Title: Catalyzed BBN

Date: May 30, 2008 02:40 PM

URL: http://pirsa.org/08050050

Abstract:

Pirsa: 08050050

# CATALYZED BBN Maxim Pospelov University of Victoria and Perimeter Institute

M. Pospelov, hep-ph/0605215; PhysRevLett.98.231301
C. Bird, K. Koopmans, and M. Pospelov, hep-ph/0703096
M.Pospelov, arXiv:0712.0647
M. Pospelov, J. Pradler and F. Steffen, in preparation





#### Outline of the talk

- Introduction: Catalysis of BBN is the third generic way particle physics can have an impact on primordial elements.
- Review of the main catalytic channels in CBBN: <sup>6</sup>Li and <sup>9</sup>Be enhancement, possible suppression of <sup>7</sup>Li+<sup>7</sup>Be.
- Important changes from (pX) states? Absolutely not.
- Avenues for future improvement: nuclear physics calculations
- Conclusions

#### Elemental Abundance



A<1,2,3,4,7 – BBN; A>12 –Stars;

A=6,9,10,11 - "orphans" (cosmic ray spallation)

#### BBN and Particle Physics

$$\frac{dn_i}{dt} = -H(T)T\frac{dn_i}{dT} = \langle \sigma_{ijk} v \rangle n_j n_k + \dots - \dots$$

Energy of reactants ~ MeV or less; Initial conditions  $n_p \approx n_n$ ; other  $n_i = 0$ Particle physics can

Affect the timing of reactions,

$$H(T) = \operatorname{const} \times N_{\text{eff}}^{1/2} \frac{T^2}{M_{\text{Pl}}}; \quad N_{\text{eff}} = 2 + \frac{7}{8} \times 2 \times 3 + N_{\text{boson}}^{\text{extra}} + \frac{7}{8} N_{\text{fermion}}^{\text{extra}}$$

via e.g. new thermal degrees of freedom

- Introduce non-thermal channels e.g. via late decays or annihilations of heavy particles,  $E \gg T$ .
- Provide catalyzing ingredients that change  $\langle \sigma_{ijk} v \rangle$  (MP, 2006). Possible catalysts: electroweak scale remnants charged under U(1) or color SU(3) gauge groups.

# Catalyzed Production of <sup>6</sup>Li and <sup>9</sup>Be at 8 KeV, suppression of <sup>7</sup>Be+<sup>7</sup>Li at 35 KeV (if lucky)



#### Deuterium and Lithium abundances



Coc et al. ApJ 2004

# Emerging <sup>6</sup>Li problem? A lot of speculations about primordial <sup>6</sup>Li!



#### Deuterium and Lithium abundances



Coc et al, ApJ 2004

# Emerging <sup>6</sup>Li problem? A lot of speculations about primordial <sup>6</sup>Li!



# <sup>9</sup>Be vs metallicity Is there a hint on a "lifted tail"? (Primas et al., 2001)



# Physics Beyond SM and BBN

- 1. Timing of reactions can be changed by adding new thermally excited degrees of freedom. Accuracy of observations are sensitive to  $N_{\rm eff} \sim O(1)$ . In other words, there is sensitivity to  $\Delta \rho_{\rm extra}/\rho_{\rm total} \sim 0.3$ .
- 2. Energy injection (e.g. late decays of particles) will have an effect on mostly D,  $^6$ Li,  $^7$ Li, and  $^3$ He/D if  $\tau_X > 10^3$  sec for hadronic decays and  $\tau_X > 10^5$  sec for electromagnetic decays. Best sensitivity may reach  $\Delta E n_X/n_y < 10^{-13}$  GeV at  $\tau_X > 10^7$  sec.
- 3. Catalysis of nuclear reactions (via formation of bound states of charged relics  $X^-$  with nuclei) will have an effect on  $^6$ Li,  $^7$ Li, and  $^9$ Be. Best sensitivity to  $n_x/n_y < 10^{-16}$  for  $\tau_X > 10^4$  sec.

