(\min(N^{2.376}, Ns\sqrt{\kappa}, (s/\epsilon)^{O(\sqrt{\kappa})}))$. This is exponentially slower when s = O(1) and $\kappa = \text{poly}\log(N)$.

Pirsa: 08050061 Page 1//4

- Quantum Algorithm. Suppose that
 - $|b\rangle = \sum_{i=1}^{N} b_i |i\rangle$ is a unit vector that can be prepared in time T_B ;
 - ▶ A is s-sparse, efficiently row-computable and $\kappa^{-1}I \leq |A| \leq I$
 - $|x'\rangle = A^{-1} |b\rangle \text{ and } |x\rangle = \frac{|x'\rangle}{\sqrt{\langle x'|x'\rangle}}.$

Then our (quantum) algorithm produces $|x\rangle$ and $\langle x'|x'\rangle$, both up to error ϵ , in time

$$\tilde{O}(\kappa T_B + \log(N)s^2\kappa^2/\epsilon)$$
.

Reminder: classical algorithms output the entire vector \vec{x} in time $\tilde{O}(\min(N^{2.376}, Ns\sqrt{\kappa}, (s/\epsilon)^{O(\sqrt{\kappa})}))$. This is exponentially slower when s = O(1) and $\kappa = \text{poly}\log(N)$.

Pirsa: 08050061 Page 18/74

- Quantum Algorithm. Suppose that
 - $|b\rangle = \sum_{i=1}^{N} b_i |i\rangle$ is a unit vector that can be prepared in time T_B ;
 - ▶ A is s-sparse, efficiently row-computable and $\kappa^{-1}I \leq |A| \leq I$
 - $|x'\rangle = A^{-1} |b\rangle \text{ and } |x\rangle = \frac{|x'\rangle}{\sqrt{\langle x'|x'\rangle}}.$

Then our (quantum) algorithm produces $|x\rangle$ and $\langle x'|x'\rangle$, both up to error ϵ , in time

$$\tilde{O}(\kappa T_B + \log(N)s^2\kappa^2/\epsilon)$$
.

Reminder: classical algorithms output the entire vector \vec{x} in time $\tilde{O}(\min(N^{2.376}, Ns\sqrt{\kappa}, (s/\epsilon)^{O(\sqrt{\kappa})}))$. This is exponentially slower when s = O(1) and $\kappa = \text{poly}\log(N)$.

Optimality. Given plausible complexity-theoretic assumptions, these run-times (both quantum and classical) cannot be improved by much. Argument is based on BQP-hardness of the matrix inversion problem.

Page 20/74

Pirsa: 08050061

- Based on two key primitives:
 - Hamiltonian simulation. Trotter techniques¹ can be used to simulate e^{iAt} in time O(ts² log(N)).

¹D.W. Berry, G. Ahokas, R. Cleve and B.C. Sanders. Efficient Quantum algorithms for sparse Hamiltonians. CMP 2007, quant-ph/0508139.

- Based on two key primitives:
 - Hamiltonian simulation. Trotter techniques¹ can be used to simulate e^{iAt} in time O(ts² log(N)).
 - Phase estimation. Applying $e^{i\lambda t}$ for a carefully chosen superposition² of times from 0 to t_0 can be used to produce $\tilde{\lambda} \approx \lambda \pm O(1/t_0)$.

University of

Aram Harrow

¹D.W. Berry, G. Ahokas, R. Cleve and B.C. Sanders. Efficient Quantum algorithms for sparse Hamiltonians. CMP 2007, quant-ph/0508139.

²V. Buzek, R. Derka and S. Massar. Optimal quantum clocks. PRL 1999, quant-ph/9808042.

- Based on two key primitives:
 - Hamiltonian simulation. Trotter techniques¹ can be used to simulate e^{iAt} in time O(ts² log(N)).
 - Phase estimation. Applying $e^{i\lambda t}$ for a carefully chosen superposition² of times from 0 to t_0 can be used to produce $\tilde{\lambda} \approx \lambda \pm O(1/t_0)$.
- Phase estimation on e^{iAt} automatically resolves $|b\rangle$ into the eigenbasis of A by (approximately) measuring λ .

¹D.W. Berry, G. Ahokas, R. Cleve and B.C. Sanders. Efficient Quantum algorithms for sparse Hamiltonians. *CMP 2007*, quant-ph/0508139.

²V. Buzek, R. Derka and S. Massar. Optimal quantum clocks. PRL 1999, quant-ph/9808042.

- Based on two key primitives:
 - Hamiltonian simulation. Trotter techniques¹ can be used to simulate e^{iAt} in time O(ts² log(N)).
 - Phase estimation. Applying $e^{i\lambda t}$ for a carefully chosen superposition² of times from 0 to t_0 can be used to produce $\tilde{\lambda} \approx \lambda \pm O(1/t_0)$.
- Phase estimation on e^{iAt} automatically resolves $|b\rangle$ into the eigenbasis of A by (approximately) measuring λ .
- Doing this coherently can (approximately) map |b> to

$$|0\rangle \otimes \sqrt{I-c^2A^{-2}}|b\rangle + |1\rangle \otimes cA^{-1}|b\rangle$$
,

where *c* is chosen so that $||cA^{-1}|| \le 1$.

