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Quantum statistics in (241)D: anyons

e Consider two identical (quasi-)particles in three spatial dimensions:

> Perform two clockwise adiabatic exchanges, resulting in a change of
phase of 2¢

> Deform path into a single point = wu(r;.ry) = 4:-"‘“”.'{1:'1.I';_»}+ and
hence # = 0 (bosons) or # = 7 (fermions)

e In two spatial dimensions:

> Cannot deform the trajectory to a point /
> T he wavefunction may change by a phase factor 3 N
(ry.ro) — e2%u(r;. o)

> For values of # # (). m: anyons
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The braid group

e Consider N anyons in (2+1)D: trajectories take particle positions
R,.R;....R~ at time t, to positions R_;,, R 5. ...R_ ), at time t;

e Each equivalence class of such worldlines that are
invariant under smooth deformations is a “braid” =

e Different braids correspond to different elements of - « + = .
the Braid group, where counter-clockwise exchanges :
of particles : and i + 1, generated by o,, obey Time

oi0; = gio; for l1—3| 22

g,0;.10; — T 100,41 fl]'r 1 i: ] E _\F — 1
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The braid group

e Consider N anyons in (2+1)D: trajectories take particle positions
R,.R»....Rx at time t, to positions R, R.5)....R. n, at time t;

e Each equivalence class of such worldlines that are
invariant under smooth deformations is a “braid” =

e Different braids correspond to different elements of
the Braid group, where counter-clockwise exchanges :
of particles : and : + 1, generated by o,, obey Time

oo = g;0;ler 1—3] =2

Fi0in10; = Oivy10:0:;01 for 1 <1< N -1
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Representations of the braid group

e For abelian (1D) representations of the braid group, the order of braiding
is irrelevant (exchange generators are phases)

e Higher-dimensional representations may be non-abelian:

> Given a set of n degenerate orthonormal basis states
vr), K = 1...n, with N identical anyons at fixed
positions, the exchange of particles i and i + 1 is
represented by a n x n unitary matrix /(o))

> Non-abelian representation if

M(o,) M(0.+1) # M(0,+1) M(0)) ez } =p
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Representations of the braid group

e For abelian (1D) representations of the braid group, the order of braiding
is irrelevant (exchange generators are phases)

e Higher-dimensional representations may be non-abelian:

> Given a set of n degenerate orthonormal basis states
vr), k= 1...n, with NV identical anyons at fixed
positions, the exchange of particles 7 and i + 1 is
represented by a n x n unitary matrix M\ (o,)

> Non-abelian representation if

M(o;)) M(o;+1) # M(o,+1) M(0o;)
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Topological quantum computation’

e Hilbert space H spanned by degenerate states v (r;.raz.....ry) with
non-abelian anyons at positions ry.....ry

e Unitary evolution on this space by braiding anyons

> For most classes of non-abelian anyons, it is possible to generate all
possible unitary transformation by only braiding

e Requires a system in a gapped phase with non-abelian quasiparticle
excitations (a so-called “non-abelian topological phase”)

 p »

[ | = - &
“Kitaev, Ann. Phys, 303, 3 (2003)
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Topological quantum computation’

e Hilbert space H spanned by degenerate states v (r;.rz.....ry) with
non-abelian anyons at positions ry.....ry

e Unitary evolution on this space by braiding anyons

> For most classes of non-abelian anyons, it is possible to generate all
possible unitary transformation by only braiding

e Requires a system in a gapped phase with non-abelian quasiparticle
excitations (a so-called “non-abelian topological phase”)

|
“Kitaev, Ann Phys. 303, 3 (2003)
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Non-abelian topological phases (NATPs)

e System that potentially are non-abelian topological phases (NATP):
chiral p-wave superconductors, fractional quantum Hall (FQH) states
with filling fractions v = 12/5 and v = 5/2

> Quasiparticle excitations have statistical properties of Ising anyons
(v =5/2, p+ip SC), and Fibonacci anyons (v = 12/5)

> For the FQH with v = 5/2, the fractional charge of ¢/1 was recently
measured in a shot-noise experiment’

e The field-theoretical description of topological phases is well understood
(topological quantum field theories)

e Not much is known about microscopic models that givg

e Possible realization of such models on optical lattic
systems ? Understanding models of interacting anyons