# Physics Beyond SM and BBN

- 1. Timing of reactions can be changed by adding new thermally excited degrees of freedom. Accuracy of observations are sensitive to  $N_{\rm eff} \sim O(1)$ . In other words, there is sensitivity to  $\Delta \rho_{\rm extra}/\rho_{\rm total} \sim 0.3$ .
- 2. Energy injection (e.g. late decays of particles) will have an effect on mostly D,  $^6$ Li,  $^7$ Li, and  $^3$ He/D if  $\tau_X > 10^3$  sec for hadronic decays and  $\tau_X > 10^5$  sec for electromagnetic decays. Best sensitivity may reach  $\Delta E n_X/n_Y < 10^{-13}$  GeV at  $\tau_X > 10^7$  sec.
- 3. Catalysis of nuclear reactions (via formation of bound states of charged relics  $X^-$  with nuclei) will have an effect on  $^6$ Li,  $^7$ Li, and  $^9$ Be. Best sensitivity to  $n_x/n_y < 10^{-16}$  for  $\tau_X > 10^4$  sec.

# Input parameters for Catalyzed BBN

Suppose that there is an electroweak scale remnant  $X^-$  (and  $X^+$ ), e.g. SUSY partner of electron,  $\mu$  or  $\tau$ , with the following properties:

- Masses are in excess of 100 GeV to comply with LEP/Tevatron.
- 2. Abundances per baryon  $Y_X$  are O(0.1-0.001). In a fully specified model of particle physics they scale as  $Y_X \sim (0.01-0.05)m_X/\text{TeV}$ .
- 3. Decay time  $\tau_x$  is longer than 1000 sec; no constraints on decay channels.

Are there changes in elemental abundances from mere presence of X<sup>-</sup>?

Yes! Anything at all that sticks to He with binding energy between 150 KeV and 1500 KeV will lead to the catalysis of <sup>6</sup>Li production!

Any quantities of (8BeX) in excess of 10<sup>-10</sup> at 8 keV will lead to the catalysis of 9Be to >10<sup>-13</sup> level.

# Properties of bound states

$$E_{Bohr} = \frac{Z_{He}^2 \alpha^2 m_{He}}{2} = 397 \text{ KeV}$$

$$E_b = 350 \text{ KeV}; a = 3.6 \text{ fm}$$

$$T_{recomb} = 8.3 \,\text{KeV}; r_c = 1.7 \,\text{fm}$$



$$(^{4}\text{HeX}^{-})$$

Bohr radius is 2 times larger than nuclear

$$E_{Bohr} = \frac{Z_{Be}^2 \alpha^2 m_{Be}}{2} = 2787 \text{ KeV}$$

$$E_b = 1350 \text{ KeV}; a = 1.0 \text{ fm}$$

$$T_{recomb} = 35 \text{ KeV}; r_c = 2.5 \text{ fm}$$



$$(^{7}\text{BeX}^{-})$$

Bohr orbit is within nuclear radius



### Properties of bound states

$$E_{Bohr} = \frac{Z_{He}^2 \alpha^2 m_{He}}{2} = 397 \text{ KeV}$$

$$E_b = 350 \text{ KeV}, a = 3.6 \text{ fm}$$

$$T_{recomb} = 8.3 \,\text{KeV}; r_c = 1.7 \,\text{fm}$$



$$(^{4}\text{HeX}^{-})$$

Bohr radius is 2 times larger than nuclear

$$E_{Bohr} = \frac{\alpha^2 m_{\rm p}}{2} = 25 \text{KeV}$$

$$T_{recomb} = 0.7 \text{KeV}; a_b = 28 \text{fm}$$

 $(pX^{-})$ 

Bohr orbit is 28 fm

# Binding energy and stability thresholds

| boundst.          | E 0  | $a_0$ | R SC | $ E_b(R_N^{sc}) $ | R <sub>Nc</sub> | $ E_b(R_{Nc}) $ | To  |
|-------------------|------|-------|------|-------------------|-----------------|-----------------|-----|
| <sup>4</sup> HeX  | 397  | 3.63  | 1.94 | 352               | 2.16            | 346             | 8.2 |
| <sup>6</sup> Li X | 1343 | 1.61  | 2.22 | 930               | 3.29            | 780             | 19  |
| <sup>7</sup> Li X | 1566 | 1.38  | 2.33 | 990               | 3.09            | 870             | 21  |
| <sup>7</sup> BeX  | 2787 | 1.03  | 2.33 | 1540              | 3               | 1350            | 32  |
| <sup>8</sup> BeX  | 3178 | 0.91  | 2.44 | 1600              | 3               | 1430            | 34  |
| <sup>4</sup> HeX  | 1589 | 1.81  | 1.94 | 1200              | 2.16            | 1150            | 28  |
| DX                | 50   | 14    | -    | 49                | 2.13            | 49              | 1.2 |
| рХ                | 25   | 29    | S=0  | 25                | 0.85            | 25              | 0.6 |

Table 1: Properties of the bound states: B ohr  $a_0$  and nuclear radii  $R_N$  in fm; binding energies  $E_h$  and "photo-dissociation decoupling" temperatures  $T_0$  in KeV.

