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Abstract: One-way quantum computing allows any quantum algorithm to be implemented by the sole use of single-qubit measurements. The
difficult part is to create a universal resource state on which the measurements are made. We propose to use continuous-variable (CV) entanglement
in the optical frequency comb of asingle optical parametric oscillator with a multimode pump to produce a very large CV graph state with a special
4-regular graph. This scheme is interesting because of its potential for scalability, although issues of error correction and fault tolerance are yet to be
fully addressed. Other possible physical configurations that are achievable with this scheme are related to the existence of certain bipartite
edge-weighted graphs with circulant support having orthogonal adjacency matrices. If the above description fails to move you, don\'t worry, there
will be pretty pictures. Joint work with N. Menicucci and O. Pfister, and with S. Severini
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Cluster states: qubits vs. continuous variables (CV)

qubit cluster states
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Cluster states: qubits vs. continuous variables (CV)

qubit cluster states

e prepare X eigenstates . .
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Cluster states: qubits vs. continuous variables (CV)

qubit cluster states Z®Z

e prepare X eigenstates

e entangle neighbors with a Z-Z
coupling
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Cluster states: qubits vs. continuous variables (CV)

qubit cluster states Z®Z

e prepare X eigenstates H

+) |+)

e entangle neighbors with a Z-Z
coupling

e arbitrary single-qubit
measurements with
feedforward on a large lattice
for universality
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Cluster states: qubits vs. continuous variables (CV)

qubit cluster states Z®Z

e prepare X eigenstates

e entangle neighbors with a Z-Z
coupling

e arbitrary single-qubit
measurements with
feedforward on a large lattice
for universality

e Clifford measurements can be
done in any order
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Cluster states: qubits vs. continuous variables (CV)

CV cluster states
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Cluster states: qubits vs. continuous variables (CV)

CV cluster states
® prepare Zero-momentum . .

eigenstates 0) . 0) D
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Cluster states: qubits vs. continuous variables (CV)

CV cluster states q 2 q

® prepare zero-momentum
eigenstates | 0)

10)

p p

e entangle neighbors with a g-q
two-mode squeezing operation
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Cluster states: qubits vs. continuous variables (CV)

CV cluster states g2 q

® prepare zero-momentum
eigenstates

10)

10)

P

p

e entangle neighbors with a g-q
two-mode squeezing operation

e finite set of single-mode
measurements with
feedforward on a large lattice
for universality
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Cluster states: qubits vs. continuous variables (CV)

CV cluster states q 2 q

® prepare zero-momentum
eigenstates

10)

10)

P

P

e entangle neighbors with a g-q
two-mode squeezing operation

e finite set of single-mode
measurements with
feedforward on a large lattice
for universality

e Gaussian operations can be
done in any order
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Advantages of continuous-variable clusters

e unconditional state

preparatlon Gaussian transformations on the vacuum can

be performed deterministically, so there is no
need to do “fusion” of clusters. (Although
this would be interesting...)

o well-established
experimental

infrastructure While photon counting is still required,

addressability is less of an issue compared to
e.g. optical lattice schemes

Nielsen PRL 04; Browne & Rudolph PRL 05; Kok et. al. RMP 07;
Kieling, Gross, Eisert J. Opt. Soc. Am. B O7; ... i



Why this will NEVER work

Infinitely squeezed states are not physical.
Finite squeezing effects will tend to degrade
the cluster as the computation progresses.

¢finite squeezing

e error correction Decoherence isn’t so much an issue, but
photon loss is a problem. We need good CV

error correcting codes.

e fault tolerance Continuous variables will likely have NO
threshold (they are like analog computers). Can

we still do interesting things in this setting?

= Gottesman, Kitaev, Preskill PRA 01; Glancy & Knill PRA 06 ™ "™



Why we’re excited anyway

e simplicity of

experiment

escalability &
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addressability

We use just a single optical
cavity and O(1) modes, which
IS optimal

Naturally large set of modes in
the frequency comb. Use
GKP encoding to achieve FT7?



