Title: Catalyzed BBN Date: May 30, 2008 02:40 PM URL: http://pirsa.org/08050050 Abstract: Pirsa: 08050050 # CATALYZED BBN Maxim Pospelov University of Victoria and Perimeter Institute M. Pospelov, hep-ph/0605215; PhysRevLett.98.231301 C. Bird, K. Koopmans, and M. Pospelov, hep-ph/0703096 M.Pospelov, arXiv:0712.0647 M. Pospelov, J. Pradler and F. Steffen, in preparation #### Outline of the talk - Introduction: Catalysis of BBN is the third generic way particle physics can have an impact on primordial elements. - Review of the main catalytic channels in CBBN: ⁶Li and ⁹Be enhancement, possible suppression of ⁷Li+⁷Be. - Important changes from (pX) states? Absolutely not. - Avenues for future improvement: nuclear physics calculations - Conclusions #### Elemental Abundance A<1,2,3,4,7 – BBN; A>12 –Stars; A=6,9,10,11 - "orphans" (cosmic ray spallation) #### BBN and Particle Physics $$\frac{dn_i}{dt} = -H(T)T\frac{dn_i}{dT} = \langle \sigma_{ijk} v \rangle n_j n_k + \dots - \dots$$ Energy of reactants ~ MeV or less; Initial conditions $n_p \approx n_n$; other $n_i = 0$ Particle physics can Affect the timing of reactions, $$H(T) = \operatorname{const} \times N_{\text{eff}}^{1/2} \frac{T^2}{M_{\text{Pl}}}; \quad N_{\text{eff}} = 2 + \frac{7}{8} \times 2 \times 3 + N_{\text{boson}}^{\text{extra}} + \frac{7}{8} N_{\text{fermion}}^{\text{extra}}$$ via e.g. new thermal degrees of freedom - Introduce non-thermal channels e.g. via late decays or annihilations of heavy particles, $E \gg T$. - Provide catalyzing ingredients that change $\langle \sigma_{ijk} v \rangle$ (MP, 2006). Possible catalysts: electroweak scale remnants charged under U(1) or color SU(3) gauge groups. # Catalyzed Production of ⁶Li and ⁹Be at 8 KeV, suppression of ⁷Be+⁷Li at 35 KeV (if lucky) #### Deuterium and Lithium abundances Coc et al. ApJ 2004 # Emerging ⁶Li problem? A lot of speculations about primordial ⁶Li! #### Deuterium and Lithium abundances Coc et al, ApJ 2004 # Emerging ⁶Li problem? A lot of speculations about primordial ⁶Li! # ⁹Be vs metallicity Is there a hint on a "lifted tail"? (Primas et al., 2001) # Physics Beyond SM and BBN - 1. Timing of reactions can be changed by adding new thermally excited degrees of freedom. Accuracy of observations are sensitive to $N_{\rm eff} \sim O(1)$. In other words, there is sensitivity to $\Delta \rho_{\rm extra}/\rho_{\rm total} \sim 0.3$. - 2. Energy injection (e.g. late decays of particles) will have an effect on mostly D, 6 Li, 7 Li, and 3 He/D if $\tau_X > 10^3$ sec for hadronic decays and $\tau_X > 10^5$ sec for electromagnetic decays. Best sensitivity may reach $\Delta E n_X/n_y < 10^{-13}$ GeV at $\tau_X > 10^7$ sec. - 3. Catalysis of nuclear reactions (via formation of bound states of charged relics X^- with nuclei) will have an effect on 6 Li, 7 Li, and 9 Be. Best sensitivity to $n_x/n_y < 10^{-16}$ for $\tau_X > 10^4$ sec. # Physics Beyond SM and BBN - 1. Timing of reactions can be changed by adding new