Pirsa: 08050050

Main SBBN channel for <sup>6</sup>Li production

$$^{4}\text{He} + D \rightarrow ^{6}\text{Li} + \gamma$$
; Q = 1.47 MeV

$$\langle \sigma_{SBBN} v \rangle = 30 T_9^{-2/3} \exp(-7.435 / T_9^{1/3})$$

in usual astrophysical units.  $^6\text{Li(SBBN)} \sim 10^{-14}$ 

NB: typical pre-exponents for  $\gamma$  reactions are  $10^5-10^6$ , for photon-less reactions  $10^8-10^{10}$ 

Main CBBN channel for <sup>6</sup>Li production

$$(^{4}\text{HeX}^{-}) + D \rightarrow {^{6}\text{Li}} + X^{-}; Q = 1.13 \text{ MeV}$$

$$\langle \sigma_{CBBN} v \rangle = 2.4 \times 10^8 T_9^{-2/3} \exp(-5.37 / T_9^{1/3})$$

hep-ph/0702274, (Hamaguchi, et al.) finds S-factor 10 times smaller than my Original estimate. See Prof. Kamimura talk during this workshop

A possible SBBN channel for <sup>9</sup>Be production

$$^{8}\text{Be} + \text{n} \rightarrow ^{9}\text{Be} + \gamma$$
; Q = 1.66 MeV

 $\langle \sigma_{SBBN} v \rangle \approx 0$ . Requires triple collisons as <sup>8</sup>Be is unstable

$$^9$$
Be(SBBN)  $\sim 10^{-18}$  (B. Fields et al)

Main CBBN channel for <sup>9</sup>Be production

$$(^{8}\text{BeX}^{-}) + \text{n} \rightarrow ^{9}\text{Be} + \text{X}^{-}; \ Q = 0.26 \text{ MeV}$$

$$\langle \sigma_{CBBN} v \rangle = 2.0 \times 10^9$$

This is a large photonless rate dominated by threshold resonance!

Main SBBN channel for <sup>6</sup>Li production

$$^{4}\text{He} + D \rightarrow ^{6}\text{Li} + \gamma$$
; Q = 1.47 MeV

$$\langle \sigma_{SBBN} v \rangle = 30 T_9^{-2/3} \exp(-7.435 / T_9^{1/3})$$

in usual astrophysical units.  $^6\text{Li(SBBN)} \sim 10^{-14}$ 

NB: typical pre-exponents for  $\gamma$  reactions are  $10^5-10^6$ , for photon-less reactions  $10^8-10^{10}$ 

Main CBBN channel for <sup>6</sup>Li production

$$(^{4}\text{HeX}^{-}) + D \rightarrow {^{6}\text{Li}} + X^{-}; Q = 1.13 \text{ MeV}$$

$$\langle \sigma_{CBBN} v \rangle = 2.4 \times 10^8 T_9^{-2/3} \exp(-5.37 / T_9^{1/3})$$

hep-ph/0702274, (Hamaguchi, et al.) finds S-factor 10 times smaller than my Original estimate. See Prof. Kamimura talk during this workshop

A possible SBBN channel for <sup>9</sup>Be production

$$^{8}\text{Be} + \text{n} \rightarrow ^{9}\text{Be} + \gamma$$
; Q = 1.66 MeV

 $\langle \sigma_{SBBN} v \rangle \approx 0$ . Requires triple collisons as <sup>8</sup>Be is unstable

$$^9$$
Be(SBBN)  $\sim 10^{-18}$  (B. Fields et al)

Main CBBN channel for <sup>9</sup>Be production

$$(^{8}\text{BeX}^{-}) + \text{n} \rightarrow ^{9}\text{Be} + \text{X}^{-}; \ Q = 0.26 \text{ MeV}$$

$$\langle \sigma_{CBBN} v \rangle = 2.0 \times 10^9$$

This is a large photonless rate dominated by threshold resonance!