¹D.W. Berry, G. Ahokas, R. Cleve and B.C. Sanders. Efficient Quantum algorithms for sparse Hamiltonians. *CMP 2007*, quant-ph/0508139.

²V. Buzek, R. Derka and S. Massar. Optimal quantum clocks. PRL 1999, quant-ph/9808042.

- Based on two key primitives:
 - Hamiltonian simulation. Trotter techniques¹ can be used to simulate e^{iAt} in time O(ts² log(N)).
 - Phase estimation. Applying $e^{i\lambda t}$ for a carefully chosen superposition² of times from 0 to t_0 can be used to produce $\tilde{\lambda} \approx \lambda \pm O(1/t_0)$.
- Phase estimation on e^{iAt} automatically resolves $|b\rangle$ into the eigenbasis of A by (approximately) measuring λ .
- Doing this coherently can (approximately) map |b> to

$$|0\rangle \otimes \sqrt{I-c^2A^{-2}}|b\rangle + |1\rangle \otimes cA^{-1}|b\rangle$$
,

where *c* is chosen so that $||cA^{-1}|| \le 1$.

▶ Measure the first qubit. Upon outcome "1" we are left with $|x\rangle$.

¹D.W. Berry, G. Ahokas, R. Cleve and B.C. Sanders. Efficient Quantum algorithms for sparse Hamiltonians. CMP 2007, quant-ph/0508139.

²V. Buzek, R. Derka and S. Massar. Optimal quantum clocks. PRL 1999, quant-ph/9808042.

Algorithm details Let $|b\rangle = \sum_{\lambda} b_{\lambda} |u_{\lambda}\rangle$.

Pirsa: 08050061

Let
$$|b\rangle = \sum_{\lambda} b_{\lambda} |u_{\lambda}\rangle$$
.

1. Prepare control register in superposition of $|t\rangle$ over $0 \le t \le t_0$.

Pirsa: 08050061 Page 27/7

Let $|b\rangle = \sum_{\lambda} b_{\lambda} |u_{\lambda}\rangle$.

- 1. Prepare control register in superposition of $|t\rangle$ over $0 \le t \le t_0$.
- 2. Use Hamiltonian simulation to apply $\sum_{t} |t\rangle\langle t| \otimes e^{iAt}$.

Pirsa: 08050061 Page 28/7

Let
$$|b\rangle = \sum_{\lambda} b_{\lambda} |u_{\lambda}\rangle$$
.

- 1. Prepare control register in superposition of $|t\rangle$ over $0 \le t \le t_0$.
- 2. Use Hamiltonian simulation to apply $\sum_{t} |t\rangle\langle t| \otimes e^{iAt}$.
- 3. Fourier transform first register, yielding

$$\sum_{\lambda, ilde{\lambda}} lpha_{\lambda, ilde{\lambda}} \left| ilde{\lambda}
ight
angle \otimes b_{\lambda} \left| u_{\lambda}
ight
angle ,$$

with $|\alpha_{\lambda,\tilde{\lambda}}|$ small unless $\tilde{\lambda} \approx \lambda$.

The state of the s

Let $|b\rangle = \sum_{\lambda} b_{\lambda} |u_{\lambda}\rangle$.

- 1. Prepare control register in superposition of $|t\rangle$ over $0 \le t \le t_0$.
- 2. Use Hamiltonian simulation to apply $\sum_{t} |t\rangle\langle t| \otimes e^{iAt}$.
- 3. Fourier transform first register, yielding

$$\sum_{\lambda, ilde{\lambda}} lpha_{\lambda, ilde{\lambda}} \left| ilde{\lambda}
ight
angle \otimes m{b}_{\lambda} \left| m{u}_{\lambda}
ight
angle \, ,$$

with $|\alpha_{\lambda,\tilde{\lambda}}|$ small unless $\tilde{\lambda} \approx \lambda$.

4. Conditioned on $\tilde{\lambda}$, adjoin state

$$\sqrt{1-C^2\tilde{\lambda}^{-2}}\ket{0}+C\tilde{\lambda}^{-1}\ket{1}$$
 .

Pirsa: 08050061 Page 30/74

Let
$$|b\rangle = \sum_{\lambda} b_{\lambda} |u_{\lambda}\rangle$$
.

- 1. Prepare control register in superposition of $|t\rangle$ over $0 \le t \le t_0$.
- 2. Use Hamiltonian simulation to apply $\sum_{t} |t\rangle\langle t| \otimes e^{iAt}$.
- 3. Fourier transform first register, yielding

$$\sum_{\lambda, ilde{\lambda}} lpha_{\lambda, ilde{\lambda}} \left| ilde{\lambda}
ight
angle \otimes b_{\lambda} \left| u_{\lambda}
ight
angle ,$$

with $|\alpha_{\lambda,\tilde{\lambda}}|$ small unless $\tilde{\lambda} \approx \lambda$.