-:‘L}clr:v b al., arXiv-0802.0930, “Kitaev. Ann Phys. 321, 2 (20086), S evin. Wen, PRB 71, 045510 (2005)
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Non-abelian topological phases (NATPs)

e System that potentially are non-abelian topological phases (NATP):
chiral p-wave superconductors, fractional quantum Hall (FQH) states
with filling fractions » = 12/5 and v = 5/2

LV,

- Quasiparticle excitations have statistical properties of Ising anyons
(v =5/2, p+ip SC), and Fibonacci anyons (v = 12/5)

> For the FQH with v = 5/2, the fractional charge of ¢/1 was recently
measured in a shot-noise experiment’

LY

e The field-theoretical description of topological phases is well understood
(topological quantum field theories)

e Not much is known about microscopic models that give rise to NATPs=-*

e Possible realization of such models on optical lattices or in magnetic
systems 7 Understanding models of interacting anyons 7

:‘L}mr:‘v ! al., arXiv-0802.0930, “Kitaev, Ann Phys. 3212 (2006), S evin, Wen, PRB 71, 045510 (2005)
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Fibonacci anyons

Spin-1/2 SU(2) « Non-abelian anyons SU7(2);
e Species: j = (). % L e Species: | = (). % | N %
e Fusion rules: e Fusion rules:
.J'+.J'F 1[1111|.;+.;j.3\'—.;—f’}
ixi'= 3 J ixi'= >
1"=ly—J’ 1"=l1—7’

e Fibonacci anyons are capable of universal topological

quantum computation .-

e Species1 (j =0)and 7 (j = 1), ’
fusion rules: T x T =1+ 171 * *

LRead and Rezayi. PRB 59, 8084 (1999)
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Fibonacci anyons
Spin-1/2 SU(2) «
e Species: j = (), % | B——,

e Fusion rules:

Non-abelian anyons SU(2);

e Species: | = {lilﬁ—,

e Fusion rules:

min| ;+fj.3\ st

i+
- ’" : O Y
J) = J g RF = J
"=1j—J' j"'=1j—13'
e Fibonacci anyons are capable of universal topological

quantum computation e L
S | I I

\__\ ‘\\

- o,

e Species 1 (j =0)and 7 (j =
fusion rules: 7 x 7

LRead and Rezayi, PRB 59, 8084 (1999)
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Levin-Wen model

e Spin-1/2 d.of. on links of honeycomb

lattice (associate 7 =, 1 =)
H=HA+H,=-1) &, .k—dp ) Bp

v p
where 0+, :;i--l — fi_” = ]

e H -term enforces fusion rules of Fibonacci anyons

H,-term is a projector to anyon d.o.f. through a plaquette (zero if
0i.jvke = 0 for a v € p)

e Two types of quasiparticle excitations that are
plaquette-type (from H,) and vertex-type (from H,)

Levin, Wen, PRB 71, 045510 (2005)
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Levin-Wen model

A e Spin-1/2 d.o.f. on links of honeycomb

! N S > lattice (associate T =], 1 =)
\!_/T(\ ’ .
P Bl ow H=H-+Hy=~J.) bijokc~Ip) By
\‘x ._",5 ", ,-/ v |U
L / . N N
\ J where-r?n--:ﬂ--l:si_nzl

e H -term enforces fusion rules of Fibonacci anyons

H,-term is a projector to anyon d.o.f. through a plaquette (zero if
9i,.jv.k. =0 fora v € p)

e Two types of quasiparticle excitations that are Fibonacci anyons:
plaquette-type (from H,) and vertex-type (from H,)

Levin, Wen, PRB 71, 045510 (2005)
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Model: Hilbert space

e Hilbert space of a multi-anyon system is defined by a certain topology

Anyons are associated (e.g., in TQFT context) with punctures of a
surface —— decomposition into 3—punctured spheres yields basis

e High-genus sphere with periodic boundary conditions (b; = ¢, by = ¢23)
— one possible basis is ladder

e Fibonacci anyon degrees of freedom: 1's and 7's on links of ladder, with
fusion rules being obeyed at all vertices
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fusion rules being obeyed at all vertices
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Model: Hilbert space
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e High-genus sphere with periodic boundary conditions (b, = ¢, by = ¢23)
— one possible basis is ladder
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Model: Hilbert space X

e Hilbert space of a multi-anyon system is defined by a certain topology
Anyons are associated (e.g., in TQFT context) with punctures of a
surface —— decomposition into 3 —punctured spheres yields basis

e High-genus sphere with periodic boundary conditions (b; = €1, by = €5)
— one possible basis is ladder

e Fibonacci anyon degrees of freedom: 1's and 7's on links of ladder, with
fusion rules being obeyed at all vertices
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Model: Hamiltonian

e Non-commuting plaquette and rung terms:

H = —{'()H[HIZP_. —r;imf)]ZR,
.IJ T

e Rung term R, = 4, ,: energy gain if no 7-anyon on rung
e Plaquette term'-~ favors the absence of m-anyon through plaquette:

2 o b 1 ) ) |l a a' b
b, ety > . Z ;D Z Fy. )5 (Flps) lf". ) 3 (Flas)y | 7 >

i=1.7 i

1 T - —_— - - __' -ill .'. . - . o7 » . . - -
Levan, Wen. PRB 71, 045510(2005), ~( F , ), are F-matrix elements. ;. D = dT = d= gquantum dimensicns of Fibonacci theory
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Model: Hamiltonian X

e Non-commuting plaquette and rung terms:

H = —cos(#) Y P, —sin(d) ) R,
p r

Plaquerte term

e Rung term R, = 0, ,: energy gain if no 7-anyon on rung

e Plaquette term' -~ favors the absence of 7-anyon through plaquette:

i[‘ =

r=1.7

- = b : : fif / ! (x i 3 '} = 1 a | = --”I ;hf
PP \- .I >: D2 Z"E’jfutf}ri”-ﬁtbi'-}u’LFit"'].i’{F‘rfii'}"r, A I

W =y
S s

V : . _-h 3 . — .
2. are F-matrix elements. o, [} = d - d= guantum dimensions of Fibonacci theory

! Levin, Wen. PRB 71, 045510 (2005); =( F4 v

]
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Model: Hamiltonian

e Non-commuting plaquette and rung terms:

H = —cos(#) Z P, —sin(#) Z R,
P r

e Rung term R, = 4, ,: energy gain if no 7-anyon on rung
e Plaquette term'-~ favors the absence of m-anyon through plaquette:

il 1 i fi k . | a o' F
) y i — t X { It ') " 3
S > B Z D2 Z Fac)$ (o) ar(Flie) 3 (Flagr) 2 | L >

=1 7 i

1 T T - —n ~ 1 - _.. -il. f + = [ .h .:' “ = - =
Levan, Wen. PRB 71, 045510(2005); ~( F , |, are F-matrixelements. d;. [J = d¥ = d= guantum dimensicns of Fibonacci theory

1 \
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Phase diagram

g e Exact diagonalization

c=14/15 CFT yields energy spectra

(energy dispersion

E(k..k,) by making

1 Levin-Wen use of translation and
____ i e S reflection symmetries)

e Almost duality (up to
degeneracies) for periodic
boundaries

Cntical
e=7/5
paraferrmeon CFT
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Phase diagram

Pirsa: 08050028

Cntical c=7/%

Vi \-'.frrl

e Exact diagonalization

yields energy spectra
(energy dispersion
E(k,.k,) by making
use of translation and
reflection symmetries)

Almost duality (up to
degeneracies) for periodic
boundaries
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Model: Hamiltonian

e Non-commuting plaquette and rung terms:

H = — cos(8) Z P, —sin(#) Z R,
.IJ T

Plaguerte term

e Rung term R, = 4, ,: energy gain if no 7-anyon on rung
e Plaquette term' -~ favors the absence of 7-anyon through plaquette:

. ox b = ) , = | « ".Ir :rr

=17

- _I:.’

