Title: Non-abelian topological phases and unconventional criticality in a model of interacting anyons

Date: May 02, 2008 10:00 AM

URL: http://pirsa.org/08050028

Abstract:

Pirsa: 08050028 Page 1/69

Quantum statistics in (2+1)D: anyons

- Consider two identical (quasi-)particles in three spatial dimensions:
 - \blacktriangleright Perform two clockwise adiabatic exchanges, resulting in a change of phase of 2θ
 - Deform path into a single point $\Longrightarrow \psi(\mathbf{r}_1, \mathbf{r}_2) = e^{i2\theta}\psi(\mathbf{r}_1, \mathbf{r}_2)$, and hence $\theta = 0$ (bosons) or $\theta = \pi$ (fermions)
- In two spatial dimensions:
 - Cannot deform the trajectory to a point
 - The wavefunction may change by a phase factor

$$\psi(\mathbf{r}_1, \mathbf{r}_2) \to e^{i2\theta} \psi(\mathbf{r}_1, \mathbf{r}_2)$$

 \triangleright For values of $\theta \neq 0, \pi$: anyons

The braid group

- Consider N anyons in (2+1)D: trajectories take particle positions $R_1, R_2, ... R_N$ at time t_i to positions $R_{\pi(1)}, R_{\pi(2)}, ... R_{\pi(N)}$ at time t_f
- Each equivalence class of such worldlines that are invariant under smooth deformations is a "braid"
- Different braids correspond to different elements of the Braid group, where counter-clockwise exchanges of particles i and i + 1, generated by σ_i, obey

$$\sigma_i \sigma_j = \sigma_j \sigma_i \text{ for } |i-j| \ge 2$$

 $\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} \text{ for } 1 \le i \le N-1$

The braid group

- Consider N anyons in (2+1)D: trajectories take particle positions $R_1, R_2, ...R_N$ at time t_i to positions $R_{\pi(1)}, R_{\pi(2)}, ...R_{\pi(N)}$ at time t_f
- Each equivalence class of such worldlines that are invariant under smooth deformations is a "braid"
- Different braids correspond to different elements of the Braid group, where counter-clockwise exchanges of particles i and i + 1, generated by σ_i, obey

$$\sigma_i \sigma_j = \sigma_j \sigma_i \text{ for } |i-j| \ge 2$$

 $\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} \text{ for } 1 \le i \le N-1$

Representations of the braid group

 For abelian (1D) representations of the braid group, the order of braiding is irrelevant (exchange generators are phases)

- Higher-dimensional representations may be non-abelian:
 - Description Given a set of n degenerate orthonormal basis states $|\psi_k\rangle$, k=1,...n, with N identical anyons at fixed positions, the exchange of particles i and i+1 is represented by a $n\times n$ unitary matrix $M(\sigma_i)$
 - Non-abelian representation if

$$M(\sigma_i) M(\sigma_{i+1}) \neq M(\sigma_{i+1}) M(\sigma_i)$$

Representations of the braid group

 For abelian (1D) representations of the braid group, the order of braiding is irrelevant (exchange generators are phases)

- Higher-dimensional representations may be non-abelian:
 - Given a set of n degenerate orthonormal basis states $|\psi_k\rangle$, k=1,...n, with N identical anyons at fixed positions, the exchange of particles i and i+1 is represented by a $n\times n$ unitary matrix $M(\sigma_i)$
 - Non-abelian representation if

$$M(\sigma_i) M(\sigma_{i+1}) \neq M(\sigma_{i+1}) M(\sigma_i)$$

Pirsa: 08050028 Page 6/69

Topological quantum computation¹

- Hilbert space \mathcal{H} spanned by degenerate states $\psi_k(\mathbf{r}_1, \mathbf{r}_2, ..., \mathbf{r}_N)$ with non-abelian anyons at positions $\mathbf{r}_1, ..., \mathbf{r}_N$
- Unitary evolution on this space by braiding anyons
 - For most classes of non-abelian anyons, it is possible to generate all possible unitary transformation by only braiding
- Requires a system in a gapped phase with non-abelian quasiparticle excitations (a so-called "non-abelian topological phase")