thermally excited degrees of freedom. Accuracy of observations are sensitive to $N_{\rm eff} \sim O(1)$. In other words, there is sensitivity to $\Delta \rho_{\rm extra}/\rho_{\rm total} \sim 0.3$. - 2. Energy injection (e.g. late decays of particles) will have an effect on mostly D, 6 Li, 7 Li, and 3 He/D if $\tau_X > 10^3$ sec for hadronic decays and $\tau_X > 10^5$ sec for electromagnetic decays. Best sensitivity may reach $\Delta E n_X/n_Y < 10^{-13}$ GeV at $\tau_X > 10^7$ sec. - 3. Catalysis of nuclear reactions (via formation of bound states of charged relics X^- with nuclei) will have an effect on 6 Li, 7 Li, and 9 Be. Best sensitivity to $n_x/n_y < 10^{-16}$ for $\tau_X > 10^4$ sec. # Input parameters for Catalyzed BBN Suppose that there is an electroweak scale remnant X^- (and X^+), e.g. SUSY partner of electron, μ or τ , with the following properties: - Masses are in excess of 100 GeV to comply with LEP/Tevatron. - 2. Abundances per baryon Y_X are O(0.1-0.001). In a fully specified model of particle physics they scale as $Y_X \sim (0.01-0.05)m_X/\text{TeV}$. - 3. Decay time τ_x is longer than 1000 sec; no constraints on decay channels. Are there changes in elemental abundances from mere presence of X⁻? Yes! Anything at all that sticks to He with binding energy between 150 KeV and 1500 KeV will lead to the catalysis of ⁶Li production! Any quantities of (8BeX) in excess of 10⁻¹⁰ at 8 keV will lead to the catalysis of 9Be to >10⁻¹³ level. # Properties of bound states $$E_{Bohr} = \frac{Z_{He}^2 \alpha^2 m_{He}}{2} = 397 \text{ KeV}$$ $$E_b = 350 \text{ KeV}; a = 3.6 \text{ fm}$$ $$T_{recomb} = 8.3 \,\text{KeV}; r_c = 1.7 \,\text{fm}$$ $$(^{4}\text{HeX}^{-})$$ Bohr radius is 2 times larger than nuclear $$E_{Bohr} = \frac{Z_{Be}^2 \alpha^2 m_{Be}}{2} = 2787 \text{ KeV}$$ $$E_b = 1350 \text{ KeV}; a = 1.0 \text{ fm}$$ $$T_{recomb} = 35 \text{ KeV}; r_c = 2.5 \text{ fm}$$ $$(^{7}\text{BeX}^{-})$$ Bohr orbit is within nuclear radius ### Properties of bound states $$E_{Bohr} = \frac{Z_{He}^2 \alpha^2 m_{He}}{2} = 397 \text{ KeV}$$ $$E_b = 350 \text{ KeV}, a = 3.6 \text{ fm}$$ $$T_{recomb} = 8.3 \,\text{KeV}; r_c = 1.7 \,\text{fm}$$ $$(^{4}\text{HeX}^{-})$$ Bohr radius is 2 times larger than nuclear $$E_{Bohr} = \frac{\alpha^2 m_{\rm p}}{2} = 25 \text{KeV}$$ $$T_{recomb} = 0.7 \text{KeV}; a_b = 28 \text{fm}$$ (pX^{-}) Bohr orbit is 28 fm # Binding energy and stability thresholds | boundst. | E 0 | a_0 | R SC | $ E_b(R_N^{sc}) $ | R _{Nc} | $ E_b(R_{Nc}) $ | To | |-------------------|------|-------|------|-------------------|-----------------|-----------------|-----| | ⁴ HeX | 397 | 3.63 | 1.94 | 352 | 2.16 | 346 | 8.2 | | ⁶ Li X | 1343 | 1.61 | 2.22 | 930 | 3.29 | 780 | 19 | | ⁷ Li X | 1566 | 1.38 | 2.33 | 990 | 3.09 | 870 | 21 | | ⁷ BeX | 2787 | 1.03 | 2.33 | 1540 | 3 | 1350 | 32 | | ⁸ BeX | 3178 | 0.91 | 2.44 | 1600 | 3 | 1430 | 34 | | ⁴ HeX | 1589 | 1.81 | 1.94 | 1200 | 2.16 | 1150 | 28 | | DX | 50 | 14 | - | 49 | 2.13 | 49 | 1.2 | | рХ | 25 | 29 | S=0 | 25 | 0.85 | 25 | 0.6 | Table 1: Properties of the bound states: B ohr a_0 and nuclear radii R_N in fm; binding energies E_h and "photo-dissociation decoupling" temperatures T_0 in KeV. Pirsa: 08050050 Main SBBN channel for ⁶Li production $$^{4}\text{He} + D \rightarrow ^{6}\text{Li} + \gamma$$; Q = 1.47 MeV $$\langle \sigma_{SBBN} v \rangle = 30 T_9^{-2/3} \exp(-7.435 / T_9^{1/3})$$ in usual astrophysical units. $^6\text{Li(SBBN)} \sim 10^{-14}$ NB: typical pre-exponents for γ reactions are 10^5-10^6 , for photon-less reactions 10^8-10^{10} Main CBBN channel for ⁶Li production $$(^{4}\text{HeX}^{-}) + D \rightarrow {^{6}\text{Li}} + X^{-}; Q = 1.13 \text{ MeV}$$ $$\langle \sigma_{CBBN} v \rangle = 2.4 \times 10^8 T_9^{-2/3} \exp(-5.37 / T_9^{1/3})$$ hep-ph/0702274, (Hamaguchi, et al.) finds S-factor 10 times smaller than my Original estimate. See Prof. Kamimura talk during this workshop A possible SBBN channel for ⁹Be production $$^{8}\text{Be} + \text{n} \rightarrow ^{9}\text{Be} + \gamma$$; Q = 1.66 MeV $\langle \sigma_{SBBN} v \rangle \approx 0$. Requires triple collisons as ⁸Be is unstable 9 Be(SBBN) $\sim 10^{-18}$ (B. Fields et al) Main CBBN channel for ⁹Be production $$(^{8}\text{BeX}^{-}) + \text{n} \rightarrow ^{9}\text{Be} + \text{X}^{-}; \ Q = 0.26 \text{ MeV}$$ $$\langle \sigma_{CBBN} v \rangle = 2.0 \times 10^9$$ This is a large photonless rate dominated by threshold resonance! Main SBBN channel for ⁶Li production $$^{4}\text{He} + D \rightarrow ^{6}\text{Li} + \gamma$$; Q = 1.47 MeV $$\langle \sigma_{SBBN} v \rangle = 30 T_9^{-2/3} \exp(-7.435 / T_9^{1/3})$$ in usual astrophysical units. $^6\text{Li(SBBN)} \sim 10^{-14}$ NB: typical pre-exponents for γ reactions are 10^5-10^6 , for photon-less reactions 10^8-10^{10} Main CBBN channel for ⁶Li production $$(^{4}\text{HeX}^{-}) + D \rightarrow {^{6}\text{Li}} + X^{-}; Q = 1.13 \text{ MeV}$$ $$\langle \sigma_{CBBN} v \rangle = 2.4 \times 10^8 T_9^{-2/3} \exp(-5.37 / T_9^{1/3})$$ hep-ph/0702274, (Hamaguchi, et al.) finds S-factor 10 times smaller than my Original estimate. See Prof. Kamimura talk during this workshop A possible SBBN channel for ⁹Be production $$^{8}\text{Be} + \text{n} \rightarrow ^{9}\text{Be} + \gamma$$; Q = 1.66 MeV $\langle \sigma_{SBBN} v \rangle \approx 0$. Requires triple collisons as ⁸Be is unstable 9 Be(SBBN) $\sim 10^{-18}$ (B. Fields et al) Main CBBN channel for ⁹Be production $$(^{8}\text{BeX}^{-}) + \text{n} \rightarrow ^{9}\text{Be} + \text{X}^{-}; \ Q = 0.26 \text{ MeV}$$ $$\langle \sigma_{CBBN} v \rangle = 2.0 \times 10^9$$ This is a large photonless rate dominated by threshold resonance! #### Photon-less production of ⁹Be in CBBN $$\frac{0}{(^{8}\text{Be X}) + n} \rightarrow \frac{0 + /-30 \text{ keV}}{(^{9}\text{Be}\frac{1}{2}^{+}X)} - \frac{-257 \text{ keV}}{^{9}\text{Be}\frac{3}{2}^{-} + X}$$ $$\frac{-1735 \text{ keV}}{(^{9}\text{Be}\frac{3}{2}^{-}X)}$$ Within error bars the $\frac{1}{2}$ resonance in (${}^{9}BeX^{-}$) is *exactly* at the (${}^{8}BeX^{-}$) + n continuum threshold. $$\Gamma_{\rm in} \simeq 2(192 E_{\rm n} {\rm keV})^{1/2}$$, $\Gamma_{\rm out} \simeq 5 {\rm keV} - {\rm my}$ estimate #### (8BeX) bottleneck #### Two sources: - 1. Early time: through (${}^{7}\text{BeX}^{-}$) \rightarrow (${}^{8}\text{BX}^{-}$) \rightarrow (${}^{8}\text{BeX}^{-}$) - 2. Late time: through (${}^{4}\text{HeX}$) \rightarrow (${}^{8}\text{BeX}$) The formation of (8BeX) occurs primarily via resonant process $(^{4}\text{HeX}) + {^{4}\text{He}} \rightarrow *(^{8}\text{BeX}, n=3) \rightarrow (^{8}\text{BeX}, n=3) + \gamma$ For n=3, l=1,2 the resonant energies are 114 and 88 keV. It turns out that when $T \gg \Gamma_{tot} = \Gamma_{in} \gg \Gamma_{out}$, the Breit-Wigner formula $$\sigma_{BW}(E) = \frac{\sigma_{geom} \Gamma_{in} \Gamma_{out}}{(E - E_R)^2 + \Gamma_{tot}^2 / 4} \rightarrow \sigma_{geom} \Gamma_{out} \times 2\pi \delta(E - E_R)$$ and gives a total rate that is independent on Γ_{in} that contains all nuclear physics uncertainties! $$10^5 \text{ T}_9^{-3/2} (0.95 \exp(-1.02/\text{T}_9) + 0.66 \exp(-1.33/\text{T}_9))$$ #### ⁶Li and ⁹Be at 8 KeV CBBN with $Y_X = 5 \times 10^{-3}$, $\tau_X = \infty$ as a typical example, resulting in ⁶Li > 10⁻⁸, and ⁹Be> 10⁻¹¹ – **Excluded!** Observationally, ⁶Li/H < few× 10⁻¹¹; ⁹Be/H<few× 10⁻¹³, Pirsa: 08050050 #### ⁶Li and ⁹Be at 8 KeV CBBN with $Y_X = 10^{-1}$, $\tau_X = 2000$ s as a "just so" scenario 6 Li/H=1.3× 10⁻¹¹; 9 Be/H=7× 10⁻¹⁴: A very intriguing pattern!!! ${}^{9}\text{Re}/{}^{6}\text{I i} = (2-5) \times 10^{-3}$ - a typical "footprint" of CRRN Pirsa: 08050050 # Catalytic suppression of ⁷Be + ⁷Li - The "bottleneck" is creation of (${}^{7}\text{Be}X^{-}$) bound states that is controlled by ${}^{7}\text{Be}+X^{-} \rightarrow ({}^{7}\text{Be}X^{-}) + \gamma$ reaction - There are two main destruction channels that are catalyzed: - 1. p-reaction: $(^{7}\text{Be}X^{-}) + p \rightarrow (^{8}\text{B}X^{-}) + \gamma$ by a factor of >1000 relative to $^{7}\text{Be} + p \rightarrow ^{8}\text{B} + \gamma$ - 2. In models of type II, the "capture" of X^- is catalyzed: $(^7\text{Be}X^-) \rightarrow ^7\text{Li} + X^0$, - so that lifetime of (${}^{7}\text{Be}X^{-}$) becomes $\ll 1$ sec. ${}^{7}\text{Li}$ is significantly more fragile and is destroyed by protons "on the spot". - There is significant energy injection via X⁺ +X⁻ → (X⁺X⁻) → radiation. If this process has hadronic modes, it also affects Li7. #### ⁷Be+⁷Li at 35 KeV Type II model (fast internal capture), $$Y_X = 0.05$$, $\tau = 2000$ s # Is there a catalysis due to (pX⁻) states? At first sight, there must be an effect. After all, theres is no Coulomb barrier. (Dimopoulos et al, 1989, Kohri and Takayama, 2006, Jedamzik 2007). Most recently there was a claim (Jedamzik 2007) that a catalytic synthesis of ⁶Li at 8 keV would be balanced out by catalytic suppression of ⁶Li below 1 keV because of the $^{6}\text{Li} + (pX) \rightarrow X + ^{3}\text{He} + ^{4}\text{He}$ burning. It would open the high abundance/long lifetime "island" in the parameter space #### Is this expectation justified? NO! Charge exchange reactions - 1. Deplete (pX) known before but not taken into account properly - 2. Shield Li and Be in the (LiX) bound states. The further rate of destruction is exactly 0 in the limit of $m_X \to \infty$ # (pX⁻) + Z scattering semiclassically As the distance R between incoming "heavy" (⁴He, Li, Be...) nucleus and X⁻ becomes shorter, proton is deconfined and escapes to infinity. Capture happens to high n,l states of (HeX). Cross section = πR_e^2 . For incoming 4 He, this distance is 95fm, $\sigma_{ch\, exch} \simeq 280$ bn For incoming 6 Li, this distance is 135 fm, $\sigma_{\rm ch\, exch} \simeq 580 {\rm bn}$ Not far from unitarity. # (pX⁻) + Z scattering semiclassically As the distance R between incoming "heavy" (⁴He, Li, Be...) nucleus and X⁻ becomes shorter, proton is deconfined and escapes to infinity. Capture happens to high n,l states of (HeX). Cross section = πR_c^2 . For incoming 4 He, this distance is 95fm, $\sigma_{ch \, exch} \simeq 280$ bn For incoming 6 Li, this distance is 135 fm, $\sigma_{\rm ch\, exch} \simeq 580 {\rm bn}$ Not far from unitarity. # "LiX₃ ammonium and BeX₄ methane" Charge exchange is much more likely than p tunneling through the Coulomb barrier. Even if for WHATEVER reasons, the rate for $$^{6}\text{Li} + (pX) \rightarrow X + {^{3}\text{He}} + {^{4}\text{He}}$$ is large, it is still $\sigma_{\text{nucl}} < \sigma_{\text{unitarity}}$ And since $\sigma_{ch ex}$ is not far different from $\sigma_{unitarity}$ at least 50% is shielded from destruction. And one needs factors 100-1000. Li and Be can be burned via the series of successive charge exchanges $$^{6}\text{Li} + (pX) \rightarrow (^{6}\text{Li}X) + p$$ $(^{6}\text{Li}X) + (pX) \rightarrow (^{6}\text{Li}X_{2}) + p$ $(^{6}\text{Li}X_{2}) + (pX) \rightarrow (^{6}\text{Li}X_{3}) + p$ $(^{6}\text{Li}X_{3}) + p \rightarrow 3X + ^{3}\text{He} + ^{4}\text{He} \text{ or } 3X + ^{7}\text{Be}$ Notice that step 2 and 3 is suppressed as $(m_X)^{-1/2}$ # (pX) and (⁶LiX_n) below 1 keV . No effect at all from (pX) catalysis [is there a catalysis anyways?] No allowed islands with large abundance/large lifetime Input: $Y_X = 10^{-2}$; $\tau_X = \infty$ Only tiny fraction of synthesized Li is affected # (pX) and (⁶LiX_n) below 1 keV . No effect at all from (pX) catalysis [is there a catalysis anyways?] No allowed islands with large abundance/large lifetime Input: $Y_X = 10^{-2}$; $\tau_X = \infty$ Only tiny fraction of synthesized Li is affected # Open issues in CBBN ⁶Li: $S_{CBBN}(0)$ for $({}^4HeX) + D \rightarrow {}^6Li + X$ needs to be checked by other groups. ⁷Li + ⁷Be: Level structure in (⁷BeX) system with better than 30 keV accuracy. The resonant rates (2s resonance in (Be*X) system in particular) is very close to threshold. ``` Cross section for ^{7}\text{Be} + \text{X} \rightarrow (^{7}\text{Be}\text{X}) + \gamma S_{\text{CBBN}}(0) for (^{7}\text{Be}\text{X}) + \text{p} \rightarrow (^{8}\text{BX}) + \gamma S_{\text{CBBN}}(0) for (^{7}\text{Be}\text{X}) + \text{D} \rightarrow (^{9}\text{BX}) \rightarrow (^{8}\text{Be}\text{X}) + \text{p} (Resonances!) ``` For example: there is a $60 \pm 30(?)