3 3 . — .
= + d= guantum dimensions of Fibonacci theory

! Levin, Wen. PRB 71, 045510 (2005). = ( 4, )/ are F-matrix elements. d,. DD = | /-

.'-
phe e 2 i s LA
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Phase diagram

e Exact diagonalization

c=14/15 CFT yields energy spectra

(energy dispersion

E(k..k,) by making

1 Levin-Wen use of translation and
""" g (e : cosd6) reflection symmetries)

e Almost duality (up to
_— degeneracies) for periodic
e=755 . boundaries

parafarrwon CFT
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Phase diagram

. e Exact diagonalization
Lnbcail -

Nnn—actnaleuan y JRE=14/15 CFT yields energy spectra

topologi hase : }
OIS B (energy dispersion

four—fold degenerate 1 ¥
ground state E(k,.k,) by making
: ) Levin-Wen use of translation and

: - Cntical c=7/% oe{ ) FEﬂECtIDﬂ Sym mEtFIES)

e Almost duality (up to
degeneracies) for periodic
boundaries

macal

)

paraferrmeon CFT
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NATPs: ground state degeneracy

e Essential properties of NATPs

) = from “effective topologies”
S e Ground state (GS)
o S g, g ey P iy — o NATP I: no plaquette fluxes
_ |TJ|T|_|_‘ — close holes in sphere —
' 7. becomes a torus — two-fold
T2 (NATP i) GS degeneracy
: B o NATP II: no rung-fluxes
) — remove rungs — two tori
- — - — four-fold GS degeneracy
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NATPs: ground state degeneracy

e Essential properties of NATPs
from “effective topologies”

e Ground state (GS)

( . . S > NATP |: no plaquette fluxes

R Ol REC — close holes in sphere —

; ' ' v becomes a torus — two-fold
=2 (NATP 1) GS degeneracy

NATP Il: no rung-fluxes

— remove rungs — two tori

- — - — four-fold GS degeneracy

O
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Phase diagram

e Exact diagonalization

c=14/15 CFT yields energy spectra
(energy dispersion

E(k,.k,) by making

(I Lavin-Wen use of translation and

o reflection symmetries)

e Almost duality (up to
degeneracies) for periodic
boundaries

nbcal
=115
paraferron CFT
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Phase diagram

gezee e Exact diagonalization

Non-abelian c=14/15 CFT yields energy spectra

| ‘”‘Tﬁmgical Ehneo 3 (energy dispersion

" ground staie E(k,.k,) by making

) Levin-Wen use of translation and
O reflection symmetries)

e Almost duality (up to
degeneracies) for periodic
boundaries

FT

parafermeon CF
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NATPs: ground state degeneracy

e Essential properties of NATPs

P from “effective topologies’
e Ground state (GS)
I (NATP |
— o NATP |: no plaquette fluxes
_}'[ {T}'i'{__T\-"'*'__*}']'*f__ 3 — close holes in sphere —
e 7. becomes a torus — two-fold
9 = =2 (NATP II) GS dEgEnETHCY
5 -~ o o NATP II: no rung-fluxes

— remove rungs — two tori
- — four-fold GS degeneracy
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NATPs: ground state degeneracy

e Essential properties of NATPs
from “effective topologies”

e Ground state (GS)

: . . . Y o NATP |: no plaquette fluxes
pa ¥ ) "'*'_i__:_:'l (_ — close holes in sphere —

7 becomes a torus — two-fold

=2 (NATP 11) GS degeneracy

NATP Il: no rung-fluxes

— remove rungs — two tori

- — - — four-fold GS degeneracy

O
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Effective topologies: ground state

= “7 s
Vv ¥ <

NATP |

- el

o gy N ad L

oy - Eﬂ
\.::r* \"” \ ’
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Effective topologies: ground state

o
- | - A
"\\i;f‘ ~\\\i;f' W\\<;,#

NATP |

NATP Il
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NATPs: ground state degeneracy

e Essential properties of NATPs
from “effective topologies”

e Ground state (GS)

( ; . .8 o NATP |: no plaquette fluxes

= b @R s ¥eC — close holes in sphere —

; ' v becomes a torus — two-fold
=2 (NATP 1) GS dEgEﬂETHCY

NATP Il: no rung-fluxes

— remove rungs — two tori

- — - — four-fold GS degeneracy

$)
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NATPs: ground state degeneracy

e Essential properties of NATPs
. - from “effective topologies’

e Ground state (GS)

. . . .2 o NATP |: no plaquette fluxes
= *_:f'i'i:ﬁr_} ']'*':___:-'i'*i'_:_ — close holes in sphere —
: 7 | becomes a torus — two-fold
| (NATP 1) GS degeneracy
o NATP II: no rung-fluxes
— remove rungs — two tori
- — - — four-fold GS degeneracy
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Effective topologies: ground state

v
\‘f—:’g \,4 \/’/#

NATP |
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Effective topologies: ground state

V.