Why we’re excited anyway

e simplicity of We use just a single optical
experiment cavity and O(1) modes, which
is optimal
escalability &

Naturally large set of modes in
the frequency comb. Use
GKP encoding to achieve FT7?

addressability

'f};;_;_i}ﬁﬁ:é} i :}5} Pretty pictures, donut puns,
‘i:f;t'im;‘rﬁx " Homer Simpson jokes, etc.
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Optical frequency comb

* eigenmodes in an optical cavity
yield very well-defined systems
with high classical coherence

* inside the cavity is a linear gain
medium

e why not look at the quantum
case by using a nonlinear
medium?
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Optical parametric oscillators

In the interaction picture, the Hamiltonian is
H = —thk Z Gmn al aT ' &m&n)

m.n

where:
IR Squeezing per time &L Creation operator for mode n

(7 Symmetric matrix of couplings between modes
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Optical parametric oscillators

In the interaction picture, the Hamiltonian is
H = —iht Y Gumn (@,a, — aman)

mL.r

where:
K Squeezing per time &L Creation operator for mode n
(; Symmetric matrix of couplings between modes
example:

generating multiple entangled pairs

+1 fm+n=p
Wm +Wn = Wpump = Gmn = { 0 otherwise
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Optical parametric oscillators

In the interaction picture, the Hamiltonian is

H = —ihk Z Gn (@),8), — @mén) e-9

1 p-1

L. Tk
where: e 9
IR Squeezing per time @) Creation operator for mode n 2 p-2

(7 Symmetric matrix of couplings between modes

example:
generating multiple entangled pairs

+1 fm+n=p
Wm +Wn = Wpump = Gmn = { 0 otherwise
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Optical parametric oscillators

In the interaction picture, the Hamiltonian is
H = —ihs Y Gmn

.,

where:
K Squeezing per time

(7 Symmetric matrix of couplings between modes
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Optical parametric oscillators

In the interaction picture, the Hamiltonian is
H = —ih& Y Gumn (@,a, — aman)

m.,mn

where:
K. Squeezing per time &L Creation operator for mode n

(; Symmetric matrix of couplings between modes

1
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Multimode optical parametric oscillators

With more than one input, the Hamiltonian is

—imY Y ot _ s
H = ihk G'mﬂ(aman il arnan)‘f

pEP m+n=p

= | =10.0.0/a/0.5.0]

pump modes

(half frequency)
a

2 3
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MOVIE S1: ultracompact experimental
implementation of a graph quantum state

(Click to advance movie)

Consider the adjacency matrix A of a graph state to be created

ooooooooooooo
ooooooooooo
nnnnnnnnnnn
lllllllllll
ooooooooooooo
4444444444444
ooooooooooooo
4444444444444
nnnnnnnnnnn
lllll
ooooooooooooo
iiiiiiiiiiiii
ttttttttttt
nnnnnn
-----

ooooooooooooo
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MOVIE S1: ultracompact experimental
implementation of a graph quantum state

(Click 1o advance mowvie)

Consider the adjacency matrix A of a graph state to be created

iiiiiiiiiiiii
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iiiiiiiiiii
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MOVIE S1: ultracompact experimental
implementation of a graph quantum state

(Click to advance movie)

Consider the adjacency matrix A of a graph state to be created

oooooooooooooooo

||||||||||||||

llllllllllllllll

iiiiiiiiiiiiiiii

;;;;;;;;;;;;;;;;

iiiiiiiiiiiiiiii

----------------

llllllllllllllll

oooooooooooooooo

----------------

iiiiiiiiiiiiiiii

----------------

--------------

----------------

Matrix element Amn gives the entangling strength of edge (m,n)
between vertices m and n, i.e. between OFC qumodes of frequencies ®,, and ©,
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Moreover, we restrict A
to Hankel matrices,
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Moreover, we restrict A
to Hankel matrices,
whose skew diagonals
are labeled by m+n

(frequency sum index)
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Moreover, we restrict A
to Hankel matrices,
whose skew diagonals
are labeled by m+n

(frequency sum index)
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pump
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m-+n
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The couplings specified R I JCRR
by A thus correspond to ‘.-

specific pairwise F iR s S Lok ok
entangling interactions | '

OFC Z...ZZ...EZ.ZZ;.
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The couplings specified
by A thus correspond to
specific pairwise
entangling interactions

OFC
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The couplings specified
by A thus correspond to
specific pairwise
entangling interactions

OFC
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Relationship to the CV cluster state

A general cluster state with a (possibly weighted)
adjacency matrix A satisfies the relation

p— Aqg — 0

queezing limit.