Topological quantum computation¹

- Hilbert space \mathcal{H} spanned by degenerate states $\psi_k(\mathbf{r}_1, \mathbf{r}_2, ..., \mathbf{r}_N)$ with non-abelian anyons at positions $\mathbf{r}_1, ..., \mathbf{r}_N$
- Unitary evolution on this space by braiding anyons
 - For most classes of non-abelian anyons, it is possible to generate all possible unitary transformation by only braiding
- Requires a system in a gapped phase with non-abelian quasiparticle excitations (a so-called "non-abelian topological phase")

Non-abelian topological phases (NATPs)

- System that potentially are non-abelian topological phases (NATP): chiral p-wave superconductors, fractional quantum Hall (FQH) states with filling fractions $\nu=12/5$ and $\nu=5/2$
 - Decomposition Quasiparticle excitations have statistical properties of Ising anyons ($\nu = 5/2, \, p + ip$ SC), and Fibonacci anyons ($\nu = 12/5$)
 - ▶ For the FQH with $\nu = 5/2$, the fractional charge of e/4 was recently measured in a shot-noise experiment¹
- The field-theoretical description of topological phases is well understood (topological quantum field theories)
- Not much is known about microscopic models that give rise to NATPs^{2,3}
- Possible realization of such models on optical lattices or in magnetic systems? Understanding models of interacting anyons?

Non-abelian topological phases (NATPs)

- System that potentially are non-abelian topological phases (NATP): chiral p-wave superconductors, fractional quantum Hall (FQH) states with filling fractions $\nu=12/5$ and $\nu=5/2$
 - Decomposition Quasiparticle excitations have statistical properties of Ising anyons ($\nu = 5/2, \, p + ip$ SC), and Fibonacci anyons ($\nu = 12/5$)
 - ▶ For the FQH with $\nu = 5/2$, the fractional charge of e/4 was recently measured in a shot-noise experiment 1
- The field-theoretical description of topological phases is well understood (topological quantum field theories)
- Not much is known about microscopic models that give rise to NATPs^{2,3}
- Possible realization of such models on optical lattices or in magnetic systems? Understanding models of interacting anyons?

Fibonacci anyons

Spin-1/2 $SU(2)_{\infty}$

- Species: $j = 0, \frac{1}{2}, 1, ..., \infty$
- Fusion rules:

$$j \times j' = \sum_{j''=|j-j'|}^{j+j'} j''$$

Non-abelian anyons $SU(2)_k$

- Species: $j = 0, \frac{1}{2}, 1, ..., \frac{k}{2}$
- Fusion rules:

$$j \times j' = \sum_{j''=|j-j'|}^{\min(j+j',k-j-j')} j''$$

- Fibonacci anyons are capable of universal topological quantum computation
- Species 1 (j = 0) and τ (j = 1), fusion rules: $\tau \times \tau = 1 + \tau$

Page 11/69

Fibonacci anyons

Spin-1/2 $SU(2)_{\infty}$

- Species: $j = 0, \frac{1}{2}, 1, ..., \infty$
- Fusion rules:

$$j \times j' = \sum_{j''=|j-j'|}^{j+j'} j''$$

Non-abelian anyons $SU(2)_k$

- Species: $j = 0, \frac{1}{2}, 1, ..., \frac{k}{2}$
- Fusion rules:

$$j \times j' = \sum_{j''=|j-j'|}^{\min(j+j',k-j-j')} j''$$

- Fibonacci anyons are capable of universal topological quantum computation
- Species 1 (j = 0) and τ (j = 1), fusion rules: $\tau \times \tau = 1 + \tau$

Levin-Wen model

• Spin-1/2 d.o.f. on links of honeycomb lattice (associate $\tau=\uparrow$, $1=\downarrow$)

$$H = H_v + H_p = -J_v \sum_{v} \delta_{i_v, j_v, k_v} - J_p \sum_{p} B_p$$

where
$$\delta_{\uparrow\uparrow\uparrow}=\delta_{\uparrow\uparrow\downarrow}=\delta_{\downarrow\downarrow\downarrow}=1$$

- H_v -term enforces fusion rules of Fibonacci anyons H_p -term is a projector to anyon d.o.f. through a plaquette (zero if $\delta_{i_v,j_v,k_v}=0$ for a $v\in p$)
- Two types of quasiparticle excitations that are Fiboracci anyons: plaquette-type (from H_p) and vertex-type (from H_v)

