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Abstract: This talk presents some recent results in renormalizable noncommutative quantum field theory. After introducing the renormalization
group approach in the commutative setting | will procede to its generaization to the simplest noncommutative model, $phi_4" star 4} $ on the
Moya space. The well known phenomenon of ultraviolet/infrared mixing is cured by adding a harmonic potential term to the free action. Under the
new renormalization group, adapted to the noncommutative geometry, this model turns out to be renormalizable to all orders in perturbation theory.
Moreover itis{ f asymptotically safe} at all ordersin perturbation theory. The consequences of this results are discussed.
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Scales and physics

Physical phenomena occur over a wide range of scales, from the Planck scale
1.6 107> m to the radius of the observable universe, of order 10°° m (or 10°%/p).
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Scales and physics

Physical phenomena occur over a wide range of scales, from the Planck scale
1.6 107> m to the radius of the observable universe, of order 10°° m (or 10°%¢p).

All physical theories are verified over a certain range of scales. General relativity,
thermodynamics, classical mechanics, statistical physics, electrodynamics, quantum
mechanics and quantum field theory offer good descriptions for phenomena
appearing over the 45 largest scales of the universe.

Pirsa: 08050027 Page 6/227



Renormalization in Noncommutative Quantum Field Theory, Perimeter Institute, May 2008 Razvan Gurau.
Introduction Noncommutative Field Theory Direct space renormalization Asymptotic safemness Conclusior

Scales and physics

Physical phenomena occur over a wide range of scales, from the Planck scale
1.6 10~ m to the radius of the observable universe, of order 10°° m (or 10°%/p).

All physical theories are verified over a certain range of scales. General relativity,
thermodynamics. classical mechanics, statistical physics, electrodynamics, quantum
mechanics and quantum field theory offer good descriptions for phenomena
appearing over the 45 largest scales of the universe.

Changing scales and passing from one theory to another is usually difficult and
leads to nontrivial effective phenomena (e.g. the quantum Hall effect, although
quantum mechanical in essence, can be detected for fairly large samples).

Pirsa: 08050027 Page 7/227



Renormalization in Noncommutative Quantum Field Theory, Perimeter Institute. May 2008 Razvan Gurau.
Introduction MNoncommutative Field Theory Direct space renormalization Asymptotic safeness Conclusior

Scales and physics

Physical phenomena occur over a wide range of scales, from the Planck scale
1.6 107> m to the radius of the observable universe, of order 10°° m (or 10°%/p).

All physical theories are verified over a certain range of scales. General relativity,
thermodynamics. classical mechanics, statistical physics, electrodynamics, quantum
mechanics and quantum field theory offer good descriptions for phenomena
appearing over the 45 largest scales of the universe.

Changing scales and passing from one theory to another is usually difficult and
leads to nontrivial effective phenomena (e.g. the quantum Hall effect, although
quantum mechanical in essence, can be detected for fairly large samples).

The fifteen to sixteen scales from 1 TeV to {p make up the least understood
domain of physics.
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Scales and physics

Physical phenomena occur over a wide range of scales, from the Planck scale
1.6 10~ m to the radius of the observable universe, of order 10°° m (or 10°%/p).

All physical theories are verified over a certain range of scales. General relativity,
thermodynamics, classical mechanics, statistical physics, electrodynamics, quantum
mechanics and quantum field theory offer good descriptions for phenomena
appearing over the 45 largest scales of the universe.

Changing scales and passing from one theory to another is usually difficult and
leads to nontrivial effective phenomena (e.g. the quantum Hall effect, although
quantum mechanical in essence, can be detected for fairly large samples).

The fifteen to sixteen scales from 1 TeV to {p make up the least understood
domain of physics.

As experimental data lack, we need to deepen our understanding of the available
theories in order to access them.
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Quantum Field Theory and Renormalization

The scales from 107 !° to 1072 meters are very well accounted for by the quantum
field theory. However, the first computations in QF T always ended in infinite

results. Meaningful results were obtained only after finding a cure for these
infinities, called renormalization.
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Quantum Field Theory and Renormalization

The scales from 107 !° to 107 '° meters are very well accounted for by the quantum
field theory. However, the first computations in QF T always ended in infinite
results. Meaningful results were obtained only after finding a cure for these
infinities, called renormalization.

Renormalization absorbs the QF T infinities into unobservable "bare” parameters

and reformulates physical laws in terms of finite and observable renormalized
parameters.
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Quantum Field Theory and Renormalization

The scales from 107 !° to 107 '° meters are very well accounted for by the quantum
field theory. However, the first computations in QF T always ended in infinite
results. Meaningful results were obtained only after finding a cure for these
infinities, called renormalization.

Renormalization absorbs the QF T infinities into unobservable "bare” parameters
and reformulates physical laws in terms of finite and observable renormalized
parameters. QF T and renormalization are arguably the best experimentally tested
physical theories we have (the g — 2 factor of the electron).
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Quantum Field Theory and Renormalization

The scales from 107 !° to 107 '° meters are very well accounted for by the quantum
field theory. However, the first computations in QF T always ended in infinite
results. Meaningful results were obtained only after finding a cure for these
infinities, called renormalization.

Renormalization absorbs the QF T infinities into unobservable "bare” parameters
and reformulates physical laws in terms of finite and observable renormalized
parameters. QF T and renormalization are arguably the best experimentally tested
physical theories we have (the g — 2 factor of the electron).

Still. renormalization was not easily accepted:
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Quantum Field Theory and Renormalization

The scales from 10712 to 10 !° meters are very well accounted for by the quantum
field theory. However, the first computations in QF T always ended in infinite
results. Meaningful results were obtained only after finding a cure for these
infinities, called renormalization.

Renormalization absorbs the QF T infinities into unobservable "bare” parameters
and reformulates physical laws in terms of finite and observable renormalized
parameters. QF T and renormalization are arguably the best experimentally tested
physical theories we have (the g — 2 factor of the electron).

Still, renormalization was not easily accepted:

» |t was regarded as a cumbersome and ill defined recipe to hides the infinities.
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Quantum Field Theory and Renormalization

The scales from 107 !° to 107 '° meters are very well accounted for by the quantum
field theory. However, the first computations in QF T always ended in infinite
results. Meaningful results were obtained only after finding a cure for these
infinities, called renormalization.

Renormalization absorbs the QF T infinities into unobservable "bare” parameters
and reformulates physical laws in terms of finite and observable renormalized
parameters. QF T and renormalization are arguably the best experimentally tested
physical theories we have (the g — 2 factor of the electron).

Still. renormalization was not easily accepted:

» |t was regarded as a cumbersome and ill defined recipe to hides the infinities.

» In the 50's, L. Landau discovered an unexpected difficulty: for most QFT's
the bare parameters diverge for finite cutoff. This phenomenon has been
called the “Landau ghost”.

Pirsa: 08050027 Page 16/227



Renormalization in Noncommutative Quantum Field Theory, Perimeter Institute, May 2008 Razvan Gurau.
Introduction Nﬂncommuta!we Field Theory D!rect space renormalization Asymptotic safemess Conclusior

Quantum Field Theory and Renormalization

The scales from 107 !° to 107 '° meters are very well accounted for by the quantum
field theory. However, the first computations in QF T always ended in infinite
results. Meaningful results were obtained only after finding a cure for these
infinities, called renormalization.

Renormalization absorbs the QF T infinities into unobservable "bare” parameters
and reformulates physical laws in terms of finite and observable renormalized
parameters. QF T and renormalization are arguably the best experimentally tested
physical theories we have (the g — 2 factor of the electron).

Still, renormalization was not easily accepted:

» |t was regarded as a cumbersome and ill defined recipe to hides the infinities.

» In the 50's, L. Landau discovered an unexpected difficulty: for most QFT's
the bare parameters diverge for finite cutoff. This phenomenon has been
called the “Landau ghost”.

Wilson's renormalization group approach translates the renormalization “recipe”
into an analysis of the evolution of the physical parameters over scales.
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Quantum Field Theory and Renormalization

The scales from 107 !° to 107'° meters are very well accounted for by the quantum
field theory. However, the first computations in QF T always ended in infinite
results. Meaningful results were obtained only after finding a cure for these
infinities, called renormalization.

Renormalization absorbs the QF T infinities into unobservable "bare” parameters
and reformulates physical laws in terms of finite and observable renormalized
parameters. QF T and renormalization are arguably the best experimentally tested
physical theories we have (the g — 2 factor of the electron).

Still, renormalization was not easily accepted:

» |t was regarded as a cumbersome and ill defined recipe to hides the infinities.

» In the 50's, L. Landau discovered an unexpected difficulty: for most QFT's
the bare parameters diverge for finite cutoff. This phenomenon has been
called the “Landau ghost”.