Iff}

The arrow denotes the infinite-

. o s
9 ; Eii’ R ;‘i ))T are quadratures of the field modes

What is the relationship between this graph state
(Iabeled A) and the graph of couplings (G) in the OPQO%

0000000000000



Relationship to the CV cluster state

p—Ag—0 =«

Use the symplectic representation for
Gaussian transformations on the vacuum

—rG
U =exp(—itH) = (e 0 6,9(;)

r = Kt is the total amount of squeezing

* becomes (_A I) (2) — 0

Menicucci, STF, Zaidi, Pfister PRA 2007
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Relationship to the CV cluster state

If G has no single-mode squeezing, then it
can always be factored as a tensor product

G:A()@O'Q:ZA()@(?%)

By reversing the tensor factor
order, we see that G is bipartite

The factor matrix Ao retains the Hankel property of G.

go-:c ®AO

Menicucci, STF, Zaidi, Pfister PRA 2007
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Relationship to the CV cluster state

If G has no single-mode squeezing, then it
can always be factored as a tensor product

G=A®0, =43 (75)

By reversing the tensor factor
order, we see that G is bipartite

The factor matrix Ao retains the Hankel property of G.
= Ox X AO

Menicucci, STF, Zaidi, Pfister PRA 2007
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Relationship to the CV cluster state

If G has no single-mode squeezing, then it
can always be factored as a tensor product

G=A®0, =43 (75)

By reversing the tensor factor
order, we see that G is bipartite

The factor matrix Ao retains the Hankel property of G.
= Or X AO
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Relationship to the CV cluster state

p—Agq—0 =

Use the symplectic representation for
Gaussian transformations on the vacuum

. e ™ "
U =exp(—itH) = ( 0 GTG)

r = Kt is the total amount of squeezing

* becomes (_A I) (g) — 0

Menicucci, STF, Zaidi, Pfister PRA 2007
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Relationship to the CV cluster state

If G has no single-mode squeezing, then it
can always be factored as a tensor product

G:A()@O'Q;ZA()@(?%)

By reversing the tensor factor
order, we see that G is bipartite

The factor matrix Ao retains the Hankel property of G.
= O X AO

Menicucci, STF, Zaidi, Pfister PRA 2007
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Relationship to the CV cluster state

In this reordered basis, the
unitary matrix U becomes

0 & 0 0
o e ™ 0 0 0

i 0 g  &h
0 0 e 0
We also allow (experimentally I
trivial) phase shifts on half the 7o | O
modes, determined by the g

0000000000000
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Relationship to the CV cluster state

In this reordered basis, the
unitary matrix U becomes

0 " aiin 0 0
o Re ™™ 0 0 0

des B 0 0 e o
0 0 e 90
We also allow (experimentally I
trivial) phase shifts on half the 7o | O
modes, determined by the g

0000000000000

Menicucci, STF, Zaidi, Pfister PRA 2007
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Relationship to the CV cluster state

If we also assume that G2 = |,
we can use the identity

e~ = cosh(r)I + sinh(r)G

This has no physical motivation, but it simplifies things

I 0 0 0 0 -4 0 0)
Boo 0O I 0 0 : —A 0 0 0
7 = cosh(r) 00 I 0 + sinh(r) 0 ¥ 0 0 A,

0 0 0 I 0 0 A 0)

- Menicucci, STF, Zaidi, Pfister PRA 2007; = ... -
Zaidi et. al., Laser Phys. 2007












Relationship to the CV cluster state

Using the definitions of T and
U as before, and the identity

cosh(r) —sinh(r) =e™"

we find exponential convergence
to a CV cluster state

(—A I)TU:_E_,,.(O 0 —I AO) rooo o

Ao I 0 O

00000000 Menicucci, STF, Zaidi, Pfister PRA 2007;
Zaidi et. al., Laser Phys. 2007
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Relationship to the CV cluster state