#### Photon-less production of <sup>9</sup>Be in CBBN

$$\frac{0}{(^{8}\text{Be X}) + n} \rightarrow \frac{0 + /-30 \text{ keV}}{(^{9}\text{Be}\frac{1}{2}^{+}X)} - \frac{-257 \text{ keV}}{^{9}\text{Be}\frac{3}{2}^{-} + X}$$

$$\frac{-1735 \text{ keV}}{(^{9}\text{Be}\frac{3}{2}^{-}X)}$$

Within error bars the  $\frac{1}{2}$  resonance in ( ${}^{9}BeX^{-}$ ) is *exactly* at the ( ${}^{8}BeX^{-}$ ) + n continuum threshold.

$$\Gamma_{\rm in} \simeq 2(192 E_{\rm n} {\rm keV})^{1/2}$$
,  $\Gamma_{\rm out} \simeq 5 {\rm keV} - {\rm my}$  estimate

#### (8BeX) bottleneck

#### Two sources:

- 1. Early time: through ( ${}^{7}\text{BeX}^{-}$ )  $\rightarrow$  ( ${}^{8}\text{BX}^{-}$ )  $\rightarrow$  ( ${}^{8}\text{BeX}^{-}$ )
- 2. Late time: through ( ${}^{4}\text{HeX}$ )  $\rightarrow$  ( ${}^{8}\text{BeX}$ )

The formation of (8BeX) occurs primarily via resonant process  $(^{4}\text{HeX}) + {^{4}\text{He}} \rightarrow *(^{8}\text{BeX}, n=3) \rightarrow (^{8}\text{BeX}, n=3) + \gamma$ 

For n=3, l=1,2 the resonant energies are 114 and 88 keV.

It turns out that when  $T \gg \Gamma_{tot} = \Gamma_{in} \gg \Gamma_{out}$ , the Breit-Wigner formula

$$\sigma_{BW}(E) = \frac{\sigma_{geom} \Gamma_{in} \Gamma_{out}}{(E - E_R)^2 + \Gamma_{tot}^2 / 4} \rightarrow \sigma_{geom} \Gamma_{out} \times 2\pi \delta(E - E_R)$$

and gives a total rate that is independent on  $\Gamma_{in}$  that contains all nuclear physics uncertainties!

$$10^5 \text{ T}_9^{-3/2} (0.95 \exp(-1.02/\text{T}_9) + 0.66 \exp(-1.33/\text{T}_9))$$

#### <sup>6</sup>Li and <sup>9</sup>Be at 8 KeV

CBBN with  $Y_X = 5 \times 10^{-3}$ ,  $\tau_X = \infty$  as a typical example, resulting in <sup>6</sup>Li > 10<sup>-8</sup>, and <sup>9</sup>Be> 10<sup>-11</sup> – **Excluded!** 



Observationally, <sup>6</sup>Li/H < few× 10<sup>-11</sup>; <sup>9</sup>Be/H<few× 10<sup>-13</sup>,

Pirsa: 08050050

#### <sup>6</sup>Li and <sup>9</sup>Be at 8 KeV

CBBN with  $Y_X = 10^{-1}$ ,  $\tau_X = 2000$ s as a "just so" scenario



 $^{6}$ Li/H=1.3× 10<sup>-11</sup>;  $^{9}$ Be/H=7× 10<sup>-14</sup>: A very intriguing pattern!!!

 ${}^{9}\text{Re}/{}^{6}\text{I i} = (2-5) \times 10^{-3}$  - a typical "footprint" of CRRN

Pirsa: 08050050

# Catalytic suppression of <sup>7</sup>Be + <sup>7</sup>Li

- The "bottleneck" is creation of ( ${}^{7}\text{Be}X^{-}$ ) bound states that is controlled by  ${}^{7}\text{Be}+X^{-} \rightarrow ({}^{7}\text{Be}X^{-}) + \gamma$  reaction
- There are two main destruction channels that are catalyzed:
- 1. p-reaction:  $(^{7}\text{Be}X^{-}) + p \rightarrow (^{8}\text{B}X^{-}) + \gamma$  by a factor of >1000 relative to  $^{7}\text{Be} + p \rightarrow ^{8}\text{B} + \gamma$
- 2. In models of type II, the "capture" of  $X^-$  is catalyzed:  $(^7\text{Be}X^-) \rightarrow ^7\text{Li} + X^0$ ,
- so that lifetime of ( ${}^{7}\text{Be}X^{-}$ ) becomes  $\ll 1$  sec.  ${}^{7}\text{Li}$  is significantly more fragile and is destroyed by protons "on the spot".
- There is significant energy injection via
   X<sup>+</sup> +X<sup>-</sup> → (X<sup>+</sup>X<sup>-</sup>) → radiation. If this process has hadronic modes, it also affects Li7.