Wilson's renormalization group approach translates the renormalization “recipe”
into an analysis of the evolution of the physical parameters over scales.
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The ©; model

The simplest renormalizable quantum field theory, ¢}, is defined on Euclidean
space R*. Its the partition function is given by the path integral
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The ¢; model

The simplest renormalizable quantum field theory, ¢}, is defined on Euclidean
space R*. Its the partition function is given by the path integral

1
— == Doe
Lo /
A 4

/(a D0 d + m m2)+4[ o

where
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The ¢; model

The simplest renormalizable quantum field theory, ¢}, is defined on Euclidean
space R*. Its the partition function is given by the path integral

1
s — Doe™

A
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where

» \ is the coupling constant, positive in order for the theory to be stable;
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The ¢; model

The simplest renormalizable quantum field theory, ¢}, is defined on Euclidean
space R*. Its the partition function is given by the path integral

Z:ich)es

/(a 000" o + m @2)+i\[/cﬁ4

where

» )\ is the coupling constant, positive in order for the theory to be stable;

» m is the mass, which fixes the energy scale of the renormalized theory;
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The ¢; model

The simplest renormalizable quantum field theory, ¢}, is defined on Euclidean
space R*. Its the partition function is given by the path integral

1
£ — Zg. Doe

1 A
S 2/(a GHOG"@+m2G)2)+4I/O4
where

» )\ is the coupling constant, positive in order for the theory to be stable;
» m is the mass, which fixes the energy scale of the renormalized theory;

» 2 the "wave function constant”, usually fixed to 1;
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The ¢; model

The simplest renormalizable quantum field theory, ¢}, is defined on Euclidean
space R*. Its the partition function is given by the path integral

Z:i DHES

A |
/(a 9, 09" 6 + m @2)+4l o

where

» )\ is the coupling constant, positive in order for the theory to be stable;

m is the mass, which fixes the energy scale of the renormalized theory;

Zg is a normalization;

Do is an ill defined product [] do(x).
xcRd
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The three ingredients for renormalization
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The three ingredients for renormalization

The perturbative development in A of the action S is indexed by Feynman graphs.
To each graph we associate an amplitude. When this amplitude is infinite one
needs to use the renormalization procedure to obtain a finite result.
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The three ingredients for renormalization

The perturbative development in A of the action S is indexed by Feynman graphs.
To each graph we associate an amplitude. When this amplitude is infinite one
needs to use the renormalization procedure to obtain a finite result.

Renormalization is an appropriate combination of three tools
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The three ingredients for renormalization

The perturbative development in A of the action S is indexed by Feynman graphs.
To each graph we associate an amplitude. When this amplitude is infinite one
needs to use the renormalization procedure to obtain a finite result.

Renormalization is an appropriate combination of three tools

» A definition of scales. They are defined starting from the free Hamiltonian
(the quadratic part of the action S). The renormalization group always
integrates the high scales to get an effective theory for the low scales.
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The three ingredients for renormalization

The perturbative development in A of the action S is indexed by Feynman graphs.
To each graph we associate an amplitude. When this amplitude is infinite one
needs to use the renormalization procedure to obtain a finite result.

Renormalization is an appropriate combination of three tools

» A definition of scales. They are defined starting from the free Hamiltonian
(the quadratic part of the action S). The renormalization group always
integrates the high scales to get an effective theory for the low scales.

» A power counting. This allow to classify graphs into convergent (finite
amplitude) and divergent (infinite amplitude) ones.
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The three ingredients for renormalization

The perturbative development in A of the action S is indexed by Feynman graphs.
To each graph we associate an amplitude. When this amplitude is infinite one
needs to use the renormalization procedure to obtain a finite result.

Renormalization is an appropriate combination of three tools

» A definition of scales. They are defined starting from the free Hamiltonian
(the quadratic part of the action S). The renormalization group always
integrates the high scales to get an effective theory for the low scales.

» A power counting. This allow to classify graphs into convergent (finite
amplitude) and divergent (infinite amplitude) ones.

» A locality principle. Any divergent graph with high internal scales must look
in some sense like a point. This allows the infinite amplitude of the graph to
be reabsorbed in a redefinition of the initial parameters of the action.
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Scales in the o) theory

The inverse of quadratic part of the action S is called the propagator. In direct
space it can be expressed by the Schwinger trick as

1 = e_|x_Y|2X4O‘ _amg
C(X"Y):—A—kmz:[; da 3 E
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Scales in the ¢; theory

The inverse of quadratic part of the action S is called the propagator. In direct
space it can be expressed by the Schwinger trick as

1 o0 eI —_vi:_,.-" dex Los
Clx.y)— - :L da . -

where we recognize the heat kernel.
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Scales in the o, theory

The inverse of quadratic part of the action S is called the propagator. In direct
space it can be expressed by the Schwinger trick as

1 O e—@x—_vi:_,.-*-:lr_} e
C(x,y):_&+m2:[0 da . -

where we recognize the heat kernel.

We cut the propagator into a sequence of slices

M—% ) |
€% C, Ciny :f dec--- < KM% =M lx—y

M—2(i+1)
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Scales in the ¢; theory

The inverse of quadratic part of the action S is called the propagator. In direct
space it can be expressed by the Schwinger trick as

1 O e—gx—_vi;_,.-’dﬁ Lo
C(x.y)—_A+m2—£ da > =

where we recognize the heat kernel.

We cut the propagator into a sequence of slices

M—% |
&Y €, Ciey) :f de--- < KM% e Mlx—y

M—2(i+1)

The amplitude of a graph is decomposed into a sum over slice attributions for all
its propagators.
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Scales in the o; theory

The inverse of quadratic part of the action S is called the propagator. In direct
space it can be expressed by the Schwinger trick as

1 O e—;:-:_-—_v;:_,.-’ dox L2
Clxy)— - —j; da . -

where we recognize the heat kernel.

We cut the propagator into a sequence of slices

M—Z i
e Z Ci : CE(X.,y) :/ don- - < KMEI'E—EM“.._ur—_v.

M—2(i+1)

The amplitude of a graph is decomposed into a sum over slice attributions for all
Iits propagators.

A propagator at the scale i contributes a factor M?'. At scale i, lx— ¥ = M
Thus.an integral [ d*x gives a M—* factor. S
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Power counting and locality
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Power counting and locality

Denote N, L. N. the number of vertices, internal lines and external legs of the
graph. We have 4N — N. =2L.
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Power counting and locality

Denote N, L. N. the number of vertices, internal lines and external legs of the

graph. We have 4N — N. = 2[. For the bubble graph we have N =2, [ = 2,
N.—4andd 2 4—-2x2
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Power counting and locality

Denote N, L. N. the number of vertices, internal lines and external legs of the

graph. We have 4N — N. = 2[. For the bubble graph we have N =2, [ = 2,
N.=4and4x2—4=2x2

Suppose all propagators are in the same slice. Then

N ; Z ML MZSD) ™ it
'\x.\ O 2 A= prefactors mregrarions B M

-
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Power counting and locality

Denote N, L. N. the number of vertices, internal lines and external legs of the

graph. We have 4N — N. = 2[. For the bubble graph we have N =2, [ = 2,
N.—Aand 82 44—

Suppose all propagators are in the same slice. Then

. / Z ML M 4i(N—-1) _§ : i(4—N.)
'\\.\ <> >y A= prefactors mregrarfons == M ;

1

Thus only graphs with N, = 2. 4 are divergent.
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Power counting and locality

Denote N, L. N. the number of vertices, internal lines and external legs of the

graph. We have 4N — N. = 2[. For the bubble graph we have N =2, [ = 2,
N.—=4and4x2—4=2x2

Suppose all propagators are in the same slice. Then
.~ / ML p—H(N—-1) _§ : i(4—N.)
"‘x_H O P = E : prefactors mregrarfons - M g
E i

Thus only graphs with N. = 2. 4 are divergent.

If all internal lines have a high scale i then ||[x — y|| =~ M~ which is very small
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Power counting and locality

Denote N, L. N. the number of vertices, internal lines and external legs of the

graph. We have 4N — N. = 2[. For the bubble graph we have N =2, [ = 2,
N.—4anddx2 4 —-2x2

Suppose all propagators are in the same slice. Then
- ¥ Z ML M 4i(N—1) _§ : i(4—N.)
'\x.\ /> o A= prefactors mregrarfuns == M )
\\ ~ i

Thus only graphs with N, = 2. 4 are divergent.

If all internal lines have a high scale i then ||x — y|| = M~ which is very small
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Power counting and locality

Denote N, L. N. the number of vertices, internal lines and external legs of the

graph. We have 4N — N. = 2[. For the bubble graph we have N =2, [ = 2,
N.—Aand4dx2 4—-2x2

Suppose all propagators are in the same slice. Then
‘s.\ ’;"' ZIL _4‘{”' "'{4_"”}
'\x.\ O - A= E : PFEfECfoS mtegrarmns o ¢ § : M i
| i

Thus only graphs with N, = 2. 4 are divergent.

If all internal lines have a high scale i then ||[x — y|| ~ M~ which is very small
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Power counting and locality

Denote N, L. N. the number of vertices, internal lines and external legs of the

graph. We have 4N — N. = 2[. For the bubble graph we have N =2, [ = 2,
N.=4and4x2—4=2x2

Suppose all propagators are in the same slice. Then
~ s Z ML —4:{N Z i(4—N.)
'\\\ O - A= PFEfEEIDFS rnregrarmns . - M f
| :'

Thus only graphs with N, = 2. 4 are divergent.

If all internal lines have a high scale i then ||[x — y|| ~ M~ which is very small

/~ The leading contribution is
\\_ ,,,"' ’1/ divergent, but due to locality,
"\CX/ # it can be reabsorbed in a
,*'ff Y 5 e redefinition of the coupling
7 My, ya kY constant A
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The unavoidable ghost?
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The unavoidable ghost?

Four point functions (N. = 4) diverge logarithmically and govern the
renormalization of the coupling constant .
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The unavoidable ghost?

Four point functions (N. = 4) diverge logarithmically and govern the
renormalization of the coupling constant .

The only one-loop graph which is one-particle irreducible is the bubble:
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The unavoidable ghost?

Four point functions (N, = 4) diverge logarithmically and govern the
renormalization of the coupling constant .

The only one-loop graph which is one-particle irreducible is the bubble:
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The unavoidable ghost?

