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Properties of Dark Matter: 3

Mass density per

unit volume 1n velocity space.
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Properties of Dark Matter: 3

Mass density per

unit volume 1n velocity space.
®Afiter “freeze-out™ Q 1s constant
@0 ~ mass densih
@densyx ~ 1/a
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Free-streaming and Damping: Halos
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Free-streaming and Damping: Halos




Free-streaming and Damping: Halos

Fluctuations grow through gravitational instability
into dark matter halos. Galaxies form 1n these dark
matter halos.
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Fluctuations grow through gravitational instability
into dark matter halos. Galaxies form 1n these dark
matter halos.

Perturbations erased below
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Properties of Dark Matter

Mean-iree path before
kinetic decoupling.

(o Average distance
traveled by a dark matter particle before 1t
falls into a potential well.

O

®Q0 ~ mass density / Vg ®




Phase space density: Cores

OCan’t stuff particles

Set by annihilations . o e
without limit into the

and by the primordial

phase space density center of dark matter
halos.

Halo Density
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Phase space density: Cores

Set by annihilations
and by the primordial
phase space density

Halo Density
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Phase space density: Substructure
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Phase space density: Cores
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“Relation between Q and free-streaming

OThe free-streaming scale and Q are related in many
models of dark matter. For example,
®Both are fixed by specifying the mass of a warm dark
matter particle like the sterile neutrino.
®Given the cut-off in the power spectrum, the size of cores
in halos can be computed (using numerical simulations).
[Kaplinghat 20035]

OThis one-to-one relation can be broken, for example,
in models where dark matter results from late decays

Strigan. Kaplinghat and Bullock 200




meta-CDM

Late decays will give rise
to large phase space cores
in dark matter halos that

!

have formed hierarchically!




meta-CDM Power Spectrum

For early decays (M- /M°__,):

cutoff scale ~ Q'°

For late decays (10° yrs.):

cutoff scale given by
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meta-CDM Power Spectrum

For early decays (M- /M°__..):

cutoff scale ~ Q'~

For late decays (10° yrs.):
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Review

® Truncates power on small scales
@No perturbations on small scales

@No halos below a minimum mass.

0 Phase Spdce density:

® Limits density in the center of halos

@Makes small halos susceptible to disruption

@ Limits sub-structure in larger halos..




Cold or Warm?

OCold dark matter (example: WIMP)

®Decouples when non-relativistic

®Small velocities today << mm/s

O“Warm™ Dark Matter (example: SuperWIMP)

®Large velocities today >> mm/s up to ~100 m/s

O Observations
®Lyman-alpha forest: power spectrum of
cannot fall to half the CDM va
about 10 kpc
halos | ' 10 M_
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Missing satellite problem
Klypin et al. 99; Moore et al. 99

Strigari et al 07
108

Simulation of Milky
Way: Via Lactea [Diemand
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Missing satellite problem
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Missing satellite problem
Klypin et al. 99; Moore et al.
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Cold Dark Matter: Theory




Sohed eramp!e SUSY WIMP DM
Dremzmd, Mooreand )

Decouples kinetically at
hIhﬂE 2 ’ - = -
Stadel 905 - temperatures 10!! — 10"° K
. _* % ..+ Free-streaming length ~
. parsec scale
7 <& = "+ Smallest mass halos spread
-:'f o "’_':. 7 over a few orders of
=~ . | ~ magnitude about the earth
i o mass
p T\ W . Puffy!
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Abundance of Dark Matter from Decays

*WIMPs have the right abundance
because of their weak mteractions

WIMP

[-M -
L m -
Dark Matter




Abundance of Dark Matter from Decays

WIMPs have the right abundanc
because of their weak interactions

WIMP

~M_ S
L m -

Dark Matter
SuperWIMP

If m,,, Ny e then the
today 1s

=y ) -y 11 i+ th e TE: = o & t = i
naturally in the COorrcecl ranec.

- iy Y 1|_ - ) T = ) 1 =

Example: In super-gravity models.
-.1 1

all super-partners have similar

W fa
MASSES.

[Feng. Rajaraman and
[akavama. PRL 2003]




. 1he Case for Dark matter from Decays

O Theoretically compelling.
©Strong theoretical hints that new physics (particles) may
be lurking at the 100 GeV scale.
®@Weak cross-section and Gy, naturally leads to the right
dark matter abundance.

O Successtul cosmological predictions on large
(greater than about a Mpc) scales.

O Ditterences on small scales. May alleviate some
“problems™ with CDM.




Cosmological consequences: Early
Universe

© Late entropy injection distorts CMB blackbody spectrum.

© Bound states of Helium-4 with charged NLSP

T 1 3
10 Prooicms
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o [Lieht element abundances atfected. Canthe LLi7 and L
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Molecular Bound States

HeX
— — — HeXX

™~ BErelativeto
HeX is 290 keV ]
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Cosmological consequences: Late
Universe

O Growth of small scale structure modified [Kaplingha

2005 ]
®Lesser power on small scales
®Smaller phase space density
n ; L .-;-1__
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O Observable’.
®FIlat density cores in dwart galaxies
nsus of dwarf galaxies in Milky Way

®Modified ce
O Super-WIMP parameter space [Cemb
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Cosmological consequences: Late
Universe

O Growth of small scale structure modified [Kaplinghat

005

@ Lesser power on small scales

®Smaller phase space density
~

O Observable?

®FIlat density cores in dwart galaxies

®Modified census of dwarf galaxies in Milky Way
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~ Phase Space of Collision-less Systems
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- OFine-grained phase space density F(x,y)

. SH- conserved along the trajectory given by d x =

; _ vand dv=—V d .

== ¢ ®F._ . conserved.
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Belokurov et al 2006
The newly
discovered

neighbors

Luminosity spans
over four orders of
magnitude from
1000 to 10 million
solar luminosities
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The new neighbors

O COM,WIL1,UM2 have
very small luminosities ~
1000 times the sun

O But they seem to be just
as massive m dark matter
as the more luminous
ones!

O Make 1deal targets for
indirect detection of dark
matter

Strigan et ¢
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The new neighbors

O COM.WIL1,UM?2 have
very small luminosities ~
1000 times the sun

O But they seem to be just
as massive m dark matter
as the more luminous
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O Make ideal targets for
indirect detection of dark
matter

Strigan et al 2007
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Looking ahead

OGLAST will be launched early 2008
OShortly after, LHC will turn on
O Direct detection experniments continue to scale up
and mnovate
O More dwarfs? (We hope!)
@ Better data on the existing dwarts
®Theorv work to understand the systematics (binaries, tidal
effects. triaxiality)
®@Connecting the mass distribution in dwarfs and their
census to early universe and particle physics models
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Indirect detection of dark matter:
Annihilation products from the dwarfs
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A Common Mass
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