4. Conditioned on $\tilde{\lambda}$, adjoin state

$$\sqrt{1-C^2\tilde{\lambda}^{-2}}\ket{0}+C\tilde{\lambda}^{-1}\ket{1}$$
 .

5. Undo steps 1-3

Let
$$|b\rangle = \sum_{\lambda} b_{\lambda} |u_{\lambda}\rangle$$
.

- 1. Prepare control register in superposition of $|t\rangle$ over $0 \le t \le t_0$.
- 2. Use Hamiltonian simulation to apply $\sum_{t} |t\rangle\langle t| \otimes e^{iAt}$.
- 3. Fourier transform first register, yielding

$$\sum_{\lambda,\tilde{\lambda}} lpha_{\lambda,\tilde{\lambda}} \left| \tilde{\lambda} \right> \otimes b_{\lambda} \left| u_{\lambda} \right>,$$

with $|\alpha_{\lambda,\tilde{\lambda}}|$ small unless $\tilde{\lambda} \approx \lambda$.

4. Conditioned on $\tilde{\lambda}$, adjoin state

$$\sqrt{1-C^2\tilde{\lambda}^{-2}}\ket{0}+C\tilde{\lambda}^{-1}\ket{1}$$
 .

- 5. Undo steps 1-3
- Measure ancilla qubit and start over if outcome isn't 1. (Technically, use amplitude amplication.)

University of

Pirsa: 08050061

The Hamiltonian simulation produces negligible error. (Error ϵ incurs overhead of $\exp(O(\sqrt{\log(1/\epsilon)})) = \epsilon^{-o(1)}$.) Recall that it takes time $\tilde{O}((\log N)s^2t_0)$.

Pirsa: 08050061 Page 33/74

- The Hamiltonian simulation produces negligible error. (Error ϵ incurs overhead of $\exp(O(\sqrt{\log(1/\epsilon)})) = \epsilon^{-o(1)}$.) Recall that it takes time $\tilde{O}((\log N)s^2t_0)$.
- Phase estimation produces error of O(1/t₀) with tail probability dying off fast enough to not bother us.

Plisa: 08050061 Page 34/74

- The Hamiltonian simulation produces negligible error. (Error ϵ incurs overhead of $\exp(O(\sqrt{\log(1/\epsilon)})) = \epsilon^{-o(1)}$.) Recall that it takes time $\tilde{O}((\log N)s^2t_0)$.
- Phase estimation produces error of O(1/t₀) with tail probability dying off fast enough to not bother us.
- An additive error of $1/t_0$ in λ translates into an error in λ^{-1} of $\lambda^{-2}/t_0 \le \kappa^2/t_0$. Thus, we can take $t_0 \sim \kappa^2/\epsilon$.

Page 35/74

- The Hamiltonian simulation produces negligible error. (Error ϵ incurs overhead of $\exp(O(\sqrt{\log(1/\epsilon)})) = \epsilon^{-o(1)}$.) Recall that it takes time $\tilde{O}((\log N)s^2t_0)$.
- Phase estimation produces error of O(1/t₀) with tail probability dying off fast enough to not bother us.
- An additive error of $1/t_0$ in λ translates into an error in λ^{-1} of $\lambda^{-2}/t_0 \le \kappa^2/t_0$. Thus, we can take $t_0 \sim \kappa^2/\epsilon$.
- We can take $C = 1/2\kappa$ to guarantee that $||CA^{-1}|| \le 1/2$. $(C = 1/\kappa \text{ should work, but the analysis is more painful.})$

Pirsa: 08050061 Page 36/74

- The Hamiltonian simulation produces negligible error. (Error ϵ incurs overhead of $\exp(O(\sqrt{\log(1/\epsilon)})) = \epsilon^{-o(1)}$.) Recall that it takes time $\tilde{O}((\log N)s^2t_0)$.
- Phase estimation produces error of O(1/t₀) with tail probability dying off fast enough to not bother us.
- An additive error of $1/t_0$ in λ translates into an error in λ^{-1} of $\lambda^{-2}/t_0 \le \kappa^2/t_0$. Thus, we can take $t_0 \sim \kappa^2/\epsilon$.
- We can take $C = 1/2\kappa$ to guarantee that $||CA^{-1}|| \le 1/2$. $(C = 1/\kappa \text{ should work, but the analysis is more painful.})$
- Thus post-selection succeeds with probability at least $O(1/\kappa^2)$ and blows up error by at most $O(\kappa)$. With enough algebra, the run-time magically stays at $O(\kappa^2/\epsilon)$.