Four point functions (N. = 4) diverge logarithmically and govern the
renormalization of the coupling constant .

The only one-loop graph which is one-particle irreducible is the bubble:

b #
b} -
b r
- .

It governs the flow equation

d\;
di

— N1 = —\; + 3(—,\;)2. — _?(;\,‘)2.

whose sign cannot be changed without losing stability. It corresponds to a

Razvan Gurau,
Conclusior

(1.1)

quadratic one dimensional flow whose solution is well known to diverge in a finite

time! Perturbative computations have no meaning!
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The unavoidable ghost?

Four point functions (N, = 4) diverge logarithmically and govern the
renormalization of the coupling constant .

The only one-loop graph which is one-particle irreducible is the bubble:

b #
b ”
b #

b .r

It governs the flow equation

i1 ==X+ B(—=X),

whose sign cannot be changed without losing stability. It corresponds to a

Razvan Gurau,
Conclusion

(1.1)

quadratic one dimensional flow whose solution is well known to diverge in a finite
time! Perturbative computations have no meaning! In the 60's all known field

theories sufferered from this Landau ghost.
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The unavoidable ghost?
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Asymptotic Freedom
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Asymptotic Freedom

In fact field theory and renormalization made in the early 70's a spectacular
comeback:
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Asymptotic Freedom

In fact field theory and renormalization made in the early 70's a spectacular
comeback:

» Weinberg and Salam unified the weak and electromagnetic interactions into
the formalism of Yang and Mills of non-Abelian gauge theories, which are
based on an internal non commutative symmetry.
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Asymptotic Freedom

In fact field theory and renormalization made in the early 70’s a spectacular
comeback:

» Weinberg and Salam unified the weak and electromagnetic interactions into
the formalism of Yang and Mills of non-Abelian gauge theories, which are
based on an internal non commutative symmetry.

» 't Hooft and Veltmann showed that these theories are renormalizable.
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Asymptotic Freedom

In fact field theory and renormalization made in the early 70’s a spectacular
comeback:

» Weinberg and Salam unified the weak and electromagnetic interactions into
the formalism of Yang and Mills of non-Abelian gauge theories, which are
based on an internal non commutative symmetry.

» 't Hooft and Veltmann showed that these theories are renormalizable.

» 't Hooft in an unpublished work, then Politzer, Gross and Wilczek discovered
in 1973 that these theories did not suffer from the Landau ghost. Gross and

Wilczek then developed a theory of this type, QCD to describe strong
interactions, hence nuclear forces.
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Asymptotic Freedom

In fact field theory and renormalization made in the early 70's a spectacular
comeback:

» Weinberg and Salam unified the weak and electromagnetic interactions into
the formalism of Yang and Mills of non-Abelian gauge theories, which are
based on an internal non commutative symmetry.

» 't Hooft and Veltmann showed that these theories are renormalizable.

» 't Hooft in an unpublished work, then Politzer, Gross and Wilczek discovered
in 1973 that these theories did not suffer from the Landau ghost. Gross and
Wilczek then developed a theory of this type. QCD to describe strong
interactions, hence nuclear forces.

» Around the same time Wilson developed the renormalization group.
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Asymptotic Freedom

In fact field theory and renormalization made in the early 70’s a spectacular
comeback:

» Weinberg and Salam unified the weak and electromagnetic interactions into
the formalism of Yang and Mills of non-Abelian gauge theories, which are
based on an internal non commutative symmetry.

» 't Hooft and Veltmann showed that these theories are renormalizable.

» 't Hooft in an unpublished work, then Politzer, Gross and Wilczek discovered
in 1973 that these theories did not suffer from the Landau ghost. Gross and

Wilczek then developed a theory of this type. QCD to describe strong
interactions, hence nuclear forces.

» Around the same time Wilson developed the renormalization group.

» But the price to pay is that the infrared limit is nonperturbative!
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Noncommutative Geometry

Noncommutative geometry is a framework which generalizes ordinary geometry.
Ordinary observable form a commutative algebra of smooth functions under
multiplication.
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Noncommutative Geometry

Noncommutative geometry is a framework which generalizes ordinary geometry.
Ordinary observable form a commutative algebra of smooth functions under
multiplication.

In classical mechanics observable are smooth
functions on phase space. Quantum mechanics
replaces this commutative algebra by a
noncommutative algebra of operators, where
Poisson brackets become commutators. We
can interpret Heisenberg’'s uncertainty principle

ApAx =~ h like:

Pirsa: 08050027 Page 63/227



Renormalization in Noncommutative Quantum Field Theory, Perimeter Institute, May 2008 Razvan Gurau,
Introduction Noncommutative Field Theory Direct space renormalization Asymptotic safemess Conclusior

Noncommutative Geometry

Noncommutative geometry is a framework which generalizes ordinary geometry.
Ordinary observable form a commutative algebra of smooth functions under
multiplication.

In classical mechanics observable are smooth

functions on phase space. Quantum mechanics

replaces this commutative algebra by a i by
noncommutative algebra of operators, where - e
Poisson brackets become commutators. We i

can interpret Heisenberg’'s uncertainty principle
ApAx ~ h like:

T
~ | B

Space-time itself could be of this type; for
instance, at a certain scale, new uncertainty
relations could appear between length and

width at the Planck length: AxAy =~ /3.
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Why Noncommutative quantum field theory?
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Why Noncommutative quantum field theory?

NCQFT predates the renormalization (Schrodinger, 1934). It was studied in the
hope to cure the divergencies of QFT.
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Why Noncommutative quantum field theory?

NCQFT predates the renormalization (Schrodinger, 1934). It was studied in the
hope to cure the divergencies of QF T.The lack of mathematical tools and the

success of QF T overshadowed the NCQFT.
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Why Noncommutative quantum field theory?

NCQFT predates the renormalization (Schrodinger, 1934). It was studied in the
hope to cure the divergencies of QF T.The lack of mathematical tools and the
success of QF I overshadowed the NCQFT .Since 1980, NCQFT is reborn
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Why Noncommutative quantum field theory?

NCQFT predates the renormalization (Schrodinger, 1934). It was studied in the
hope to cure the divergencies of QF T.The lack of mathematical tools and the
success of QF I overshadowed the NCQF T .Since 1980, NCQFT is reborn

» ‘80 Alain Connes formulates noncommutative geometry
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Why Noncommutative quantum field theory?

NCQFT predates the renormalization (Schrodinger, 1934). It was studied in the
hope to cure the divergencies of QF T.The lack of mathematical tools and the
success of QF T overshadowed the NCQF T .Since 1980, NCQFT is reborn

» ‘80 Alain Connes formulates noncommutative geometry

» ‘06 Filk proves that NCQFT requires renormalization!
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Why Noncommutative quantum field theory?

NCQFT predates the renormalization (Schrodinger, 1934). It was studied in the
hope to cure the divergencies of QF T.The lack of mathematical tools and the
success of QF T overshadowed the NCQF T .Since 1980, NCQFT is reborn

» ‘80 Alain Connes formulates noncommutative geometry
» ‘06 Filk proves that NCQFT requires renormalization!

» ‘07 Connes and Chamseddine derive the standard model action from a
spectral action principle
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Why Noncommutative quantum field theory?

NCQFT predates the renormalization (Schrodinger, 1934). It was studied in the
hope to cure the divergencies of QF T.The lack of mathematical tools and the

success of QF T overshadowed the NCQF T .Since 1980, NCQFT is reborn
» ‘80 Alain Connes formulates noncommutative geometry
» ‘06 Filk proves that NCQFT requires renormalization!

» ‘07 Connes and Chamseddine derive the standard model action from a
spectral action principle

» ‘08 Connes, Douglas and Schwarz prove that NCQFT arises as an effective
limit of type |IA superstring theory
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Why Noncommutative quantum field theory?

NCQFT predates the renormalization (Schrodinger, 1934). It was studied in the
hope to cure the divergencies of QFT.The lack of mathematical tools and the

success of QF T overshadowed the NCQF T .Since 1980, NCQFT is reborn

>

>

>

‘80 Alain Connes formulates noncommutative geometry
‘06 Filk proves that NCQFT requires renormalization!

‘97 Connes and Chamseddine derive the standard model action from a
spectral action principle

‘08 Connes, Douglas and Schwarz prove that NCQFT arises as an effective
limit of type |IA superstring theory

‘99 Seiberg and Witten map NC Yang-Mills on ordinary Yang-Mills
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Why Noncommutative quantum field theory?

NCQFT predates the renormalization (Schrodinger, 1934). It was studied in the

hope to cure the divergencies of QF T.The lack of mathematical tools and the
success of QF T overshadowed the NCQF T .Since 1980, NCQFT is reborn

>

>

>

‘80 Alain Connes formulates noncommutative geometry
‘06 Filk proves that NCQFT requires renormalization!

‘97 Connes and Chamseddine derive the standard model action from a
spectral action principle

‘08 Connes, Douglas and Schwarz prove that NCQFT arises as an effective
limit of type |IA superstring theory

» ‘99 Seiberg and Witten map NC Yang-Mills on ordinary Yang-Mills

‘00 Seiberg et al. find the UV/IR mixing: NCQFT is not renormalizable!
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Why Noncommutative quantum field theory?

NCQFT predates the renormalization (Schrodinger, 1934). It was studied in the
hope to cure the divergencies of QFT.The lack of mathematical tools and the

success of QF I overshadowed the NCQFT .Since 1980, NCQFT is reborn
» ‘80 Alain Connes formulates noncommutative geometry
» ‘06 Filk proves that NCQFT requires renormalization!