Page 13/69

Levin, Wen, PRB 71, 045510 (2005)

Levin-Wen model

• Spin-1/2 d.o.f. on links of honeycomb lattice (associate $\tau=\uparrow$, $1=\downarrow$)

$$H = H_v + H_p = -J_v \sum_{v} \delta_{i_v, j_v, k_v} - J_p \sum_{p} B_p$$

where
$$\delta_{\uparrow\uparrow\uparrow}=\delta_{\uparrow\uparrow\downarrow}=\delta_{\downarrow\downarrow\downarrow}=1$$

- H_v -term enforces fusion rules of Fibonacci anyons H_p -term is a projector to anyon d.o.f. through a plaquette (zero if $\delta_{i_v,j_v,k_v}=0$ for a $v\in p$)
- Two types of quasiparticle excitations that are Fibonacci anyons: plaquette-type (from H_p) and vertex-type (from H_v)

- Hilbert space of a multi-anyon system is defined by a certain topology
 Anyons are associated (e.g., in TQFT context) with punctures of a surface → decomposition into 3-punctured spheres yields basis
- High-genus sphere with periodic boundary conditions (b₁ = e₁, b₂ = e₂)
 → one possible basis is ladder
- Fibonacci anyon degrees of freedom: 1's and τ 's on links of ladder, with fusion rules being obeyed at all vertices

Pirsa: 08050028 Page 15/69

- Hilbert space of a multi-anyon system is defined by a certain topology
 Anyons are associated (e.g., in TQFT context) with punctures of a surface → decomposition into 3-punctured spheres yields basis
- High-genus sphere with periodic boundary conditions (b₁ = e₁, b₂ = e₂)
 → one possible basis is ladder
- Fibonacci anyon degrees of freedom: 1's and τ 's on links of ladder, with fusion rules being obeyed at all vertices

Pirsa: 08050028 Page 16/69

- Hilbert space of a multi-anyon system is defined by a certain topology
 Anyons are associated (e.g., in TQFT context) with punctures of a surface decomposition into 3—punctured spheres yields basis
- High-genus sphere with periodic boundary conditions (b₁ = e₁, b₂ = e₂)
 → one possible basis is ladder
- Fibonacci anyon degrees of freedom: 1's and τ 's on links of ladder, with fusion rules being obeyed at all vertices

Pirsa: 08050028 Page 17/69

Non-abelian topological phases and unconventional criticality in a model of interacting anyons

Charlotte Gils ETH Zürich

in collaboration with

Simon Trebst (Microsoft Station Q)
Matthias Troyer (ETH Zürich)
Andreas Ludwig (UC Santa Barbara)
Alexei Kitaev (Caltech)

Pirsa: 08050028 Page 18/69

Non-abelian topological phases and unconventional criticality in a model of interacting anyons

Charlotte Gils ETH Zürich

in collaboration with

Simon Trebst (Microsoft Station Q)
Matthias Troyer (ETH Zürich)
Andreas Ludwig (UC Santa Barbara)
Alexei Kitaev (Caltech)

Pirsa: 08050028 Page 19/69

Non-abelian topological phases and unconventional criticality in a model of interacting anyons

Charlotte Gils ETH Zürich

in collaboration with

Simon Trebst (Microsoft Station Q)
Matthias Troyer (ETH Zürich)
Andreas Ludwig (UC Santa Barbara)
Alexei Kitaev (Caltech)

Pirsa: 08050028 Page 20/69

- Hilbert space of a multi-anyon system is defined by a certain topology
 Anyons are associated (e.g., in TQFT context) with punctures of a surface → decomposition into 3-punctured spheres yields basis
- High-genus sphere with periodic boundary conditions (b₁ = e₁, b₂ = e₂)
 → one possible basis is ladder
- Fibonacci anyon degrees of freedom: 1's and τ 's on links of ladder, with fusion rules being obeyed at all vertices