NATP |

NATP Il
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NATPs: ground state degeneracy

e Essential properties of NATPs

. - from “effective topologies”
T e Ground state (GS)
e e e > NATP |: no plaquette fluxes
F_}'l"{T;.*'i'wj_T_f.-'i'{T_‘_ff"l'{h__‘ — close holes in sphere —
rk 7. becomes a torus — two-fold
-3 (NATP 1) GS degeneracy
5 i o NATP II: no rung-fluxes
) — remove rungs — two tori
- — - — four-fold GS degeneracy
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NATPs: ground state degeneracy

e Essential properties of NATPs
from “effective topologies”

e Ground state (GS)

I (NATP I
o T g P ey B % = > NATP I no pIagu&tte fluxes
N |*|_r|_|_‘ — close holes in sphere —
A" v, 7. becomes a torus — two-fold
=12 (NATP 11) GS degeneracy

Oy

NATP Il: no rung-fluxes

— remove rungs — two tori
d - - — four-fold GS degeneracy
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NATPs: first excited state

o NATP |: plaquette-type
excitation, 3L-fold degenerate

<

NATP II: rung-type excitation,
L-fold degenerate

o> Become 3-fold (NATP I) / 1-

W= 7/2 (NATP I fold (NATP I1) degenerate
» B quasiparticle bands away from
|T exactly solvable points
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NATPs: first excited state

> o NATP |: plaquette-type
excitation, 3L-fold degenerate

() (NATP 1)

o NATP II: rung-type excitation,

e L s gy (oo E o= L-fold degenerate
—I—_I—J—_I—" o Become 3-fold (NATP I) / 1-
) = /2 (NATP Il fold (NATP Il) degenerate
3 e quasiparticle bands away from
|T ) exactly solvable points
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NATPs: first excited state

Pirsa: 08050028

L

NATP |: plaquette-type
excitation, 3L-fold degenerate

NATP II: rung-type excitation,
L-fold degenerate

Become 3-fold (NATP 1) / 1-
fold (NATP Il) degenerate
quasiparticle bands away from
exactly solvable points
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NATPs: stability

e Finite-size scaling analysis:
gap and GS degeneracy are
preserved for 6 € (3.7)
and @ € (—5:%)

—_—

e Lines: perturbation theory

e (Almost) duality
— perturbative results also
apply close to Levin-Wen
point (¢# = 0)
= stability of 2D NATP
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NATPs: stability

e Finite-size scaling analysis:
gap and GS degeneracy are
preserved for 6 < f% )
and 6 € (—5.7)

—_—

e Lines: perturbation theory

e (Almost) duality
- — perturbative results also
’-:-%-.-1:"-'" apply close to Levin-Wen
") . point (# = 0)

o . . - = stability of 2D NATP
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Critical points

e At # = 7/4: energy spectrum matches 2D CFT with central charge
c = 14/15, where

- P LN
.EI,:‘:I:I—EIL L( 12 hL hﬁ')-
with -ICI = hL — hﬁ’ or .&‘I = h_{_ — h[.; " Ll, h_r__, h.f{: primary and
descendant conformal weights

e Opposite point # = 57 /4: parafermion CFT with ¢ = 7/5
e Analytical description

- k = 8 restricted-solid-on-solid (RSOS) model
- Role of topological symmetries for stability

y O

¢
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Phase diagram

jeu e Exact diagonalization x
c=14/15 CFT yields energy spectra
(energy dispersion
E(k,.k,) by making
_Levin-Wen use of translation and
____ e reflection symmetries)

e Almost duality (up to
degeneracies) for periodic
boundaries

Crtcal
=75
paraferrmeon CFT
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Phase diagram

g e Exact diagonalization

Non-abelian 1415 CET yields energy spectra

| m‘fmogica' e (energy dispersion

o e E(k,.k,) by making

' Levin-Wen use of translation and
= os{8) reflection symmetries)

e Almost duality (up to
o degeneracies) for periodic
i _ boundaries

paratarmmon CF
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Critical point separating the two NATPs at ¢/ = 7/4