» ‘07 Connes and Chamseddine derive the standard model action from a
spectral action principle

» ‘08 Connes, Douglas and Schwarz prove that NCQFT arises as an effective
limit of type |IA superstring theory

» ‘99 Seiberg and Witten map NC Yang-Mills on ordinary Yang-Mills
» ‘00 Seiberg et al. find the UV /IR mixing: NCQFT is not renormalizable!

» ‘03 Grosse and Wulkenhaar find a cure to the mixing
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Why Noncommutative quantum field theory?

NCQFT predates the renormalization (Schrodinger, 1934). It was studied in the
hope to cure the divergencies of QFT.The lack of mathematical tools and the

success of QF T overshadowed the NCQF T .Since 1980, NCQFT is reborn

>

>

>
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‘80 Alain Connes formulates noncommutative geometry
‘06 Filk proves that NCQFT requires renormalization!

‘97 Connes and Chamseddine derive the standard model action from a
spectral action principle

‘08 Connes, Douglas and Schwarz prove that NCQFT arises as an effective
limit of type |IA superstring theory

‘99 Seiberg and Witten map NC Yang-Mills on ordinary Yang-Mills
‘00 Seiberg et al. find the UV/IR mixing: NCQFT is not renormalizable!
‘03 Grosse and Wulkenhaar find a cure to the mixing

‘06 Freidel and Livine find an effective regime of 3d quantum gravity as a

NCQFT
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Why Noncommutative quantum field theory?

NCQFT predates the renormalization (Schrodinger, 1934). It was studied in the
hope to cure the divergencies of QFT.The lack of mathematical tools and the

success of QF T overshadowed the NCQF T .Since 1980, NCQFT is reborn
» ‘80 Alain Connes formulates noncommutative geometry
» ‘06 Filk proves that NCQFT requires renormalization!

» ‘07 Connes and Chamseddine derive the standard model action from a
spectral action principle

» ‘08 Connes, Douglas and Schwarz prove that NCQFT arises as an effective
limit of type |IA superstring theory

‘99 Seiberg and Witten map NC Yang-Mills on ordinary Yang-Mills
‘00 Seiberg et al. find the UV/IR mixing: NCQFT is not renormalizable!

‘03 Grosse and Wulkenhaar find a cure to the mixing

Yy v v ¥

‘06 Freidel and Livine find an effective regime of 3d quantum gravity as a

NCQFT

» '06-present: Asymptotic safeness, dimensional renormalization, etc. mark the
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The Moyal space IR}

Defined by the algebra of Schwartz class functions endowed with the Moyal *
product on RP

dPydPz 2pv@—1
* = vl "z
(f > g)(x) / —Detd f(x+y)eg(x+2z)e =

with # an antisymmetric constant matrix.
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The Moyal space IR}

Defined by the algebra of Schwartz class functions endowed with the Moyal *
product on RP

D D
(F * £)(x) — / TLIZ flxty) glx+2) e

with € an antisymmetric constant matrix.
Non commutative. Associative.
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The Moyal space R}

Defined by the algebra of Schwartz class functions endowed with the Moyal *
product on RP

dPydP z e
— —2ayf "z
(f > g)(x) / D dcip f(x+y)eglx+2z)e ]

with € an antisymmetric constant matrix.
Non commutative. Associative. Tracial, that is

FFxg—f g
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The Moyal space IR}

Defined by the algebra of Schwartz class functions endowed with the Moyal *
product on RP

d2yed® =
rPdet#

(f *g)(x) :/

=
flety)alnt =" " fix+y)

with # an antisymmetric constant matrix. =
Non commutative. Associative. Tracial, that is o(x+7)

fFrg— [z
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The Moyal space IR}

Defined by the algebra of Schwartz class functions endowed with the Moyal *
product on RP

dPydP z T T
(f*g)(x):/ xPdet# it y)ebet z) " % f(x+y)

with # an antisymmetric constant matrix.
Non commutative. Associative. Tracial, that is

fFrg— [z
X x g = x'g(x) + 0" D,8(x) gxx" = xVg(x) - 56" D,g(x)
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The Moyal space RRj

Defined by the algebra of Schwartz class functions endowed with the Moyal *
product on RP

D, 4D
(F»2){x) = / iD{lit; f(ct y¥) z(x1z) a—21y9 lz? fixcty)
<SS\ A
with # an antisymmetric constant matrix. x <Saane ¢
Non commutative. Associative. Tracial, that is _é_(};—}—z)

f fxg = f fg.
Xt x g = xtg(x) + 56 0,8(x) gxx* =x"g(x) = 56" D,g(x)

[x¥, x"]. = 18"”. Without loss of generality we can take ##” in the Jordan form

g T g 0
-5 @& 9 6

B
# ¢ g ¢ ¢ 1
g ¢ 1 0
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The Moyal space R}

Defined by the algebra of Schwartz class functions endowed with the Moyal *
product on RP

) L
xPdet#

(f *g)(x) :/

— 3
et y)alet 23" " fx+y)

with # an antisymmetric constant matrix. S
Non commutative. Associative. Tracial, that is o(x+7)

ff*g—ffg’

Xﬂ*g_xpg(x)_t_ QHH Vg(x) g*x“—x“g(x) 2 .twayg(x)

[x¥, x"]. = 18"”. Without loss of generality we can take ##” in the Jordan form

g E @ 0
% & 0 4

pv
' 6 g 0 @ 1
0 -1 0
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The o, model on the Moyal plane
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The o, model on the Moyal plane

1 A
5:/5@(—&+#-0)(3+1/65*¢*®*®
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The ¢, model on the Moyal plane

1 A
S:/EQ(—Aer)@JrE/@*mm@ﬁ

Same propagator as the commutative model C(y. z)

Pirsa: 08050027 Page 88/227



Renormalization in Noncommutative Quantum Field Theory, Perimeter Institute, May 2008 Razvan Gurau,
Introduction Noncommutative Field Theory Diirect space renormalization Asymprotic safesess Conciusior

Qoa @ ji | ) [Blaisia

The ¢, model on the Moyal plane

! A
5:/5@(_&—'_#'9)@"‘1/65*@*@*@

Same propagator as the commutative model C(y. z)

But the vertex is modified
= 4
K(Xl' Xz_ XB! )('4) == G(Xl = XZ + x3 == X‘l)elﬁ(xlﬁX2+X3ﬂx4)
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The o, model on the Moyal plane

1 A
S:/EQ(_&—F”D)@JFE/@*@b*@*@

Same propagator as the commutative model C(y. z)

But the vertex is modified
- 4
K(Xl' ){2_ X3.. )(4_) = {)(Xl e xz + x3 = M)EEF(KI&XE_‘_X‘&P\H}

Feynman graph G: N vertices, [ propagators, F faces, B faces broken by N.
external legs and genus g.
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The o, model on the Moyal plane

1 A
5:/EO(—&—I—,{LQ)Q—I—E/@*G)*Q*Q

Same propagator as the commutative model C(y. z)

But the vertex is modified
C 4 ,.3:1::
K(x1, %2, X3, Xa) = 6(x1 — X2 + X3 — Xg) e o L1/ X2xa/xa) XA

x1

Feynman graph G: N vertices, [ propagators, F faces, B faces broken by N.
external legs and genus g.

> s N I F 4N —N.—21
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Examples of Feynman graphs
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{ f

The o, model on the Moyal plane

1 A
SZ/EQ(_&JF#D)@JFE/@*m*é*@

Same propagator as the commutative model C(y. z)

But the vertex is modified |
: 1
K(Xl._ Xo. X3 )(4) - 0()(1 S th)el = PaxtxsNx) x4

x1

Feynman graph G: N vertices, [ propagators, F faces, B faces broken by N.
external legs and genus g.

2 _w-—NM I | F 4N N.—21
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Examples of Feynman graphs
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Examples of Feynman graphs
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Examples of Feynman graphs
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Examples of Feynman graphs
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-
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Examples of Feynman graphs
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Examples of Feynman graphs
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Examples of Feynman graphs

N=2 N.=2 f‘ii;; “;9_212 N-7 &3
=3 F=3 =3 ir [=3 F=3
B—1 g—=0 =1 g= e owe g oy

Only planar (g = 0) graphs with one broken face (B = 1) are divergent.
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(B laisie

Examples of Feynman graphs

N—Z N.—2 ”i : “;9_212 e
=3 F=3 3 iy [=3 F=3
B=1 g=0 L g= B=2 g=0

Only planar (g = 0) graphs with one broken face (B = 1) are divergent.

They have the form of the initial Lagrangian. thus the theory seems renormalizable.
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UV/IR mixing
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UV/IR mixing

Take the “nonplanar’ tadpole.
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UV/IR mixing

Take the “nonplanar” tadpole. Actually g =0,
0 —2 i Al
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UV/IR mixing

Take the “nonplanar” tadpole. Actually g = 0,
H—2 - B el

the &
It's amplitude is A = [ d*p p2+;2 ~ 5
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UV/IR mixing

Take the “nonplanar” tadpole. Actually g =0,
B—2

:kf?p

It's amplitude is A = [ d4ppz+m2 ~

Razvan Gurau.
Asymptotic safeness Conclusior
0 1

If we insert n non planar tadpoles in a loop, the loop integral will have the infrared

behavior

d*k
S k2n A

which cannot be cured by counterterms of the form of the initial action!
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UV/IR mixing

Take the “nonplanar” tadpole. Actually g = 0,
e — e Bl

k@ p

It's amplitude is A = [ d‘*pﬁ ~ 5

If we insert n non planar tadpoles in a loop, the loop integral will have the infrared

behavior
d*k
. k2n .

which cannot be cured by counterterms of the form of the initial action!