Pirsa: 08050028 Page 21/69

Non-commuting plaquette and rung terms:

$$H = -\cos(\theta) \sum_{p} P_{p} - \sin(\theta) \sum_{r} R_{r}$$

- Rung term $R_r = \delta_{1,r}$: energy gain if no au-anyon on rung
- Plaquette term $^{1.2}$ favors the absence of τ -anyon through plaquette:

$$P_{p}\left| \begin{array}{c} \frac{a-\alpha-b}{\delta-\beta-\beta} \\ \frac{a-\alpha-b}{\delta-\gamma-c} \end{array} \right\rangle = \sum_{i=1,\tau} \frac{d_{i}}{D^{2}} \sum_{\substack{\alpha',\beta',\\\gamma',\delta'}} (F_{\delta a\alpha'}^{i})_{\delta'}^{\alpha} (F_{\alpha b\beta'}^{i})_{\alpha'}^{\beta} (F_{\beta c\gamma'}^{i})_{\beta'}^{\gamma} (F_{\gamma d\delta'}^{i})_{\gamma'}^{\delta} \left| \begin{array}{c} a-\alpha'-b\\ \delta'-\beta'\\ d-\gamma'-c \end{array} \right\rangle$$

Levin, Wen, PRB 71, 045510 (2005); $^2(F^d_{abc})^f_e$ are F-matrix elements, $d_i, D=\sqrt{d_1^2+d_7^2}$ quantum dimensions of Fibonacci theory

Pirsa: 08050028 Page 22/69

Non-commuting plaquette and rung terms:

$$H = -\cos(\theta) \sum_{p} P_{p} - \sin(\theta) \sum_{r} R_{r}$$

- Rung term $R_r = \delta_{1,r}$: energy gain if no τ -anyon on rung
- Plaquette term $^{1.2}$ favors the absence of τ -anyon through plaquette:

$$P_{p}\left| \begin{array}{c} \frac{a-\alpha-b}{\delta-\beta-\beta} \\ \frac{a-\alpha-b}{\delta-\gamma-c} \end{array} \right\rangle = \sum_{i=1,\tau} \frac{d_{i}}{D^{2}} \sum_{\substack{\alpha',\beta',\\\gamma',\delta'}} (F_{\delta a\alpha'}^{i})_{\delta'}^{\alpha} (F_{\alpha b\beta'}^{i})_{\alpha'}^{\beta} (F_{\beta c\gamma'}^{i})_{\beta'}^{\gamma} (F_{\gamma d\delta'}^{i})_{\gamma'}^{\delta} \left| \begin{array}{c} \frac{a-\alpha'-b}{\delta'-\beta'} \\ \frac{\delta'-\beta'}{\delta-\gamma'-c} \end{array} \right\rangle$$

 $^{1}\text{Levin, Wen, PRB 71, 045510 (2005); }^{2}(F^{d}_{abc})^{f}_{e} \text{ are } F\text{-matrix elements, } d_{i}, D = \sqrt{d_{1}^{2} + d_{\tau}^{2}} \text{ quantum dimensions of Fibonacci theory}$

Non-commuting plaquette and rung terms:

$$H = -\cos(\theta) \sum_{p} P_{p} - \sin(\theta) \sum_{r} R_{r}$$

- Rung term $R_r = \delta_{1,r}$: energy gain if no au-anyon on rung
- Plaquette term $^{1.2}$ favors the absence of τ -anyon through plaquette:

$$P_{p}\left| \begin{array}{c} \frac{a-\alpha-b}{\delta-\beta-\beta} \\ \frac{\delta-\beta-\beta}{d-\gamma-c} \end{array} \right\rangle = \sum_{i=1,\tau} \frac{d_{i}}{D^{2}} \sum_{\substack{\alpha',\beta',\\ \gamma',\delta'}} (F_{\delta a\alpha'}^{i})_{\delta'}^{\alpha} (F_{\alpha b\beta'}^{i})_{\alpha'}^{\beta} (F_{\beta c\gamma'}^{i})_{\beta'}^{\gamma} (F_{\gamma d\delta'}^{i})_{\gamma'}^{\delta} \left| \begin{array}{c} \frac{a-\alpha'-b}{\delta'-\beta'} \\ \frac{\delta'-\beta'}{d-\gamma'-c} \end{array} \right\rangle$$

 $^{1}\text{Levin, Wen, PRB 71, 045510 (2005); }^{2}(F^{d}_{abc})^{f}_{e} \text{ are } F\text{-matrix elements, } d_{i}, D = \sqrt{d_{1}^{2} + d_{7}^{2}} \text{ quantum dimensions of Fibonacci theory}$