#### <sup>7</sup>Be+<sup>7</sup>Li at 35 KeV



Type II model (fast internal capture),

$$Y_X = 0.05$$
,  $\tau = 2000$ s

# Is there a catalysis due to (pX<sup>-</sup>) states?

At first sight, there must be an effect. After all, theres is no Coulomb barrier. (Dimopoulos et al, 1989, Kohri and Takayama, 2006, Jedamzik 2007).

Most recently there was a claim (Jedamzik 2007) that a catalytic synthesis of <sup>6</sup>Li at 8 keV would be balanced out by catalytic suppression of <sup>6</sup>Li below 1 keV because of the

 $^{6}\text{Li} + (pX) \rightarrow X + ^{3}\text{He} + ^{4}\text{He}$  burning. It would open the high abundance/long lifetime "island" in the parameter space

#### Is this expectation justified? NO! Charge exchange reactions

- 1. Deplete (pX) known before but not taken into account properly
- 2. Shield Li and Be in the (LiX) bound states. The further rate of destruction is exactly 0 in the limit of  $m_X \to \infty$

# (pX<sup>-</sup>) + Z scattering semiclassically

As the distance R between incoming "heavy" (<sup>4</sup>He, Li, Be...) nucleus and X<sup>-</sup> becomes shorter, proton is deconfined and escapes to infinity.

Capture happens to high n,l states of (HeX). Cross section =  $\pi R_e^2$ .

For incoming  ${}^{4}$ He, this distance is 95fm,  $\sigma_{ch\, exch} \simeq 280$ bn

For incoming  $^6$ Li, this distance is 135 fm,  $\sigma_{\rm ch\, exch} \simeq 580 {\rm bn}$ Not far from unitarity.







# (pX<sup>-</sup>) + Z scattering semiclassically

As the distance R between incoming "heavy" (<sup>4</sup>He, Li, Be...) nucleus and X<sup>-</sup> becomes shorter, proton is deconfined and escapes to infinity.

Capture happens to high n,l states of (HeX). Cross section =  $\pi R_c^2$ .

For incoming  ${}^{4}$ He, this distance is 95fm,  $\sigma_{ch \, exch} \simeq 280$ bn

For incoming  $^6$ Li, this distance is 135 fm,  $\sigma_{\rm ch\, exch} \simeq 580 {\rm bn}$ Not far from unitarity.



# "LiX<sub>3</sub> ammonium and BeX<sub>4</sub> methane"

Charge exchange is much more likely than p tunneling through the Coulomb barrier. Even if for WHATEVER reasons, the rate for

$$^{6}\text{Li} + (pX) \rightarrow X + {^{3}\text{He}} + {^{4}\text{He}}$$
 is large, it is still  $\sigma_{\text{nucl}} < \sigma_{\text{unitarity}}$ 

And since  $\sigma_{ch ex}$  is not far different from  $\sigma_{unitarity}$  at least 50% is shielded from destruction. And one needs factors 100-1000.

Li and Be can be burned via the series of successive charge exchanges

$$^{6}\text{Li} + (pX) \rightarrow (^{6}\text{Li}X) + p$$
  
 $(^{6}\text{Li}X) + (pX) \rightarrow (^{6}\text{Li}X_{2}) + p$   
 $(^{6}\text{Li}X_{2}) + (pX) \rightarrow (^{6}\text{Li}X_{3}) + p$   
 $(^{6}\text{Li}X_{3}) + p \rightarrow 3X + ^{3}\text{He} + ^{4}\text{He} \text{ or } 3X + ^{7}\text{Be}$ 

Notice that step 2 and 3 is suppressed as  $(m_X)^{-1/2}$ 

# (pX) and (<sup>6</sup>LiX<sub>n</sub>) below 1 keV



. No effect at all from (pX) catalysis [is there a catalysis anyways?]

No allowed islands with large abundance/large lifetime

Input:  $Y_X = 10^{-2}$ ;  $\tau_X = \infty$ 

Only tiny fraction of synthesized Li is affected

# (pX) and (<sup>6</sup>LiX<sub>n</sub>) below 1 keV



. No effect at all from (pX) catalysis [is there a catalysis anyways?]

No allowed islands with large abundance/large lifetime

Input:  $Y_X = 10^{-2}$ ;  $\tau_X = \infty$ 

Only tiny fraction of synthesized Li is affected

# Open issues in CBBN

<sup>6</sup>Li:  $S_{CBBN}(0)$  for  $({}^4HeX) + D \rightarrow {}^6Li + X$  needs to be checked by other groups.