The model is non renormalizable. Although a lot of effort has been put into finding
a cure for this problem, the solution was not easy to find.
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The vulcanized model
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The vulcanized model

The vertex obeys the Langmann-Szabo duality between positions and momenta.
That is it is invariant under a (cyclic) Fourier transform of all its arguments:

K(p1. p2. p3. Pa) = K(x1. X2, X3, Xa)
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The vulcanized model

The vertex obeys the Langmann-Szabo duality between positions and momenta.
That is it is invariant under a (cyclic) Fourier transform of all its arguments:

K(p1. p2. p3. pa) = K(x1.%2. . Xa)

|ldea (H. Grosse and R. Wulkenhaar): Modify the propagator to obey the same

duality

1 8 3 A Rl
5:/5@(—&+Q‘}?Z—l—pg)@—|—E/@*@*@*@

with ¥ = 260~1x. Thus C(py. p2; Q1) = C(x1.%; Q)
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The vulcanized model

The vertex obeys the Langmann-Szabo duality between positions and momenta.
That is it is invariant under a (cyclic) Fourier transform of all its arguments:

K(p1. p2. p3. pa) = K(x1. %2, . Xa)

ldea (H. Grosse and R. Wulkenhaar): Modify the propagator to obey the same

duality

1 5 W Ry
5:/5@(—&4—{2"5’:’2—[—#0)@4— Z/@*@*!’D*@

with ¥ = 20~1x. Thus C(py. po; Q1) = C(x1.%; Q)

The vulcanized model is renormalizable at all orders in perturbation theory.
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Translation invariance
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Translation invariance

Main critics to the Grosse-Wulkenhaar model:
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Translation invariance

Main critics to the Grosse-Wulkenhaar model:

» [ he harmonic potential is just an infrared cutoff. Thus it is not surprizing it
cures the mixing
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Translation invariance

Main critics to the Grosse-Wulkenhaar model:

» [ he harmonic potential is just an infrared cutoff. Thus it is not surprizing it
cures the mixing

» [ranslation invariance is lost. |t can not be applied to translation-invariant
physics.
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Translation invariance

Main critics to the Grosse-Wulkenhaar model:

» [ he harmonic potential is just an infrared cutoff. Thus it is not surprizing it
cures the mixing

» [ranslation invariance is lost. |t can not be applied to translation-invariant
physics.

These critics are not fully justified:
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Translation invariance

Main critics to the Grosse-Wulkenhaar model:

» [ he harmonic potential is just an infrared cutoff. Thus it is not surprizing it
cures the mixing

» [ranslation invariance is lost. |t can not be applied to translation-invariant
physics.

These critics are not fully justified:

» [ he harmonic potential makes the theory just renormalizable. Moreover, the
slightest perturbation like Q%x* will grow under renormalization.
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Translation invariance

Main critics to the Grosse-Wulkenhaar model:

» [ he harmonic potential is just an infrared cutoff. Thus it is not surprizing it
cures the mixing

» [ranslation invariance is lost. |t can not be applied to translation-invariant
physics.
These critics are not fully justified:

» [ he harmonic potential makes the theory just renormalizable. Moreover, the
slightest perturbation like Q%x* will grow under renormalization.

» [he GW model breaks translation invariance, but there may be ways to
smoothly connect it to translation invariant models at lower energy.
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The vulcanized model

The vertex obeys the Langmann-Szabo duality between positions and momenta.
That is it is invariant under a (cyclic) Fourier transform of all its arguments:

K(p1. p2. p3. pa) = K(x1.%2. X3, Xa)

ldea (H. Grosse and R. Wulkenhaar): Modify the propagator to obey the same

duality

1 2 e s
SZ/Eé(—&JrQ‘)?Zang)@Jr Z/@*@*@*@

with ¥ = 260~1x. Thus C(py. p2; Q1) = C(x1.%; Q)

The vulcanized model is renormalizable at all orders in perturbation theory.
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Translation invariance
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The vulcanized model

The vertex obeys the Langmann-Szabo duality between positions and momenta.
That is it is invariant under a (cyclic) Fourier transform of all its arguments:

R(PI- P2. p3. pa) = K(x1, X2, X3, Xa)

ldea (H. Grosse and R. Wulkenhaar): Modify the propagator to obey the same

duality

1 . . ol
52/5@(—&+Q‘5&2+p0)@+ Z/@*@*@*@

with ¥ = 20~1x. Thus C(py. p2; Q1) = C(x1.%; Q)

The vulcanized model is renormalizable at all orders in perturbation theory.
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Translation invariance

Main critics to the Grosse-Wulkenhaar model:

» [ he harmonic potential is just an infrared cutoff. Thus it is not surprizing it
cures the mixing

» [ranslation invariance is lost. |t can not be applied to translation-invariant
physics.
These critics are not fully justified:

» [ he harmonic potential makes the theory just renormalizable. Moreover, the
slightest perturbation like Q%x* will grow under renormalization.

» [ he GW model breaks translation invariance, but there may be ways to
smoothly connect it to translation invariant models at lower energy.
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Translation invariance

Main critics to the Grosse-Wulkenhaar model:
» [ he harmonic potential is just an infrared cutoff. Thus it is not surprizing it
cures the mixing
» [ranslation invariance is lost. |t can not be applied to translation-invariant
physics.
These critics are not fully justified:
» [ he harmonic potential makes the theory just renormalizable. Moreover, the
slightest perturbation like Q%x? will grow under renormalization.

» [ he GW model breaks translation invariance, but there may be ways to
smoothly connect it to translation invariant models at lower energy.

» A modification of the propagator with a P%_ term gives another renormalizable
model, which does not brake translation invariance. However, asymptotic

safeness is lost.
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Feynman amplitudes for the o}*
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Translation invariance

Main critics to the Grosse-Wulkenhaar model:
» [ he harmonic potential is just an infrared cutoff. Thus it is not surprizing it
cures the mixing
» [ranslation invariance is lost. |t can not be applied to translation-invariant
physics.
These critics are not fully justified:
» [ he harmonic potential makes the theory just renormalizable. Moreover, the
slightest perturbation like Q*x? will grow under renormalization.

» [ he GW model breaks translation invariance, but there may be ways to
smoothly connect it to translation invariant models at lower energy.

» A modification of the propagator with a P% term gives another renormalizable
model, which does not brake translation invariance. However, asymptotic

safeness is lost.
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Feynman amplitudes for the ¢}
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Feynman amplitudes for the o}*

The propagator is now expressed as a Mehler kernel instead of the heat kernel:

- "
- +1 s = / = Qh(Q )]2e_%“”‘“‘HT“’("—W—%tanh(%—“}<x+yf
¥ A 0 o sin '8
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Feynman amplitudes for the o}*

The propagator is now expressed as a Mehler kernel instead of the heat kernel:

- !
- +192 S / e Qh(Q )]2e_%““‘th‘ﬂTﬁ’("—ﬂz—%tanh(%“}{xwf
E a* 0 T Sin ¥

The amplitude of a graph is:

2 Qox 2
= Cﬂth( 70 ) 0w it =X 1) —Ftanh 06 i 4xr i1 (ry)

LD \/HdXWHdm sinhz(Qa;)

H [E(X‘JI XV 2 _l_ xv g = X 4)6 !._.r{j{ 1)’+j+1x 9 j]

v
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Feynman amplitudes for the o}*

The propagator is now expressed as a Mehler kernel instead of the heat kernel:

= )
- +1 = sl / == Qh(Q )]2e_%““‘“‘QT“’(X—NE—%tanh(%ﬂ}{mﬁ
E s 0 T Ssin ¥

The amplitude of a graph is:

5 Qe
=7 Cﬂth( 70 ) (it =1 i2(1y)”—F tanh TF{XVJHH‘XV’.HU})E

TN T fHdXWHdm sinhz(Qa;)

{ 1)J+j+lx 9 j]

11 [ﬁ(m X2 + X3 — Xy n)E" Liis
["4
For all lines / going from x to y we set
» uy = x — y, the UV-short variable
» v; = x + y, the UV-long variable
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Scales and Rough Power counting
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Scales and Rough Power counting

Again we slice the propagators

M—Ef‘
C:Zcf. Cf’:f

M —2i+1)

Pirsa: 08050027
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Scales and Rough Power counting

Again we slice the propagators

M2
CZZC", Cf’:f

R —20i+1)

In each slice _ _
f 2i _—M'|u| —M ||
C<Me *

Pirsa: 08050027
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Scales and Rough Power counting

Again we slice the propagators
M—Zﬁ
= T Cf':f
=

M —2i+1)

In each slice : _
C' < MZa—Mlul—M~|v|

Again we have on average two propagators per vertex.

Pirsa: 08050027

Razvan Gurau,
Conclusior
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Scales and Rough Power counting

Again we slice the propagators

M—Ef‘
C:ZC*’. Cf’:f

A —2i+1)

In each slice _ _
C' < MZa—Mlul—M~|v|

Razvan Gurau,
Conclusior

Again we have on average two propagators per vertex. We must integrate (two u

and two v variables). Every vertex has one 4 function.
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Scales and Rough Power counting

Again we slice the propagators
M—Ef
& % o Cf:/
Zj_: M—2i+1)

In each slice _ :
Cr' < M2ie—M’!u|—M_’|v|

Razvan Gurau,
Conclusior

Again we have on average two propagators per vertex. We must integrate (two u

and two v variables). Every vertex has one 4 function.