Pirsa: 08050028 Page 24/69

Phase diagram

- Exact diagonalization yields energy spectra (energy dispersion $E(k_x, k_y)$ by making use of translation and reflection symmetries)
- Almost duality (up to degeneracies) for periodic boundaries

Pirsa: 08050028 Page 25/69

Phase diagram

- Exact diagonalization yields energy spectra (energy dispersion $E(k_x, k_y)$ by making use of translation and reflection symmetries)
- Almost duality (up to degeneracies) for periodic boundaries

Pirsa: 08050028 Page 26/69

Non-commuting plaquette and rung terms:

$$H = -\cos(\theta) \sum_{p} P_{p} - \sin(\theta) \sum_{r} R_{r}$$

- Rung term $R_r = \delta_{1,r}$: energy gain if no au-anyon on rung
- Plaquette term $^{1.2}$ favors the absence of τ -anyon through plaquette:

$$P_{p}\left| \begin{array}{c} \frac{a-\alpha-b}{\delta-\beta} \\ \frac{\delta-\beta}{d-\gamma-c} \end{array} \right\rangle = \sum_{i=1,\tau} \frac{d_{i}}{D^{2}} \sum_{\substack{\alpha',\beta',\\\gamma',\delta'}} (F_{\delta a\alpha'}^{i})_{\delta'}^{\alpha} (F_{\alpha b\beta'}^{i})_{\alpha'}^{\beta} (F_{\beta c\gamma'}^{i})_{\beta'}^{\gamma} (F_{\gamma d\delta'}^{i})_{\gamma'}^{\delta} \left| \begin{array}{c} a-\alpha'-b\\ \frac{\delta'-\beta'}{d-\gamma'-c} \end{array} \right\rangle$$

 $^{1}\text{Levin, Wen, PRB 71, 045510 (2005); }^{2}(F^{d}_{abc})^{f}_{e} \text{ are } F\text{-matrix elements, } d_{i}, D = \sqrt{d_{1}^{2} + d_{\tau}^{2}} \text{ quantum dimensions of Fibonacci theory}$

Phase diagram

- Exact diagonalization yields energy spectra (energy dispersion $E(k_x, k_y)$ by making use of translation and reflection symmetries)
- Almost duality (up to degeneracies) for periodic boundaries

Pirsa: 08050028 Page 28/69

Phase diagram

- Exact diagonalization yields energy spectra (energy dispersion $E(k_x, k_y)$ by making use of translation and reflection symmetries)
- Almost duality (up to degeneracies) for periodic boundaries

Pirsa: 08050028 Page 29/69

NATPs: ground state degeneracy

- Essential properties of NATPs from "effective topologies"
- Ground state (GS)
 - NATP I: no plaquette fluxes
 → close holes in sphere →
 becomes a torus → two-fold
 GS degeneracy
 - NATP II: no rung-fluxes
 - \rightarrow remove rungs \rightarrow two tori
 - → four-fold GS degeneracy

Pirsa: 08050028 Page 30/69

NATPs: ground state degeneracy

- Essential properties of NATPs from "effective topologies"
- Ground state (GS)
 - NATP I: no plaquette fluxes
 → close holes in sphere →
 becomes a torus → two-fold
 GS degeneracy
 - NATP II: no rung-fluxes
 - \rightarrow remove rungs \rightarrow two tori
 - → four-fold GS degeneracy

Pirsa: 08050028 Page 31/69

Phase diagram

- Exact diagonalization yields energy spectra (energy dispersion $E(k_x, k_y)$ by making use of translation and reflection symmetries)
- Almost duality (up to degeneracies) for periodic boundaries

Pirsa: 08050028 Page 32/69

Phase diagram

- Exact diagonalization yields energy spectra (energy dispersion $E(k_x, k_y)$ by making use of translation and reflection symmetries)
- Almost duality (up to degeneracies) for periodic boundaries

Pirsa: 08050028 Page 33/69

NATPs: ground state degeneracy

- Essential properties of NATPs from "effective topologies"
- Ground state (GS)
 - NATP I: no plaquette fluxes
 → close holes in sphere →
 becomes a torus → two-fold
 GS degeneracy
 - NATP II: no rung-fluxes
 - \rightarrow remove rungs \rightarrow two tori
 - → four-fold GS degeneracy

