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Theorem I:

Suppose fundamental physics described by:
1) compactifying from higher dimensions with 13>D>5
2) where higher D theory described by Einstein GR
3) where exira D i1s conformally Ricci-flat* and
ds* = .ﬁ’_zg(—dr2 ta’ (1) dxz) e gabdyadyb
4) and exira D is bounded

9) null energy condition (NEC) is satisfied
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Strategy in proving dark energy theorems

Do all calculations in Einstein frame so interpretation
IS unambiguous

Treat T, space-space components as block diagonal

Then try to determine how higher D (P+Pk)__4 & (P+p3}A

relate to the observed p” and p*

(which obey usual Friedmann egs.)
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Strategy in proving dark energy theorems

A-averaging

NEC Tyw aMaN > 0 for every null !

A-averaged NEC { Tagn ain'} =
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N.B. If A-averaged NEC violated then NEC also violated
(but not the converse)
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letsgettoit. ..

consider general g, ;(t,y) and C(t,y)

d 2
Egab = ?fgab T O0gp

take linear combinatiasof Gog and Giy; :

<eZQ(p +p3)>ﬁ1 < (p*+pt) - ’E{z ((E)Jz + neg. semi-def.
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lllustrative example:
pure cosmological constant (w,, ., = -1)

<ezQ(p +p3)> j o (p4d +p4d) 5T sz ((&'}JZ + neg. semi-def.
‘ 0 <0

1l +wp 720 < (
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only hope < @




Theorem I:

Suppose dark energy described by theory obtained by:
1) compactifying from higher dimensions with 13>D>5
2) where higher D theory described by Einstein GR
3) where exira D i1s conformally Ricci-flat and
ds” = e_zgry 1 Lt dd + — gabdyadyb
4) and extra D is bounded

9) null energy condition (NEC) is satisfied

... then w,_;_, must be > -1
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Curious corollary:

Not only rules out pure A universe,
but also ACDM

That s, if Theorem | assumptions are correct,




Are the Thm | condifions
therefore ruled out observationally?




Are the Thm | conditions
therefore ruled out observationally?

Theorem |l: if all conditions of Thm | satisfied and

-13 = wtotal:' Weritical > -1

. . . can maintain acceleration indefinitely
(but Gy must vary with time to maintain the NEC)
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requires W,.,,; > - 0.53 -- ruled out!
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Are the Thm | conditions
therefore ruled out observationally?

Theorem lll: if satisfy all conditions of Thm | and

Weritical > Wiotal >—1

can maintain w< w_.;;., for only a brief period,;
(wpe and G, must be rapidly time-varying)
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Are the Thm | conditions
therefore ruled out observationally?

Theorem lll: if satisfy all conditions of Thm | and

Weritical > Wiota > ~1

can maintain w< w_.;;., for only a brief period,;
(wpe and G, must be rapidly time-varying)

Practical example: Wioio = (2pg Wpe = -0.73 today

L H G G r_G
GNI compare w/ model-independent limits on & = é & |BB*’:} :

| dwy o, /dz |< 1.3




Models that satisfy constraints on Gy(t) and NEC
_ 2
w(a) = wg + wy,(l=a)+w,(1—a)”

W, e No NEC violation
in 4d

' No NEC violation
|| inhigherD
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1
Models that satisfy constraints on Gy(t) and NEC
w(a@) = wyp + wy (1—a)+wy(1—a)’

_l
I
04

tested from ground
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Models that satisfy constraints on Gy(t) and NEC
w(a@) = wy + w, (1—a)+wy(1—a)?

tested from ground

o8t

W, | JDEM

No NEC violation
in 4d or 5d
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Are the Thm | conditions
therefore ruled out observationally?

No, not yet,
although the situation could change
with forthcoming experiments




Are the Thm | conditions
therefore ruled out observationally ?

No, not yet,
although the situation could change
with forthcoming experiments

JDEM (Joint Dark Energy Mission) - JEDM (Joint Extra Dimensions Mission




On the other hand,
Thm | conditions are compl/etely incompatible
with inflation !

Curious Corollaries:

 inflation requires violating at least one of the
Thm | conditions in the early Universe

« Thm | provides interesting counterexampile to
principle underlying chaotic/eternal inflation




Theorem |V: If fundamental physics is obtained by:

1) compactifying from higher dimensions with 13>D>5
2) where higher D theory described by Einstein GR
3) where exira D is conformally Ricci-flat and

ds’ = e_ZQr; 1 Lt dd + eZan bdyadyb

4) and extira D i1s bounded

9) null energy condition (NEC) is NOT satisfied in higher D

6) G\ fixed (or very slowly varying)

. . . then, there is an A* such that NEC is violated
foranv w.....< -1/3 & violation mustbein (o + »:)
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Theorem V: If fundamental physics is obtained by:

1) compactifying from higher dimensions with 13>D>5
2) where higher D theory described by Einstein GR

3) where exira D is conformally Ricci-flat and

ds” = e_zgn 1 Lt dx + P 2, bdyadyb

4) and extira D i1s bounded

9) null energy condition (NEC) i1s NOT satisfied in higher D

6) G\ fixed (or very slowly varying)

. . but, also, NEC must be satisfied for same A*
forall w...> -1/3




Curious Corollaries:

Constraints on avoiding large G, variation and
on the nature of NEC violation:

Pk/ = Y2 (- Pag’ +3Pag’) = - %2 Pag’ (1-3 Wyy)
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Curious Corollaries:

Constraints on avoiding large G, variation and
on the nature of NEC violation:

P/ = %2 (-Pag’ + 3 Paa’) = - % Pag’ (1-3 W)

radiation p, =0
matter P.™ = - 72 pyg™
A P =2 g

But maybe not what you might expect !
e.g. can't be usual A or orientifold or Casimir energy alone !




Curious Corollary:

Constraints on avoiding Gy, violation and
the kind of NEC violation:

P/ = %2 (- Pag’ + 3 Pag’) = - % Pag’ (1-3 W)

radiation p,'=0
matter P ™ = - 72 pag™

A P = -2 pyg

... also not what you get just by having
scalar fields (inflatons) with flat potentials in 4d




Inflation more problematic than
because you must sustain w close to -1
for 60 e-folds:

hard to avoid violating NEC by a huge amount

+2

< 2Q(P+PJ)>4 « (o1 1+ iy _ Kt ((34)2 + neg. semi-def.

20 1, 4d ., Ad k+2 1 d ( ) neg. semi-def
" (p+pk)>;1 5 3/'0? b a® dt < > for range of A
violation of NEC source of NEC > must be able

I different from DE to annihilate it

10'%%x DE




more to come . ..
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