Pirsa: 08050061 Page 37/74

- The Hamiltonian simulation produces negligible error. (Error ϵ incurs overhead of $\exp(O(\sqrt{\log(1/\epsilon)})) = \epsilon^{-o(1)}$.) Recall that it takes time $\tilde{O}((\log N)s^2t_0)$.
- Phase estimation produces error of O(1/t₀) with tail probability dying off fast enough to not bother us.
- An additive error of $1/t_0$ in λ translates into an error in λ^{-1} of $\lambda^{-2}/t_0 \le \kappa^2/t_0$. Thus, we can take $t_0 \sim \kappa^2/\epsilon$.
- We can take $C = 1/2\kappa$ to guarantee that $||CA^{-1}|| \le 1/2$. $(C = 1/\kappa \text{ should work, but the analysis is more painful.})$
- Thus post-selection succeeds with probability at least $O(1/\kappa^2)$ and blows up error by at most $O(\kappa)$. With enough algebra, the run-time magically stays at $O(\kappa^2/\epsilon)$.
- We couldn't figure out how to make variable-length run-time à la 0811.4428 work. Our best lower bound is $\sqrt{\kappa}$.

Algorithm details

Let
$$|b\rangle = \sum_{\lambda} b_{\lambda} |u_{\lambda}\rangle$$
.

- 1. Prepare control register in superposition of $|t\rangle$ over $0 \le t \le t_0$.
- 2. Use Hamiltonian simulation to apply $\sum_{t} |t\rangle\langle t| \otimes e^{iAt}$.
- 3. Fourier transform first register, yielding

$$\sum_{\lambda,\tilde{\lambda}} lpha_{\lambda,\tilde{\lambda}} \left| \tilde{\lambda} \right> \otimes b_{\lambda} \left| u_{\lambda} \right>,$$

with $|\alpha_{\lambda,\tilde{\lambda}}|$ small unless $\tilde{\lambda} \approx \lambda$.

4. Conditioned on $\tilde{\lambda}$, adjoin state

$$\sqrt{1-C^2\tilde{\lambda}^{-2}}\ket{0}+C\tilde{\lambda}^{-1}\ket{1}$$
.

- 5. Undo steps 1-3
- Measure ancilla qubit and start over if outcome isn't 1. (Technically, use amplitude amplication.)

University of

Pirsa: 0805006

- The Hamiltonian simulation produces negligible error. (Error ϵ incurs overhead of $\exp(O(\sqrt{\log(1/\epsilon)})) = \epsilon^{-o(1)}$.) Recall that it takes time $\tilde{O}((\log N)s^2t_0)$.
- Phase estimation produces error of O(1/t₀) with tail probability dying off fast enough to not bother us.

Plisa: 08050061 Page 40/74

- The Hamiltonian simulation produces negligible error. (Error ϵ incurs overhead of $\exp(O(\sqrt{\log(1/\epsilon)})) = \epsilon^{-o(1)}$.) Recall that it takes time $\tilde{O}((\log N)s^2t_0)$.
- Phase estimation produces error of O(1/t₀) with tail probability dying off fast enough to not bother us.
- An additive error of $1/t_0$ in λ translates into an error in λ^{-1} of $\lambda^{-2}/t_0 \le \kappa^2/t_0$. Thus, we can take $t_0 \sim \kappa^2/\epsilon$.

Pirsa: 08050061 Page 41/74

- The Hamiltonian simulation produces negligible error. (Error ϵ incurs overhead of $\exp(O(\sqrt{\log(1/\epsilon)})) = \epsilon^{-o(1)}$.) Recall that it takes time $\tilde{O}((\log N)s^2t_0)$.
- Phase estimation produces error of O(1/t₀) with tail probability dying off fast enough to not bother us.
- An additive error of $1/t_0$ in λ translates into an error in λ^{-1} of $\lambda^{-2}/t_0 \le \kappa^2/t_0$. Thus, we can take $t_0 \sim \kappa^2/\epsilon$.
- We can take $C = 1/2\kappa$ to guarantee that $||CA^{-1}|| \le 1/2$. $(C = 1/\kappa \text{ should work, but the analysis is more painful.})$
- Thus post-selection succeeds with probability at least O(1/κ²) and blows up error by at most O(κ). With enough algebra, the run-time magically stays at O(κ²/ϵ).
- We couldn't figure out how to make variable-length run-time à la 0811.4428 work. Our best lower bound is $\sqrt{\kappa}$.

- The Hamiltonian simulation produces negligible error. (Error ϵ incurs overhead of $\exp(O(\sqrt{\log(1/\epsilon)})) = \epsilon^{-o(1)}$.) Recall that it takes time $\tilde{O}((\log N)s^2t_0)$.
- Phase estimation produces error of O(1/t₀) with tail probability dying off fast enough to not bother us.
- An additive error of $1/t_0$ in λ translates into an error in λ^{-1} of $\lambda^{-2}/t_0 \le \kappa^2/t_0$. Thus, we can take $t_0 \sim \kappa^2/\epsilon$.
- We can take $C = 1/2\kappa$ to guarantee that $||CA^{-1}|| \le 1/2$. $(C = 1/\kappa \text{ should work, but the analysis is more painful.})$
- Thus post-selection succeeds with probability at least $O(1/\kappa^2)$ and blows up error by at most $O(\kappa)$. With enough algebra, the run-time magically stays at $O(\kappa^2/\epsilon)$.
- We couldn't figure out how to make variable-length run-time à la 0811.4428 work. Our best lower bound is $\sqrt{\kappa}$.