<sup>7</sup>Li + <sup>7</sup>Be: Level structure in (<sup>7</sup>BeX) system with better than 30 keV accuracy. The resonant rates (2s resonance in (Be\*X) system in particular) is very close to threshold.

```
Cross section for ^{7}\text{Be} + \text{X} \rightarrow (^{7}\text{Be}\text{X}) + \gamma

S_{\text{CBBN}}(0) for (^{7}\text{Be}\text{X}) + \text{p} \rightarrow (^{8}\text{BX}) + \gamma

S_{\text{CBBN}}(0) for (^{7}\text{Be}\text{X}) + \text{D} \rightarrow (^{9}\text{BX}) \rightarrow (^{8}\text{Be}\text{X}) + \text{p}

(Resonances!)
```

For example: there is a  $60 \pm 30(?)$  keV resonance in ( ${}^{9}B^{*}X$ ) Just above the threshold of ( ${}^{7}BeX$ ) + D !!!

# Open issues in CBBN

<sup>9</sup>Be: Level structure in (<sup>9</sup>BeX) system with better than 50 keV accuracy = accurate model for charge distribution.

CBBN cross section for  $(^8BeX) + n \rightarrow ^9Be + X$  (Dominated by the resonance!)

Resonant formation of  $(^4HeX) + ^4He \rightarrow (^8BeX) + \gamma$ Resonances again!

Rates of secondary importance:  $(^{4}HeX) + ^{3}H \rightarrow ^{7}Li + X;$   $(^{4}HeX) + ^{3}He \rightarrow ^{7}Be + X;$  (pX)-induced reactions; Rates for X<sup>--</sup> catalysis ( $^{12}C$  is a realistic possibility)

Pirsa: 08050050

#### Conclusions

- In the last two years it was recognized that CBBN is an independent new way how particle physics can affect the outcome of the primordial nuclear reactions, sensitive to abundance of X<sup>-</sup>.
- 2. CBBN pattern:  $^{6}$ Li and  $^{9}$ Be abundances are drastically enhanced, with ratio  $^{9}$ Be/ $^{6}$ Li =  $(2-5) \times 10^{-3}$ .
  - Assuming typical abundances, constraints on lifetime are on the order of  $\sim 5000$  seconds.
  - $^{7}\text{Li} + ^{7}\text{Be}$  can be suppressed by a factor of  $\sim 2$  if there is O(0.1-0.01) particles.
- 3. Catalysis by (pX) is not important *regardless* of the issue with nuclear uncertainties.
- Careful investigation of resonant nuclear rates in CBBN are needed. Resonances!

# Open issues in CBBN

<sup>9</sup>Be: Level structure in (<sup>9</sup>BeX) system with better than 50 keV accuracy = accurate model for charge distribution.

CBBN cross section for  $(^8\text{BeX}) + \text{n} \rightarrow ^9\text{Be} + \text{X}$  (Dominated by the resonance!)

Resonant formation of  $(^4\text{HeX}) + ^4\text{He} \rightarrow (^8\text{BeX}) + \gamma$ Resonances again!

Rates of secondary importance:  $(^{4}HeX) + ^{3}H \rightarrow ^{7}Li + X;$   $(^{4}HeX) + ^{3}He \rightarrow ^{7}Be + X;$  (pX)-induced reactions; Rates for X<sup>--</sup> catalysis ( $^{12}C$  is a realistic possibility)

#### Conclusions

- In the last two years it was recognized that CBBN is an independent new way how particle physics can affect the outcome of the primordial nuclear reactions, sensitive to abundance of X<sup>-</sup>.
- 2. CBBN pattern:  $^{6}$ Li and  $^{9}$ Be abundances are drastically enhanced, with ratio  $^{9}$ Be/ $^{6}$ Li =  $(2-5) \times 10^{-3}$ .
  - Assuming typical abundances, constraints on lifetime are on the order of  $\sim 5000$  seconds.
  - $^{7}\text{Li} + ^{7}\text{Be}$  can be suppressed by a factor of  $\sim 2$  if there is O(0.1-0.01) particles.
- 3. Catalysis by (pX) is not important *regardless* of the issue with nuclear uncertainties.
- Careful investigation of resonant nuclear rates in CBBN are needed. Resonances!



Pirsa: 08050050

Page 42/43

Pirsa: 08050050

Page 43/43