Suppose both propagators are in the same slice. The power counting is
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Scales and Rough Power counting

Again we slice the propagators

M—Ef‘
C:ZC". Cf’:f

A —20i+1)

In each slice : _
C' < MZa—Mlul—M~|v|

Razvan Gurau,
Conclusior

Again we have on average two propagators per vertex. We must integrate (two u

and two v variables). Every vertex has one 4 function.

Suppose both propagators are in the same slice. The power counting is
A —8i

Mprrefactors Mu integration
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Scales and Rough Power counting

Again we slice the propagators

In each slice _ _
C' < MZa—Mlul—M~|v|

Again we have on average two propagators per vertex. We must integrate (two u
and two v variables). Every vertex has one 4 function.

Suppose both propagators are in the same slice. The power counting is

M4f M—Sf M4f

prefactors ""'u integration '“'one v O(l)SECDnd v use d function
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Scales and Rough Power counting

Again we slice the propagators

In each slice | _
CE{MZIE— "ol —M~"|v|

Again we have on average two propagators per vertex. We must integrate (two u
and two v variables). Every vertex has one 4 function.

Suppose both propagators are in the same slice. The power counting is

M'ﬁ M_Si Mm. O(]-)secand v use ¢ function

prefactors u integration one v

Careful analysis: only N. =2 and N. = 4 point graphs may diverge.
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Filk Moves

The vertex contribution is given by the rosette of the graph, i.e. the graph
obtained by contracting all the lines in a tree.
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Filk Moves

The vertex contribution is given by the rosette of the graph. i.e. the graph
obtained by contracting all the lines in a tree.

I

I

tuNE

Pirsa: 08050027 Page 143/227



'Renormalization in Noncommutative Quantum Field Theory, Perimeter Institute, May 2008 Razvan Gurau.
Introduction Noncommutative Field Theory Direct space remormalization Asymptotic safeness Conclusior
Qag e ooaa

Filk Moves

The vertex contribution is given by the rosette of the graph. i.e. the graph
obtained by contracting all the lines in a tree.

11

x|

=

tuNE
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Filk Moves

The vertex contribution is given by the rosette of the graph, i.e. the graph
obtained by contracting all the lines in a tree.

I

=

JuAE EIV;IF‘\V&
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Filk Moves

The vertex contribution is given by the rosette of the graph, i.e. the graph
obtained by contracting all the lines in a tree.

It 2 -

=

uNE
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Filk Moves

The vertex contribution is given by the rosette of the graph. i.e. the graph
obtained by contracting all the lines in a tree.

B2

It 2 -

e E EIV;IE’\V&
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Filk Moves

The vertex contribution is given by the rosette of the graph, i.e. the graph
obtained by contracting all the lines in a tree.

It 2 -

]
e

It = —— —

vy A\,
EwhE i

v — M* if integrated with the propagator.
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Filk Moves

The vertex contribution is given by the rosette of the graph. i.e. the graph
obtained by contracting all the lines in a tree.

It o =

I m— el I

Ve AV,
sz"aE e i

v — M* if integrated with the propagator.

Now
» M4 ifg>1
» O(1)if B>1

Pirsa: 08050027 Page 149/227



Renormalization in Noncommutative Quantum Field Theory, Perimeter Institute. May 2008 Razvan Gurau.
Introduction Noncommutative Field Theory Direct space renormalization Asymptotic safeness Conclusior
a0 o o) O0o0

Filk Moves

The vertex contribution is given by the rosette of the graph. i.e. the graph
obtained by contracting all the lines in a tree.

7

It 2 -

I — — el E .

e'& V;z A\ Xexr

vy AV,
sz’\E & e

v — M* if integrated with the propagator.

Now
» M~ % ifg>1
» O(1) if B> 1

The.gonly possible divergencies come from graphs with g =0, B =1, ...
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Moyality Versus Locality: The Four point function
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Filk Moves

The vertex contribution is given by the rosette of the graph. i.e. the graph
obtained by contracting all the lines in a tree.

It 2 --

I = — —

vy A\,
ewx\E o i

v — M* if integrated with the propagator.

Now
» M4 ifg>1
» O(1)if B>1

The.gonly possible divergencies come from graphs with g =0, B =1, Nomand
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Moyality Versus Locality: The Four point function
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Moyality Versus Locality: The Four point function

Subtract graphs with UV internal scales.
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Moyality Versus Locality: The Four point function

Subtract graphs with UV internal scales.
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Moyality Versus Locality: The Four point function

Subtract graphs with UV internal scales.
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Moyality Versus Locality: The Four point function

Subtract graphs with UV internal scales.

e
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Moyality Versus Locality: The Four point function

Subtract graphs with UV internal scales.

T he vertex contribution for a planar regular graph is exactly:

O(Z( 1 I+1X, £l Z Uj)e -—*JJ{ 1}f+j+lx9

leTUL
E*Ea‘{rn_uc.!—-j @ (1Y x4 Y crue, i (1Y X0 1y

P

uﬂ'_lv L
r 2 IE{I)_'EZ.‘EL‘. : 2—;5(*‘)

—1
=" 2orreTuc, 1<p WO U —t3 oy

oo .
E_I Zfeﬁ. reoutT: Pl ”.*’9 w,-.:,(j')
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Moyality Versus Locality: The Four point function

Subtract graphs with UV internal scales.

T he vertex contribution for a planar regular graph is exactly:

i 1
O(Z( 1:—|—1X,_|_ Z U)eizu{ 1) 01
leTUL

e-ﬁ E-—Tl | - = f- UFH f—l}"\{ _|_F I, T IIL ;h;{_l']J'.‘\(J;H—luj

J

uﬂ'_lv wd Ly
"2 15“)—*2:5:: " 2 ;5“)

-1
e ! 2oreruc, 1<r WO U —t3 oy

—
a " 2iec. recut: v cr U@ wis(l)

UV: the first line decouples.
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Moyahty Versus Locality: The Four point function

Subtract graphs with UV internal scales.

T he vertex contribution for a planar regular graph is exactly:

5(2(_1)f+1xf+ Z Uf)e"Ef..f{—l)"”“:'ffﬂ‘la
f’ — -|.

E*-’T_ﬁ.;r._._f:_lr . w6 [—1}“'”{—'—’ L ACETUE., P { 1}J ‘L‘} l

e X

8
— ”fsff)—-az,EL (1)

IreTuL, 1<V u ”H —T-ZJET

—1
e ! 2ice, recur: v crwr® wie(l)

UV' the first line decouples. We obtain a Moyal kernel times a divergent integral.
1e divergence can be reabsorbed into a redefinition of the coupling congtaps.



Ghost hunting

Pirsa: 08050027 Page 161/227



Introduction Noncommutative Field Theory Direct space remormalization Asymprotic safeness Conclusior
(o lala SO0

&

&
)
03

Ghost hunting

The ga")f model is asymptotically safe. The flow of the coupling constant A is
bounded!
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Ghost hunting

The gz";f model is asymptotically safe. The flow of the coupling constant A is
bounded!

The UV constant can be chosen small, so that perturbative computations have

sense. [ his opens the road to the complete nonperturbative construction of the
model.
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Ghost hunting

The qﬁvf model is asymptotically safe. The flow of the coupling constant A is
bounded!

The UV constant can be chosen small, so that perturbative computations have

sense. [ his opens the road to the complete nonperturbative construction of the
model.

The key is that we have a coupled flow of the parameters 2 and A. In the UV
2 — 1. At €2 = 1 the beta function of the coupling consant is zero at all orders of
perturbations.
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Ghost hunting

The gbf model is asymptotically safe. The flow of the coupling constant A is
bounded!

The UV constant can be chosen small, so that perturbative computations have

sense. | his opens the road to the complete nonperturbative construction of the
model.

The key is that we have a coupled flow of the parameters 2 and A. In the UV
2 — 1. At 2 = 1 the beta function of the coupling consant is zero at all orders of
perturbations.

This result was obtained in three steps
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Ghost hunting

The gz’;f model is asymptotically safe. The flow of the coupling constant A is
bounded!

The UV constant can be chosen small, so that perturbative computations have

sense. | his opens the road to the complete nonperturbative construction of the
model.

The key is that we have a coupled flow of the parameters 2 and A. In the UV
2 — 1. At 2 = 1 the beta function of the coupling consant is zero at all orders of
perturbations.

This result was obtained in three steps

» H. Grosse and R. Wulkenhaar proved at one loop that in the UV €2 — 1 and
,r\ —F Cnsf..
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Ghost hunting

The @;4 model is asymptotically safe. The flow of the coupling constant A is
bounded!

The UV constant can be chosen small, so that perturbative computations have

sense. [ his opens the road to the complete nonperturbative construction of the
model.

The key is that we have a coupled flow of the parameters 2 and A. In the UV
2 — 1. At 2 = 1 the beta function of the coupling consant is zero at all orders of
perturbations.

This result was obtained in three steps

» H. Grosse and R. Wulkenhaar proved at one loop that in the UV 2 — 1 and
A —¥ CHST.'..

» M. Disertori and V. Rivasseau proved that at 2 =1, A\ — Cnst. to three
loops.
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Ghost hunting

The r_bf‘L model is asymptotically safe. The flow of the coupling constant A is
bounded!

The UV constant can be chosen small, so that perturbative computations have

sense. | his opens the road to the complete nonperturbative construction of the
model.

The key is that we have a coupled flow of the parameters 2 and A. In the UV
2 — 1. At 2 = 1 the beta function of the coupling consant is zero at all orders of
perturbations.

This result was obtained in three steps

» H. Grosse and R. Wulkenhaar proved at one loop that in the UV €2 — 1 and
A —3 CHST.'..