$ keV resonance in (${}^{9}B^{*}X$) Just above the threshold of (${}^{7}BeX$) + D !!! # Open issues in CBBN ⁹Be: Level structure in (⁹BeX) system with better than 50 keV accuracy = accurate model for charge distribution. CBBN cross section for $(^8BeX) + n \rightarrow ^9Be + X$ (Dominated by the resonance!) Resonant formation of $(^4HeX) + ^4He \rightarrow (^8BeX) + \gamma$ Resonances again! Rates of secondary importance: $(^{4}HeX) + ^{3}H \rightarrow ^{7}Li + X;$ $(^{4}HeX) + ^{3}He \rightarrow ^{7}Be + X;$ (pX)-induced reactions; Rates for X⁻⁻ catalysis (^{12}C is a realistic possibility) Pirsa: 08050050 #### Conclusions - In the last two years it was recognized that CBBN is an independent new way how particle physics can affect the outcome of the primordial nuclear reactions, sensitive to abundance of X⁻. - 2. CBBN pattern: 6 Li and 9 Be abundances are drastically enhanced, with ratio 9 Be/ 6 Li = $(2-5) \times 10^{-3}$. - Assuming typical abundances, constraints on lifetime are on the order of ~ 5000 seconds. - $^{7}\text{Li} + ^{7}\text{Be}$ can be suppressed by a factor of ~ 2 if there is O(0.1-0.01) particles. - 3. Catalysis by (pX) is not important *regardless* of the issue with nuclear uncertainties. - Careful investigation of resonant nuclear rates in CBBN are needed. Resonances! # Open issues in CBBN ⁹Be: Level structure in (⁹BeX) system with better than 50 keV accuracy = accurate model for charge distribution. CBBN cross section for $(^8\text{BeX}) + \text{n} \rightarrow ^9\text{Be} + \text{X}$ (Dominated by the resonance!) Resonant formation of $(^4\text{HeX}) + ^4\text{He} \rightarrow (^8\text{BeX}) + \gamma$ Resonances again! Rates of secondary importance: $(^{4}HeX) + ^{3}H \rightarrow ^{7}Li + X;$ $(^{4}HeX) + ^{3}He \rightarrow ^{7}Be + X;$ (pX)-induced reactions; Rates for X⁻⁻ catalysis (^{12}C is a realistic possibility) #### Conclusions - In the last two years it was recognized that CBBN is an independent new way how particle physics can affect the outcome of the primordial nuclear reactions, sensitive to abundance of X⁻. - 2. CBBN pattern: 6 Li and 9 Be abundances are drastically enhanced, with ratio 9 Be/ 6 Li = $(2-5) \times 10^{-3}$. - Assuming typical abundances, constraints on lifetime are on the order of ~ 5000 seconds. - $^{7}\text{Li} + ^{7}\text{Be}$ can be suppressed by a factor of ~ 2 if there is O(0.1-0.01) particles. - 3. Catalysis by (pX) is not important *regardless* of the issue with nuclear uncertainties. - Careful investigation of resonant nuclear rates in CBBN are needed. Resonances! Pirsa: 08050050 Page 42/43 Pirsa: 08050050 Page 43/43