University o

Pirsa: 0805006

Types of solutions: roughly from strongest to weakest

1. Output $\vec{x} = (x_1, ..., x_N)$.

Classical algorithms
Our algorithm

- 2. Produce $|x\rangle = \sum_{i=1}^{N} x_i |i\rangle$.
- 3. Sample *i* according to $p_i \sim |\langle i|x\rangle|^2$.
- 4. Estimate $\langle x | M | x \rangle$ for some (perhaps diagonal) matrix M.

University of

Pirsa: 08050061 Page 44/7

Types of solutions: roughly from strongest to weakest

1. Output $\vec{x} = (x_1, ..., x_N)$.

Classical algorithms

2. Produce $|x\rangle = \sum_{i=1}^{N} x_i |i\rangle$.

Our algorithm

- 3. Sample *i* according to $p_i \sim |\langle i|x\rangle|^2$.
- 4. Estimate $\langle x | M | x \rangle$ for some (perhaps diagonal) matrix M.

Compare with classical Monte Carlo algorithms

The old-fashioned way to get an exponential speed-up.

- ▶ They work with a sample drawn from $\vec{p} = (p_1, ..., p_N)$.
- ▶ If A is stochastic and sparse then $\vec{p} \mapsto A\vec{p}$ is efficient.
- ▶ If $-1 \le m_1, \ldots, m_N \le 1$, then $\sum_{i=1}^N m_i p_i$ can be estimated to error ϵ using $O(1/\epsilon^2)$ samples.

Types of solutions: roughly from strongest to weakest

1. Output $\vec{x} = (x_1, ..., x_N)$.

Classical algorithms

2. Produce $|x\rangle = \sum_{i=1}^{N} x_i |i\rangle$.

Our algorithm

- 3. Sample *i* according to $p_i \sim |\langle i|x\rangle|^2$.
- 4. Estimate $\langle x | M | x \rangle$ for some (perhaps diagonal) matrix M.

Compare with classical Monte Carlo algorithms

The old-fashioned way to get an exponential speed-up.

- ▶ They work with a sample drawn from $\vec{p} = (p_1, ..., p_N)$.
- ▶ If A is stochastic and sparse then $\vec{p} \mapsto A\vec{p}$ is efficient.
- ▶ If $-1 \le m_1, \ldots, m_N \le 1$, then $\sum_{i=1}^N m_i p_i$ can be estimated to error ϵ using $O(1/\epsilon^2)$ samples.

Is matrix inversion easier if we only need to estimate $\vec{x}^{\dagger} M \vec{x}$?

Consider a quantum circuit on n qubits that starts in the state $|0\rangle^{\otimes n}$, applies two-qubit gates U_1, \ldots, U_T and then measures the first qubit.

Pirsa: 08050061 Page 4///-

Consider a quantum circuit on n qubits that starts in the state $|0\rangle^{\otimes n}$, applies two-qubit gates U_1, \ldots, U_T and then measures the first qubit.

Theorem

Estimating the acceptance probability of this circuit reduces to estimating $\langle x | M | x \rangle$ where M is diagonal, $A\vec{x} = \vec{b}$, $\vec{b} = |0\rangle$, A has dimension $N = O(T2^n)$ and $\kappa = O(T^2)$.

Pirsa: 08050061 Page 48/74

Consider a quantum circuit on n qubits that starts in the state $|0\rangle^{\otimes n}$, applies two-qubit gates U_1, \ldots, U_T and then measures the first qubit.

Theorem

Estimating the acceptance probability of this circuit reduces to estimating $\langle x | M | x \rangle$ where M is diagonal, $A\vec{x} = \vec{b}$, $\vec{b} = |0\rangle$, A has dimension $N = O(T2^n)$ and $\kappa = O(T^2)$.

Corollary

- A classical poly(log(N), κ) algorithm for estimating ⟨x| M |x⟩ to constant accuracy would imply BPP=BQP.
- Improving our quantum run-time to $\kappa^{\frac{1-\delta}{2}}$ poly log(N) would imply that BQP=PSPACE.

PW

Types of solutions: roughly from strongest to weakest

1. Output $\vec{x} = (x_1, ..., x_N)$.

Classical algorithms

2. Produce $|x\rangle = \sum_{i=1}^{N} x_i |i\rangle$.

Our algorithm

- 3. Sample *i* according to $p_i \sim |\langle i|x\rangle|^2$.
- 4. Estimate $\langle x | M | x \rangle$ for some (perhaps diagonal) matrix M.