Pirsa: 08050028 Page 34/69

NATPs: ground state degeneracy

- Essential properties of NATPs from "effective topologies"
- Ground state (GS)
 - NATP I: no plaquette fluxes
 → close holes in sphere →
 becomes a torus → two-fold
 GS degeneracy
 - NATP II: no rung-fluxes
 - \rightarrow remove rungs \rightarrow two tori
 - → four-fold GS degeneracy

Pirsa: 08050028 Page 35/69

Effective topologies: ground state

NATP I

Pirsa: 08050028 Page 36/69

Effective topologies: ground state

NATPs: ground state degeneracy

- Essential properties of NATPs from "effective topologies"
- Ground state (GS)
 - NATP I: no plaquette fluxes
 → close holes in sphere →
 becomes a torus → two-fold
 GS degeneracy
 - NATP II: no rung-fluxes
 - \rightarrow remove rungs \rightarrow two tori
 - → four-fold GS degeneracy

Pirsa: 08050028 Page 38/69

NATPs: ground state degeneracy

- Essential properties of NATPs from "effective topologies"
- Ground state (GS)
 - NATP I: no plaquette fluxes
 → close holes in sphere →
 becomes a torus → two-fold
 GS degeneracy
 - NATP II: no rung-fluxes
 - \rightarrow remove rungs \rightarrow two tori
 - → four-fold GS degeneracy

Pirsa: 08050028 Page 39/69

Effective topologies: ground state

NATP I

Pirsa: 08050028 Page 40/69

Effective topologies: ground state

NATPs: ground state degeneracy

- Essential properties of NATPs from "effective topologies"
- Ground state (GS)
 - NATP I: no plaquette fluxes
 → close holes in sphere →
 becomes a torus → two-fold
 GS degeneracy
 - NATP II: no rung-fluxes
 - \rightarrow remove rungs \rightarrow two tori
 - → four-fold GS degeneracy

Pirsa: 08050028 Page 42/69

NATPs: ground state degeneracy

- Essential properties of NATPs from "effective topologies"
- Ground state (GS)
 - NATP I: no plaquette fluxes
 → close holes in sphere →
 becomes a torus → two-fold
 GS degeneracy
 - NATP II: no rung-fluxes
 - \rightarrow remove rungs \rightarrow two tori
 - → four-fold GS degeneracy

Pirsa: 08050028 Page 43/69

Pirsa: 08050028 Page 44/69

NATPs: first excited state

- NATP I: plaquette-type excitation, 3L-fold degenerate
- NATP II: rung-type excitation,
 L-fold degenerate
- Become 3-fold (NATP I) / 1fold (NATP II) degenerate quasiparticle bands away from exactly solvable points

Pirsa: 08050028 Page 49/69

NATPs: first excited state

- NATP I: plaquette-type excitation, 3L-fold degenerate
- NATP II: rung-type excitation,
 L-fold degenerate
- Become 3-fold (NATP I) / 1fold (NATP II) degenerate quasiparticle bands away from exactly solvable points

Pirsa: 08050028 Page 50/69

NATPs: first excited state

- NATP I: plaquette-type excitation, 3L-fold degenerate
- NATP II: rung-type excitation,
 L-fold degenerate
- Become 3-fold (NATP I) / 1fold (NATP II) degenerate quasiparticle bands away from exactly solvable points

Pirsa: 08050028 Page 51/69

NATPs: stability

- Finite-size scaling analysis: gap and GS degeneracy are preserved for $\theta \in (\frac{\pi}{4},\pi)$ and $\theta \in (-\frac{\pi}{2},\frac{\pi}{4})$
- Lines: perturbation theory
- (Almost) duality
 ⇒ perturbative results also apply close to Levin-Wen point (θ = 0)
 ⇒ stability of 2D NATP

Pirsa: 08050028 Page 52/69

NATPs: stability

- Finite-size scaling analysis: gap and GS degeneracy are preserved for $\theta \in (\frac{\pi}{4},\pi)$ and $\theta \in (-\frac{\pi}{2},\frac{\pi}{4})$
- Lines: perturbation theory
- (Almost) duality
 ⇒ perturbative results also apply close to Levin-Wen point (θ = 0)
 ⇒ stability of 2D NATP