Rescaled energy spectrum ti=x/4

'\.. sl sike L=12
] = ’ i
o I s
+ 1 x I
X y "
4
= 1% x x
-
-.‘J " -
I3 428 K x X
- it %
;L | . i x -
- 4|8= %
]
- = Y
3 - | prumary felds | x
;: o descendants -
ﬁ (5 x k =)
k =n
1158 x
25 =
i -

0 L L 6 s 10 17
Momenmum Lx[_‘.'r. L]
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Critical point separating the two NATPs at ¢/ = 7/4

Rescaled energy spectrum =24

“'.--\.[l\.:“.'L.. —
3 " - - -
x & f
» P
= 1 x x
-
e g
X f = b = =
= - L #1 %
o A - i
o 315 L
]
o x primary fields x
:_I s descendants a
u (b5 ' e Kk =i
o
k. =n
419X x
= x I

il 7 4 B b 103 12
Momentum k [ 1L |
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Critical points

e At # = 7/4: energy spectrum matches 2D CFT with central charge
c = 14/15, where
il ('
.E”:r} — ElL T E (—E +hL T hn) 4
with £k, = hy —hg or k., = hy —hr+ L/2; hy, hg: primary and
descendant conformal weights

.II. .}

e Opposite point # = 57/4: parafermion CFT with ¢ =
e Analytical description

o k = 8 restricted-solid-on-solid (RSOS) model
> Role of topological symmetries for stability
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Critical points

e At # = 7/4: energy spectrum matches 2D CFT with central charge
c = 14/15, where

R & edd NP Ty o
EI,AI}—EIL-'—L( 2 hf__ hﬁ').
with £, = hy —hg or k., = hy —hg+ L/2; hy, hg: primary and
descendant conformal weights

e Opposite point # = 57 /4: parafermion CFT with ¢ = 7/5

e Analytical description

o k = ¥ restricted-solid-on-solid (RSOS) model
> Role of topological symmetries for stability
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Critical point separating the two NATPs at ¢/ = 7/4

Rescaled energy spectrum t==/4
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Critical point separating the two NATPs at ¢/ = 7/4

Rescaled energy spectrum =24
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Critical point at § = 57 /4
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Conclusions

e We study a model whose degrees of freedom are interacting Fibonacci
anyons on a high-genus surface

e Relevance of topology for properties

Critical
of non-abelian topological phases Non—abelian c=14/15 CFT
topological phase |
e Stability of non-abelian topological o fok mgermrate
phases -
e [Two criticalities described by 2D CreseTe

conformal field theories

e Thank you for your attention! Crtical
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Critical point separating the two NATPs at ¢/ = 7/

Rescaled energy spectrum =24

Svslem size L=121
"‘ —
= + j& = ”
x | ¥
X 142 %
L
=z 1% x x
-
ol il
o S/ 455 ® b =
Ex - Rl %
;L | k3 — x -
2 4/15% x
£ |
- . 1
5 - | primary fields | ®
:_- e descendants -
i (b5 x k=)
k.==n
|15% o
5% =
=428 %

0 7 1 5] s 10 |2
Momentum th_‘.‘r. L]

Pirsa: 08050028 Page 66/69



Critical point separating the two NATPs at ¢/ = 7/4

Rescaled energy spectrum =24

‘w-.- siem se L=12
2 + b - -
;s L] » i
x "
g [k x x
-
-.‘J "
ey L o o 4
1 X - X
e wle " |
._Z.‘ 41 x =
¥
o _ primary fields x
2 5 e descendants h
_':: 5 % k =)
4 k =1
4/19% x
ISR ®

4 f " 10 12
Momentum k |1/ |

-
|~

Pirsa: 08050028 Page 67/69



Critical points

e At # = 7/4: energy spectrum matches 2D CFT with central charge
c = 14/15, where
i el Scahs wbe
-El."‘r.}—EIL_"L( 12 hL hﬁ').
with k&, = hy —hg or k., = hy —hg+ L/2; hy, hg: primary and
descendant conformal weights

e Opposite point # = 57 /4: parafermion CFT with ¢ = 7/5
e Analytical description

o k = 8 restricted-solid-on-solid (RSOS) model
o Role of topological symmetries for stability
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