Compare with classical Monte Carlo algorithms

The old-fashioned way to get an exponential speed-up.

- ▶ They work with a sample drawn from $\vec{p} = (p_1, ..., p_N)$.
- ▶ If A is stochastic and sparse then $\vec{p} \mapsto A\vec{p}$ is efficient.
- ▶ If $-1 \le m_1, \ldots, m_N \le 1$, then $\sum_{i=1}^N m_i p_i$ can be estimated to error ϵ using $O(1/\epsilon^2)$ samples.

Is matrix inversion easier if we only need to estimate $\vec{x}^{\dagger} M \vec{x}$?

Consider a quantum circuit on n qubits that starts in the state $|0\rangle^{\otimes n}$, applies two-qubit gates U_1, \ldots, U_T and then measures the first qubit.

Theorem

Estimating the acceptance probability of this circuit reduces to estimating $\langle x|M|x\rangle$ where M is diagonal, $A\vec{x}=\vec{b}, \vec{b}=|0\rangle$, A has dimension $N=O(T2^n)$ and $\kappa=O(T^2)$.

Corollary

- A classical poly(log(N), κ) algorithm for estimating ⟨x| M |x⟩ to constant accuracy would imply BPP=BQP.
- Improving our quantum run-time to $\kappa^{\frac{1-\delta}{2}}$ · poly log(N) would imply that BQP=PSPACE.

Pirsa: 08050061 Page 51/7

Types of solutions: roughly from strongest to weakest

1. Output $\vec{x} = (x_1, ..., x_N)$.

Classical algorithms

2. Produce $|x\rangle = \sum_{i=1}^{N} x_i |i\rangle$.

Our algorithm

- 3. Sample *i* according to $p_i \sim |\langle i|x\rangle|^2$.
- 4. Estimate $\langle x | M | x \rangle$ for some (perhaps diagonal) matrix M.

Compare with classical Monte Carlo algorithms

The old-fashioned way to get an exponential speed-up.

- ▶ They work with a sample drawn from $\vec{p} = (p_1, ..., p_N)$.
- ▶ If A is stochastic and sparse then $\vec{p} \mapsto A\vec{p}$ is efficient.
- ▶ If $-1 \le m_1, \ldots, m_N \le 1$, then $\sum_{i=1}^N m_i p_i$ can be estimated to error ϵ using $O(1/\epsilon^2)$ samples.

Is matrix inversion easier if we only need to estimate $\vec{x}^{\dagger} M \vec{x}$?

Consider a quantum circuit on n qubits that starts in the state $|0\rangle^{\otimes n}$, applies two-qubit gates U_1, \ldots, U_T and then measures the first qubit.

Pirsa: 08050061 Page 53/74

Consider a quantum circuit on n qubits that starts in the state $|0\rangle^{\otimes n}$, applies two-qubit gates U_1, \ldots, U_T and then measures the first qubit.

Theorem

Estimating the acceptance probability of this circuit reduces to estimating $\langle x|M|x\rangle$ where M is diagonal, $A\vec{x} = \vec{b}$, $\vec{b} = |0\rangle$, A has dimension $N = O(T2^n)$ and $\kappa = O(T^2)$.

Corollary

- A classical poly(log(N), κ) algorithm for estimating ⟨x| M |x⟩ to constant accuracy would imply BPP=BQP.
- Improving our quantum run-time to κ^{1-δ}/₂ · poly log(N) would imply that BQP=PSPACE.

BW. II.

Relative to oracles

University

Consider a quantum circuit on n qubits that starts in the state $|0\rangle^{\otimes n}$, applies two-qubit gates U_1, \ldots, U_T and then measures the first qubit.

Theorem

Estimating the acceptance probability of this circuit reduces to estimating $\langle x | M | x \rangle$ where M is diagonal, $A\vec{x} = \vec{b}$, $\vec{b} = |0\rangle$, A has dimension $N = O(T2^n)$ and $\kappa = O(T^2)$.

Corollary

- A classical poly(log(N), κ) algorithm for estimating ⟨x| M |x⟩ to constant accuracy would imply BPP=BQP.
- Improving our quantum run-time to $\kappa^{\frac{1-\delta}{2}}$ poly log(N) would imply that BQP=PSPACE.

Relative to oracles

No quantum algorithm can run in time $\kappa^{\frac{1-\delta}{2}}$ poly log(N).

Pirsa: 08050061 Page 57/

Relative to oracles

- No quantum algorithm can run in time $\kappa^{\frac{1-\delta}{2}}$ poly $\log(N)$.
- ▶ No classical algorithm can run in time $N^{o(1)}2^{o(\sqrt{\kappa})}$.