Using the definitions of T and
U as before, and the identity

cosh(r) — sinh(r) =e™"

we find exponential convergence
to a CV cluster state

(—A I)TUz—e_’""(O 0 —I AO) rooo o

Ao I O 0

00000000 Menicucci, STF, Zaidi, Pfister PRA 2007:
Zaidi et. al., Laser Phys. 2007
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Relationship to the CV cluster state

Remarkably, assuming G2=| implies G=A !

we find exponential convergence
to a CV cluster state

Ag I O 0

00000000 Menicucci, STF, Zaidi, Pfister PRA 2007:
Zaidi et. al., Laser Phys. 2007

ks I)TU:_G_,,(O 0 —I AO) rooo o
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Relationship to the CV cluster state

In this reordered basis, the
unitary matrix U becomes

0 e™ 3@ 0
- e 0 0 0

s I 0 0 e o
0 0 e 90
We also allow (experimentally I
trivial) phase shifts on half the 7o | O
modes, determined by the g
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Relationship to the CV cluster state

Using the definitions of T and
U as before, and the identity

cosh(r) — sinh(r) =e™"

we find exponential convergence
to a CV cluster state

B I)TU:_G_,,(O 0 —I AO) rooo o

Ao I 0 0

00000000 Menicucci, STF, Zaidi, Pfister PRA 2007;
Zaidi et. al., Laser Phys. 2007
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Relationship to the CV cluster state

Remarkably, assuming G2=| implies G=A !

we find exponential convergence
to a CV cluster state

Ag I O 0

00000000 Menicucci, STF, Zaidi, Pfister PRA 2007;
Zaidi et. al., Laser Phys. 2007
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Relationship to the CV cluster state

Remarkably, assuming G2=| implies G=A !

we find exponential convergence
to a CV cluster state

(—A I)TU:_Q_,,(O 0 —I AO) rooo o

Ao I 0 0

00000000 Menicucci, STF, Zaidi, Pfister PRA 2007;
Zaidi et. al., Laser Phys. 2007
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Mathematical construction

ee 1 * the matrix elements of A are all
We = k - a_d]acency +k,0,-K for some fixed k.
matrix A with the
following properties: e A is an orthogonal matrix;

AAT=],

¢ A is Hankel, with a constant
number of nonzero stripes

e The graph of A is universal for
cluster state quantum computation.

¢ A is bipartite
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Mathematical construction

We seek an adjacency
matrix A with the
following properties:

NP oS L o
v 4 A -n‘ . 4

Sl i

Pirsa: 08050019

* the matrix elements of A are all
+K.,0.-k for some fixed k.

¢ A is an orthogonal matrix;
AAT=].

¢ A is Hankel, with a constant
number of nonzero stripes

e The graph of A is universal for
cluster state quantum computation.
¢ A is bipartite
siNgie-maoae sgquet
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Mathematical construction

* the matrix elements of A are all
+K.0.-k for some fixed k.

e B
] el AL

¢ A is an orthogonal matrix;
AAT=]. |

¢ A is Hankel, with a constant
number of nonzero stripes
"'_'T'_"' _Ir'_':r N ak~=1a¥F10Ta'a

e The graph of A is universal for
cluster state quantum computation.

a —— S —_— ~ Y -
| 1 |__ A SJLILE

. A IS blpartlte

merdl+b2+c2+d2 = |, ab+ad+cd = 0 ac+bd 0 bc F’g(?r”



Mathematical construction

* the matrix elements of A are all
+K.,0,-k for some fixed k.

¢ A is an orthogonal matrix;
AAT=].

¢ A is Hankel, with a constant
number of nonzero stnpes

e The graph of A is universal for
cluster state quantum computation.

. A IS blpartlte

= |, ab+ad+cd = 0 ac+bd 0 bc Pgt’f”




Mathematical construction

_ * the matrix elements of A are all
Solution +k.0,-k for some fixed k.

use projectorﬂvalued weights

* A is an orthogonal matrix;
Ih=11_ &Gl . =11 Gl . AN-i

H:‘; — H.|. ff H_ . H_! —_ H_|_ H+ &
* A is Hankel, with a constant
where number of nonzero stripes
— 1 3 yhoton energy conservatic
=— st 1 * The graph of A is universal for
cluster state quantum computation.
Orthogonallty: *Ais blpartrte

Pirsa: 08050019
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Mathematical construction

o - -
-1
~1a0

“-I ' I-“

| 0 - L3

Problem: No longer

Hankel, but block

irsa: 08050019

ankel!