» M. Disertori and V. Rivasseau proved that at 2 =1, A\ — Cnst. to three
loops.

But one must extend this result to all orders! This was achieved by M. Disertori.
R. Gurau, J. Magnen and V. Rivasseau.
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Ghost hunting

The gbf model is asymptotically safe. The flow of the coupling constant A is
bounded!

The UV constant can be chosen small, so that perturbative computations have

sense. [ his opens the road to the complete nonperturbative construction of the
model.

The key is that we have a coupled flow of the parameters €2 and A. In the UV
2 — 1. At 2 = 1 the beta function of the coupling consant is zero at all orders of
perturbations.

This result was obtained in three steps

» H. Grosse and R. Wulkenhaar proved at one loop that in the UV €2 — 1 and
/\ —> CHSI'..

» M. Disertori and V. Rivasseau proved that at 2 =1, A\ — Cnst. to three
loops.

But one must extend this result to all orders! This was achieved by M. Disertori,
R. Gurau, J. Magnen and V. Rivasseau.

Forsweh an apparently difficult problem the proof turns out to be surprisneky

amnla and haaositifnl
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The vulcanized ¢; at Q = 1 in the Matrix Base
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Ghost hunting

The qbf model is asymptotically safe. The flow of the coupling constant A is
bounded!

The UV constant can be chosen small, so that perturbative computations have
sense. | his opens the road to the complete nonperturbative construction of the
model.

The key is that we have a coupled flow of the parameters 2 and A. In the UV
2 — 1. At 2 = 1 the beta function of the coupling consant is zero at all orders of
perturbations.

This result was obtained in three steps

» H. Grosse and R. Wulkenhaar proved at one loop that in the UV 2 — 1 and
A —¥ Cnst..

» M. Disertori and V. Rivasseau proved that at 2 =1, A\ — Cnst. to three
loops.

But one must extend this result to all orders! This was achieved by M. Disertori.
R. Gurau, J. Magnen and V. Rivasseau.

Ferasweh an apparently difficult problem the proof turns out to be surprisieky
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The vulcanized ¢; at Q = 1 in the Matrix Base
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The vulcanized ¢; at Q = 1 in the Matrix Base
Let Q =1 (UV fixed point).
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The vulcanized ¢; at Q = 1 in the Matrix Base
Let Q =1 (UV fixed point).

It exists a basis such that the Moyal product becomes a matrix product

o(x) = Z Omnfmn(X). mM.nEN? (& x X)mn = DrpXpm
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The vulcanized ¢; at Q = 1 in the Matrix Base
Let Q2 =1 (UV fixed point).

It exists a basis such that the Moyal product becomes a matrix product

o(x) = Z Otk %), BLBE N2, (D * X)mn = PmpXpn

The action of the complex model (the real model is similar) is

M L3 1, b T o
5— @XD—i—@X@‘f_A@@‘f— E(DC)QGD »— mﬂmn
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The vulcanized ¢; at Q = 1 in the Matrix Base
Let Q =1 (UV fixed point).

It exists a basis such that the Moyal product becomes a matrix product

&(x) = Omunfmn(x), M0 EN?, (&% X)mn = OmpXpn

The action of the complex model (the real model is similar) is
i) e SN TR i
52@X@+@X@+A@@—}—§e}o@® X = md,,

m+nt+A"’

Propagator C,,p, = oriented & — o
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The vulcanized ¢; at Q = 1 in the Matrix Base
Let Q2 =1 (UV fixed point).

It exists a basis such that the Moyal product becomes a matrix product

60) =3 Smafmn(3):  M.11E€ N2 (&% X)mn = FrmpXp

The action of the complex model (the real model is similar) is
- s mE A L
S=oXo+oXo+ Aoo + E@DQ@ X =mod,,,

1

vy oriented ¢ — o

Propagator C,,p, =

Feynman graphs become ribbon graphs
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Graphs in the matrix base

Pirsa: 08050027 Page 178/227



Noncommutative Field Theory

Introduction
Qo0
N\
b b
® o

Pirsa: 08050027

Direct space renormalization

Asymprtotic safeness
0

ol lala

Graphs in the matrix base

Page 179/227

Conclusior



MNoncommutative Field Theory

Introduction
aldle
i
a o
d s m m
& c i

Pirsa: 08050027

Direct space renormalization

Asymprotic safeness
o0

Ceoo

Graphs in the matrix base

Page 180/227

Rervan Gt
Conclusior



Introduction MNoncommutative Field Theory Direct space renormalization Asymprtotic safeness
oo S @00

Graphs in the matrix base

A 1
TP S,

\\¢/, Sl = 2zzd:d+b+A

il S
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Graphs in the matrix base

A\ 1
TP L e

\/, s = 22Zd:d+b+A

iy e A

1 D%
AbubeE(a_ b, c. d) =

§§2‘4'2

W N 1 1
TN y

ma+m+Ac+m+A
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Renormalization and the effective coupling
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Graphs in the matrix base

A 1
TP T
\ o ATP(b, a) = 22;d+b+A
_____ b

bubble 1 Az

- (a.b,c.d)=—-—=2-4-2
22

: a Z 1 1

= atm+Ac+m+ A
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The vulcanized ¢; at Q = 1 in the Matrix Base
Let Q@ =1 (UV fixed point).

It exists a basis such that the Moyal product becomes a matrix product

6() = Smafrn(x). M1 € N2, (6% X)mn = SmpXpm

The action of the complex model (the real model is similar) is
u Ae e 1
5:@X@+@X®+A@@+§@o¢)@ X = md,,

) !

ey oriented © — o

Propagator C,,n, =

Feynman graphs become ribbon graphs
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Renormalization and the effective coupling
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Renormalization and the effective coupling

Let 2 be the amputated 1P| 2 point function. The connetced two point function is:

Cmn )
1— Cunx(m.n)

(G2,) = m+n+A—X(m.n)= (m+ n)(1—0%)+ (A—X(0,0))

2 s
Gmn e
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Renormalization and the effective coupling

Let 2 be the amputated 1Pl 2 point function. The connetced two point function is:

2 Crn .
G 1 — Cnnx(m.n)
(G2,) = m+n+A—X(m.n)= (m+ n)(1—0%)+ (A—2(0,0))

2 (0, 0) is the quadratic mass renormalization
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Renormalization and the effective coupling

Let 2 be the amputated 1Pl 2 point function. The connetced two point function is:

2 Crnn .
G 1— Conx(m.n)
(G2,) = m+n+A—X(mn)= (m+ n)(1—0%)+ (A—X(0,0))

2 (0. 0) is the quadratic mass renormalization

Z =1—39%(0,0) is the logarithmic wave function renormalization
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Renormalization and the effective coupling

Let 2 be the amputated 1Pl 2 point function. The connetced two point function is:

2 Conn .
G 1— Cunz(m.n)
(G2,) = m+n+A—X(m.n)= (m+ n)(1—0%)+ (A—X(0,0))

2 (0, 0) is the quadratic mass renormalization
Z =1—09%(0,0) is the logarithmic wave function renormalization

Denote ™ — 1Pl four point function.
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Renormalization and the effective coupling

Let 2 be the amputated 1P| 2 point function. The connetced two point function is:

2 Crnn .
G 1— Cunz(m.n)
(G2,) = m+n+A—X(m.n)= (m+ n)(1—0L)+ (A—X(0,0))

2 (0. 0) is the quadratic mass renormalization
Z =1—9%(0,0) is the logarithmic wave function renormalization
Denote ™ — 1Pl four point function.

|-4

£

3 3 - T = =
where * and ZZ are infinite power series in ).
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Death of the ghost

One loop:
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Death of the ghost

One loop:
> 3 planar tadpole — Z=1—-A\}_ %
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Death of the ghost

One loop:

» 2 planar tadpole — 72 =1 — )\ZP %

4 ' _ e .
> I planar bubble — I'* = -\ +2\2Y" L
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Death of the ghost

One loop:
» 2 planar tadpole — 72 =1 — AZP %
4 . 2 1
> [ planar bubble — " = —A +2\" % %
The effective coupling at the first order is
2 1
—A+2X Zp =z

A = — _——
-2
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Death of the ghost

One loop:
» ) planar tadpole — 72 =1 — )\Zp %
4 4 __ 2 1
> [* planar bubble — " = —A+2\" % =
The effective coupling at the first order is
2 1
— N 2ZX ZP =z

e — i
a2y >

Thus \*7 = )\ at the first order.
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Death of the ghost
One loop:

» ) planar tadpole — 72 =1 — /\ZP %

4 4 _ 2 1

> [ planar bubble — " = —A+2\" % =
The effective coupling at the first order is

2 1

—X-F 25 ZP =z

A — =
a2y, -l

Thus A\*" = X at the first order. The result is generalized by the
Theorem: The equation:

[* = —-\(1-9%)°
holds (up to finite terms) at all orders of perturbation in the UV region.

Pirsa: 08050027 Page 198/227



Renormalization in Noncommutative Quantum Field Theory, Perimeter Institute, May 2008 Razvan Gurau,
Introduction Noncommutative Field Theory Direct space renormalization Asymprotic safeness Conclusior
sleie JO0 alalal |

Death of the ghost

One loop:
> ) planar tadpole — Z=1—-A}__ %

> '* planar bubble — ' = —\ +2\*3"_
The effective coupling at the first order is

- # 1
O sl D' SEPRP Y
,)t 1 x> + ( )

(2. >

Thus A\*" = X at the first order. The result is generalized by the
Theorem: The equation:

I = A1 —9x)

holds (up to finite terms) at all orders of perturbation in the UV region.