Relative to oracles

- No quantum algorithm can run in time $\kappa^{\frac{1-\delta}{2}}$ poly $\log(N)$.
- No classical algorithm can run in time $N^{o(1)}2^{o(\sqrt{\kappa})}$.
- No iterative method can use $o(\sqrt{\kappa})$ matrix-vector multiplies. (Although we already knew this by taking A to be the adjacency matrix of a random cycle of length $\sqrt{\kappa}$.).

Relative to oracles

- No quantum algorithm can run in time $\kappa^{\frac{1-\delta}{2}} \cdot \text{poly} \log(N)$.
- No classical algorithm can run in time $N^{o(1)}2^{o(\sqrt{\kappa})}$.
- No iterative method can use $o(\sqrt{\kappa})$ matrix-vector multiplies. (Although we already knew this by taking A to be the adjacency matrix of a random cycle of length $\sqrt{\kappa}$.).

Error scaling

Improving our quantum run-time to poly(κ , log(N), log(1/ ϵ)) would imply BQP=PP.

Relative to oracles

- No quantum algorithm can run in time $\kappa^{\frac{1-\delta}{2}}$ poly $\log(N)$.
- No classical algorithm can run in time $N^{o(1)}2^{o(\sqrt{\kappa})}$.
- No iterative method can use $o(\sqrt{\kappa})$ matrix-vector multiplies. (Although we already knew this by taking A to be the adjacency matrix of a random cycle of length $\sqrt{\kappa}$.).

Error scaling

- Improving our quantum run-time to poly(κ, log(N), log(1/ε)) would imply BQP=PP.
- ➤ And even improving it to N^{o(1)}/e^{o(1)} is impossible relative to an oracle.

University o

Pirsa: 08050061 Page 61/7

An idea that almost works

▶ Our quantum circuit is $U_T \cdots U_1$.

Pirsa: 08050061 Page 62/74

An idea that almost works

- ▶ Our quantum circuit is $U_T \cdots U_1$.
- ▶ On the space $\mathbb{C}^T \otimes \mathbb{C}^{2^n}$ define

$$V = \sum_{t=1}^{T} |t+1 \pmod{T}\rangle \langle t| \otimes U_t.$$
 is unitary $A = I - e^{-\frac{1}{T}}V$ has $\kappa \leq T$

An idea that almost works

- ▶ Our quantum circuit is $U_T \cdots U_1$.
- ▶ On the space $\mathbb{C}^T \otimes \mathbb{C}^{2^n}$ define

$$V = \sum_{t=1}^{T} |t+1 \pmod{T}\rangle \langle t| \otimes U_t.$$
 is unitary $A = I - e^{-\frac{1}{T}}V$ has $\kappa \leq T$

Expand

$$A^{-1} = \sum_{k=0}^{\infty} e^{-\frac{k}{\tau}} V^k$$

So that $\kappa^{-1}A^{-1}\ket{1}\ket{\psi}$ has $\Omega(1/T)$ overlap with

$$V^T |1\rangle |\psi\rangle = |1\rangle U_T \cdots U_1 |\psi\rangle.$$

But undesirable terms contribute too.

The correct version

Define

$$U_{T+1}=\ldots=U_{2T}=I^{\otimes n}$$

$$U_{2T+1} = U_T^{\dagger}, \dots, U_{3T} = U_1^{\dagger}$$

so that $U_{3T} \dots U_1 = I^{\otimes n}$ and $U_t \dots U_1 = U_T \dots U_1$ whenever $T \leq t < 2T$.

University of

Page 65/74

The correct version

Define

$$U_{T+1} = \dots = U_{2T} = I^{\otimes n}$$

 $U_{2T+1} = U_T^{\dagger}, \dots, U_{3T} = U_1^{\dagger}$

so that $U_{3T} \dots U_1 = I^{\otimes n}$ and $U_t \dots U_1 = U_T \dots U_1$ whenever $T \leq t < 2T$.

▶ Now define (on the space $\mathbb{C}^{3T} \otimes \mathbb{C}^{2^n}$) the operators

$$V = \sum_{t=1}^{3T} |t+1 \pmod{3T}\rangle \langle t| \otimes U_t$$

$$A = I - e^{-\frac{1}{7}}V$$

University of

Page 66/74

T < t < 2T.

The correct version

Define

$$U_{T+1}=\ldots=U_{2T}=I^{\otimes n}$$

$$U_{2T+1}=U_T^\dagger,\ldots,U_{3T}=U_1^\dagger$$
 so that $U_{3T}\ldots U_1=I^{\otimes n}$ and $U_t\ldots U_1=U_T\ldots U_1$ whenever

▶ Now define (on the space $\mathbb{C}^{3T} \otimes \mathbb{C}^{2^n}$) the operators

$$V = \sum_{t=1}^{3T} |t+1 \pmod{3T}\rangle \langle t| \otimes U_t$$
$$A = I - e^{-\frac{1}{T}}V$$

This time $\kappa^{-1}A^{-1} | 1 \rangle | \psi \rangle$ has $\Omega(1)$ overlap with successful computations (i.e. $|t\rangle \otimes U_T \dots U_1 | \psi \rangle$ for $T \leq t < 2T$) and there is no extra error from wrap-around.