Pirsa: 08050028 Page 53/69

Critical points

• At $\theta=\pi/4$: energy spectrum matches 2D CFT with central charge c=14/15, where

$$E(k_x) = E_1 L + \frac{a}{L} \left(-\frac{c}{12} + h_L + h_R \right),$$

with $k_x = h_L - h_R$ or $k_x = h_L - h_R + L/2$; h_L , h_R : primary and descendant conformal weights

- Opposite point $\theta = 5\pi/4$: parafermion CFT with c = 7/5
- Analytical description
 - \diamond k=8 restricted-solid-on-solid (RSOS) model
 - Role of topological symmetries for stability

Phase diagram

- Exact diagonalization yields energy spectra (energy dispersion $E(k_x, k_y)$ by making use of translation and reflection symmetries)
- Almost duality (up to degeneracies) for periodic boundaries

Pirsa: 08050028 Page 55/69

Phase diagram

- Exact diagonalization yields energy spectra (energy dispersion $E(k_x, k_y)$ by making use of translation and reflection symmetries)
- Almost duality (up to degeneracies) for periodic boundaries

Pirsa: 08050028 Page 56/69

Pirsa: 08050028 Page 58/69

Critical points

• At $\theta=\pi/4$: energy spectrum matches 2D CFT with central charge c=14/15, where

$$E(k_x) = E_1 L + \frac{a}{L} \left(-\frac{c}{12} + h_L + h_R \right),$$

with $k_x=h_L-h_R$ or $k_x=h_L-h_R+L/2$; h_L , h_R : primary and descendant conformal weights

- Opposite point $\theta = 5\pi/4$: parafermion CFT with c = 7/5
- Analytical description
 - > k = 8 restricted-solid-on-solid (RSOS) model
 - Role of topological symmetries for stability

Critical points

• At $\theta=\pi/4$: energy spectrum matches 2D CFT with central charge c=14/15, where

$$E(k_x) = E_1 L + \frac{a}{L} \left(-\frac{c}{12} + h_L + h_R \right),$$

with $k_x = h_L - h_R$ or $k_x = h_L - h_R + L/2$; h_L , h_R : primary and descendant conformal weights

- Opposite point $\theta = 5\pi/4$: parafermion CFT with c = 7/5
- Analytical description
 - $\diamond \ k = 8$ restricted-solid-on-solid (RSOS) model
 - Role of topological symmetries for stability

Pirsa: 08050028 Page 61/69

Pirsa: 08050028 Page 62/69

Critical point at $\theta=5\pi/4$

Pirsa: 08050028 Page 63/69

Conclusions

 We study a model whose degrees of freedom are interacting Fibonacci anyons on a high-genus surface

 Relevance of topology for properties of non-abelian topological phases

 Stability of non-abelian topological phases

Two criticalities described by 2D conformal field theories

Thank you for your attention!

Pirsa: 08050028 Page 64/69

Conclusions

 We study a model whose degrees of freedom are interacting Fibonacci anyons on a high-genus surface

 Relevance of topology for properties of non-abelian topological phases

 Stability of non-abelian topological phases

Two criticalities described by 2D conformal field theories

Thank you for your attention!

Pirsa: 08050028 Page 65/69

Pirsa: 08050028 Page 67/69

Critical points

• At $\theta=\pi/4$: energy spectrum matches 2D CFT with central charge c=14/15, where

$$E(k_x) = E_1 L + \frac{a}{L} \left(-\frac{c}{12} + h_L + h_R \right),$$

with $k_x=h_L-h_R$ or $k_x=h_L-h_R+L/2$; h_L , h_R : primary and descendant conformal weights

- Opposite point $\theta = 5\pi/4$: parafermion CFT with c = 7/5
- Analytical description
 - \diamond k=8 restricted-solid-on-solid (RSOS) model
 - Role of topological symmetries for stability

Critical points

• At $\theta=\pi/4$: energy spectrum matches 2D CFT with central charge c=14/15, where

$$E(k_x) = E_1 L + \frac{a}{L} \left(-\frac{c}{12} + h_L + h_R \right),$$

with $k_x = h_L - h_R$ or $k_x = h_L - h_R + L/2$; h_L , h_R : primary and descendant conformal weights

- Opposite point $\theta = 5\pi/4$: parafermion CFT with c = 7/5
- Analytical description
 - \diamond k=8 restricted-solid-on-solid (RSOS) model
 - Role of topological symmetries for stability