The proof relies on the Dyson equation and a set of Ward identities associated to
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Other results in RNCQFT
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Other results in RNCQFT

» Bounds for other classes of propagators.
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Other results in RNCQFT

» Bounds for other classes of propagators.

» Parametric representation
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Other results in RNCQFT

» Bounds for other classes of propagators.

» Parametric representation
» Compact expressions for the amplitudes
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Other results in RNCQFT

» Bounds for other classes of propagators.

» Parametric representation

» Compact expressions for the amplitudes
» Introduce new topological objects: bitrees
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Other results in RNCQFT

» Bounds for other classes of propagators.

» Parametric representation

>

>
>
>
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Compact expressions for the amplitudes

Introduce new topological objects: bitrees

Democracy of bitrees

Related to multivariate Bollobas-Riordan polynomials (ribbon Tutte)
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Other results in RNCQFT

» Bounds for other classes of propagators.

» Parametric representation

» Compact expressions for the amplitudes

» Introduce new topological objects: bitrees
» Democracy of bitrees
>

Razvan Gurau,

Related to multivariate Bollobas-Riordan polynomials (ribbon Tutte)

» Dimensional regularization and renormalization
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Other results in RNCQFT

L L LR

» Bounds for other classes of propagators.

» Parametric representation

» Compact expressions for the amplitudes

» Introduce new topological objects: bitrees
» Democracy of bitrees
|

Razvan Gurdu,

Related to multivariate Bollobas-Riordan polynomials (ribbon Tutte)

» Dimensional regularization and renormalization

» Does not break gauge invariance
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Other results in RNCQFT

» Bounds for other classes of propagators.

» Parametric representation

» Compact expressions for the amplitudes

» Introduce new topological objects: bitrees
» Democracy of bitrees
|

Razvan Gurau,

Related to multivariate Bollobas-Riordan polynomials (ribbon Tutte)

» Dimensional regularization and renormalization

» Does not break gauge invariance
» Hopf algebra point of view on renormalization
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Other results in RNCQFT

» Bounds for other classes of propagators.

» Parametric representation

» Compact expressions for the amplitudes
» Introduce new topological objects: bitrees
» Democracy of bitrees

» Related to multivariate Bollobas-Riordan polynomials (ribbon Tutte)

» Dimensional regularization and renormalization

» Does not break gauge invariance
» Hopf algebra point of view on renormalization

» Complete Mellin representation.
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Other results in RNCQFT

Bounds for other classes of propagators.

Parametric representation

» Compact expressions for the amplitudes

» Introduce new topological objects: bitrees
» Democracy of bitrees
|

Razvan Gurau,

Related to multivariate Bollobas-Riordan polynomials (ribbon Tutte)

Dimensional regularization and renormalization

» Does not break gauge invariance
» Hopf algebra point of view on renormalization

Complete Mellin representation. Behavior under arbitrary rescaling of external

Euclidean invariants and internal masses.
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Other results in RNCQFT

» Bounds for other classes of propagators.

» Parametric representation

» Compact expressions for the amplitudes

» Introduce new topological objects: bitrees

» Democracy of bitrees

» Related to multivariate Bollobas-Riordan polynomials (ribbon Tutte)

» Dimensional regularization and renormalization

» Does not break gauge invariance
» Hopf algebra point of view on renormalization

» Complete Mellin representation. Behavior under arbitrary rescaling of external
Euclidean invariants and internal masses.

» Alternative solutions to mixing: Adding a translation invariant term ﬁ
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Conclusion: The Noncomutative Reormalization
Group

» Quantum field theory on non-commutative space must be renormalized.
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Conclusion: The Noncomutative Reormalization
Group

» Quantum field theory on non-commutative space must be renormalized.

» |t can be renormalized. The ultraviolet (infrared) is represented by high (low)
energies instead of small (large) distances. Thus the scales are spectral.
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Conclusion: The Noncomutative Reormalization
Group

» Quantum field theory on non-commutative space must be renormalized.

» |t can be renormalized. The ultraviolet (infrared) is represented by high (low)
energies instead of small (large) distances. Thus the scales are spectral.

» [ he power counting is related to the topology of the Feynman graphs.
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Conclusion: The Noncomutative Reormalization

Group

» Quantum field theory on non-commutative space must be renormalized.

» |t can be renormalized. The ultraviolet (infrared) is represented by high (low)
energies instead of small (large) distances. Thus the scales are spectral.

» [ he power counting is related to the topology of the Feynman graphs.

» [ he locality needs to be revised.
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Conclusion: The Noncomutative Reormalization

Group

» Quantum field theory on non-commutative space must be renormalized.

» |t can be renormalized. The ultraviolet (infrared) is represented by high (low)
energies instead of small (large) distances. Thus the scales are spectral.

» [ he power counting is related to the topology of the Feynman graphs.

» [ he locality needs to be revised.

» Quantum field theory is better behaved on non-commutative space than on

commutative space (no Landau ghost).
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Conclusion: The Noncomutative Reormalization
Group

Quantum field theory on non-commutative space must be renormalized.

It can be renormalized. The ultraviolet (infrared) is represented by high (low)
energies instead of small (large) distances. Thus the scales are spectral.

The power counting is related to the topology of the Feynman graphs.
The locality needs to be revised.

Quantum field theory is better behaved on non-commutative space than on
commutative space (no Landau ghost).

It seems it can be fully built at the non-perturbative level (work in progress).
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Conclusion: The Noncomutative Reormalization
Group

Quantum field theory on non-commutative space must be renormalized.

It can be renormalized. The ultraviolet (infrared) is represented by high (low)
energies instead of small (large) distances. Thus the scales are spectral.

The power counting is related to the topology of the Feynman graphs.
The locality needs to be revised.

Quantum field theory is better behaved on non-commutative space than on
commutative space (no Landau ghost).

It seems it can be fully built at the non-perturbative level (work in progress).

Renormalization group flows are indeed modified when there is non
Lammutativity of space-time, thus predictions can be tested.
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Beyond RNCQFT

NCQFT appears as an effective regime of both string theory and loop quantum
gravity. Hence it could be an useful guide towards a correct description of
quantum gravity.
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Beyond RNCQFT

NCQFT appears as an effective regime of both string theory and loop quantum

gravity. Hence it could be an useful guide towards a correct description of
quantum gravity.

SO0

Like string theory and spin foam models it relies on functional integration and
Feynman graphs.
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Beyond RNCQFT

NCQFT appears as an effective regime of both string theory and loop quantum

gravity. Hence it could be an useful guide towards a correct description of
quantum gravity.

Like string theory and spin foam models it relies on functional integration and
Feynman graphs.

But it also has a covariance under certain diffeomorphisms!
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Beyond RNCQFT

NCQFT appears as an effective regime of both string theory and loop quantum

gravity. Hence it could be an useful guide towards a correct description of
quantum gravity.

Like string theory and spin foam models it relies on functional integration and
Feynman graphs.

But it also has a covariance under certain diffeomorphisms!

The covariance under Area Preserving Diffeomorphism has two consequences

Pirsa: 08050027 Page 223/227



Renormalization in Noncommutative Quantum Field Theory, Perimeter Institute, May 2008 Razvan Gurau.
Introduction MNoncommutative Field Theory Diirect space renormalization Asymptotic safeness Conclusior

Beyond RNCQFT

NCQFT appears as an effective regime of both string theory and loop quantum
gravity. Hence it could be an useful guide towards a correct description of
quantum gravity.

Like string theory and spin foam models it relies on functional integration and
Feynman graphs.

But it also has a covariance under certain diffeomorphisms!

The covariance under Area Preserving Diffeomorphism has two consequences

» [ he scales are no longer associated to short and long distances. They are
defined by the free Hamiltonian and hence become spectral!
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Beyond RNCQFT

NCQFT appears as an effective regime of both string theory and loop quantum

gravity. Hence it could be an useful guide towards a correct description of
quantum gravity.

Like string theory and spin foam models it relies on functional integration and
Feynman graphs.

But it also has a covariance under certain diffeomorphisms!

The covariance under Area Preserving Diffeomorphism has two consequences

» [ he scales are no longer associated to short and long distances. They are
defined by the free Hamiltonian and hence become spectral!

» [ he flow of the coupling constant is modified.
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Beyond RNCQFT

NCQFT appears as an effective regime of both string theory and loop quantum
gravity. Hence it could be an useful guide towards a correct description of
quantum gravity.

Like string theory and spin foam models it relies on functional integration and
Feynman graphs.

But it also has a covariance under certain diffeomorphisms!

The covariance under Area Preserving Diffeomorphism has two consequences

» [ he scales are no longer associated to short and long distances. They are
defined by the free Hamiltonian and hence become spectral!

» [ he flow of the coupling constant is modified.

The naive concept of scales does not apply to LQG either, due to the invariance
under the full group of diffeomorphism
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Beyond RNCQFT

NCQFT appears as an effective regime of both string theory and loop quantum

gravity. Hence it could be an useful guide towards a correct description of
quantum gravity.

Like string theory and spin foam models it relies on functional integration and
Feynman graphs.

But it also has a covariance under certain diffeomorphisms!

The covariance under Area Preserving Diffeomorphism has two consequences

» [ he scales are no longer associated to short and long distances. They are
defined by the free Hamiltonian and hence become spectral!

» [ he flow of the coupling constant is modified.

The naive concept of scales does not apply to LQG either, due to the invariance
under the full group of diffeomorphism

Nevertheless spectral scales could be defined for LQG. A diffeomorphism invariant
revrePrdlization group can exist! page 2271227