An idea that almost works

- Our quantum circuit is U_T···· U₁.
- ▶ On the space $\mathbb{C}^T \otimes \mathbb{C}^{2^n}$ define

$$V = \sum_{t=1}^{T} |t+1 \pmod{T}\rangle \langle t| \otimes U_t.$$
 is unitary $A = I - e^{-\frac{1}{T}}V$ has $\kappa \leq T$

Expand

$$A^{-1} = \sum_{k=0}^{\infty} e^{-\frac{k}{\tau}} V^k$$

So that $\kappa^{-1}A^{-1}\ket{1}\ket{\psi}$ has $\Omega(1/T)$ overlap with

$$V^T |1\rangle |\psi\rangle = |1\rangle U_T \cdots U_1 |\psi\rangle.$$

But undesirable terms contribute too.

The correct version

Define

$$U_{T+1} = \ldots = U_{2T} = I^{\otimes n}$$

$$U_{2T+1} = U_T^{\dagger}, \dots, U_{3T} = U_1^{\dagger}$$

so that $U_{3T} \dots U_1 = I^{\otimes n}$ and $U_t \dots U_1 = U_T \dots U_1$ whenever $T \leq t < 2T$.

Pirsa: 08050061 Page 69/74

Related work

- ► [L. Sheridan, D. Maslov and M. Mosca. Approximating Fractional Time Quantum Evolution. 0810.3843] show how access to U can be used to simulate U^t for non-integer t.
- S.K. Leyton and T.J. Osborne. A quantum algorithm to solve nonlinear differential equations. 0812.4423] requires time polylogarithmic in the number of variables, but exponential in the integration time.
- S. P. Jordan and P. Wocjan. Efficient quantum circuits for arbitrary sparse unitaries. arXiv:0904.2211] is also based on Hamiltonian simulation.
- [D. Janzing and P. Wocjan. Estimating diagonal entries of powers of sparse symmetric matrices is BQP-complete. arXiv:quant-ph/0606229] is similar to our BQP-hardness result.

Mostly things we don't know how to solve!

If A is ill-conditioned, we can choose κ arbitrarily, invert the part with eigenvalues $\gg 1/\kappa$ and flag the bad part with eigenvalues $\ll 1/\kappa$.

However, we cannot determine exactly which eigenvalues are $> 1/\kappa$ and which are $< 1/\kappa$.

Pirsa: 08050061 Page 71/74

Mostly things we don't know how to solve!

- If A is ill-conditioned, we can choose κ arbitrarily, invert the part with eigenvalues $\gg 1/\kappa$ and flag the bad part with eigenvalues $\ll 1/\kappa$.
 - However, we cannot determine exactly which eigenvalues are $> 1/\kappa$ and which are $< 1/\kappa$.
- If ||A|| ≫ 1, then we should be able to rescale A and disregard large eigenvalues of A that contribute very little to A⁻¹.
 This appears to require more careful analysis of errors in Hamiltonian simulation protocols.

Pirsa: 08050061 Page 72/74

Mostly things we don't know how to solve!

- ▶ If A is ill-conditioned, we can choose κ arbitrarily, invert the part with eigenvalues $\gg 1/\kappa$ and flag the bad part with eigenvalues $\ll 1/\kappa$.
 - However, we cannot determine exactly which eigenvalues are $> 1/\kappa$ and which are $< 1/\kappa$.
- If ||A|| ≫ 1, then we should be able to rescale A and disregard large eigenvalues of A that contribute very little to A⁻¹.
 This appears to require more careful analysis of errors in Hamiltonian simulation protocols.
- ▶ B is a preconditioner if $\kappa(AB) \ll \kappa(A)$. If B is sparse, then BA is as well, and we can apply $(BA)^{-1}$ to $B|b\rangle$. Preconditioners are crucial to practical (classical) iterative methods and we would like to make use of them with our algorithm.

Page 73/74

Mostly things we don't know how to solve!

- If A is ill-conditioned, we can choose κ arbitrarily, invert the part with eigenvalues $\gg 1/\kappa$ and flag the bad part with eigenvalues $\ll 1/\kappa$.
 - However, we cannot determine exactly which eigenvalues are $> 1/\kappa$ and which are $< 1/\kappa$.
- If ||A|| ≫ 1, then we should be able to rescale A and disregard large eigenvalues of A that contribute very little to A⁻¹.
 This appears to require more careful analysis of errors in Hamiltonian simulation protocols.
- ▶ B is a preconditioner if $\kappa(AB) \ll \kappa(A)$. If B is sparse, then BA is as well, and we can apply $(BA)^{-1}$ to $B|b\rangle$. Preconditioners are crucial to practical (classical) iterative methods and we would like to make use of them with our algorithm.
- Future work. Find applications! Candidates are deconvolution, solving elliptical PDE's and speeding up linear programming.