* the matrix elements of A are all
+k,0,-k for some fixed k.

|I 4L

.

¢ A is an orthogonal matrix;
AAT=],

¢ A is Hankel, with a constant
number of nonzero stripes
ohoton energy conservation

e The graph of A is universal for
cluster state quantum computation.

/€ Walll 1O gudallil COMmMpute

¢ A is bipartite
¥ ") 8 ':|_: - [_ _|i_r SauUeezl
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Mathematical construction

X &= L
b o -1

A= E
Fol o +an
Qll-'l I"hl-

X & aed

Solution: use polarization
degrees of freedom, and
~BACEe as many pumps.

* the matrix elements of A are all
+Kk.,0,.-k for some fixed k.

¢ A is an orthogonal matrix;
AAT=]. Ty

e A is Hankel, with a constant

number of nonzero stripes

e The graph of A is universal for
cluster state quantum computation.
ve want to quantum compute

¢ A is bipartite
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Mathematical construction

“-I

X & Pk
g
S0
et

A 4

X s P

Solution: use polarization

degrees of freedom, and

=~BICE as Mmany pumps.

* the matrix elements of A are all
+k.0.-k for some fixed k.

¢ A is an orthogonal matrix;
AAT=l. |

* A is Hankel, with a constant
number of nonzero stripes
ohoton energy conservatic

¢ The graph of A is universal for
cluster state quantum computation.

¢ A is bipartite
no single-mode squeez

Page 79/101



Mathematical construction

* the matrix elements of A are all

+k 0 -k for some fixed k.
nNstant strenatn interactions

¢ A is an orthogonal matrix;
AAT=| .

- ' Rt 0 A .| |'_' - A N |y A e L

* A is Hankel, with a constant
number of nonzero stnpes

photon energy conservation
- - e The graph of A is universal for
_ _ _ cluster state quanturn computatton.
Solution: use polarization we want to quantum compute

degrees of ireedom, and - Aisbpartite
-iCe as many pumps. T hweon



Pi

Mathematical construction

1
X g
A b
] <40
“-I i I-“
| 0 - L

Problem: No longer
Hankel, but block Hankel!

IIIII : 08050019

* the matrix elements of A are all
+k 0 k for some flxed k

¢ A is an orthogonal matrix;
AAT=],

* A is Hankel, with a constant
number of nonzero stripes

e The graph of A is universal for
cluster state quantum computatuon,

Ne want 10 quantum comput

. A is blpartlte

L) o ==TT10O( |; SsUiueEe 1 10
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Mathematical construction

“-I

I"'h'-

el

Solution: use polarization

degrees of freedom, and

=~BAICE as Mmany pumps.

* the matrix elements of A are all
+K.,0,.-k for some fixed k.

¢ A is an orthogonal matrix;
AAT=].

e A is Hankel, with a constant

number of nonzero stripes

¢ The graph of A is universal for
cluster state quantum computation.

{ LACh LL [ ] L - |_I_:_'.

¢ A is bipartite
NO single-mode squeezing
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Mathematical construction

* the matrix elements of A are all
+k 0 -k for sorne fixed

| — -I—: Fi r—' N 1?'3—' 5 f"_-':: v —1 _-—: -—l ,_ o

¢ A is an orthogonal matrix;
AAT—I
e theo v a ot

_,-__ | '_,- L LR T N

¢ A is Hankel, with a constant
number of nonzero stnpes

photon energy conserva
- 1" e The graph of A is universal for
| _ ] cluster state quantum computatton.
Solution: use polarization we want to quantum comput

degrees of freedom, and < Aisbipartite
-WiCe as many pumps. N Bl



Mathematical construction
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Mathematical construction
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Mathematical construction
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Mathematical construction
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Mathematical construction
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Mathematical construction
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Mathematical construction
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Mathematical construction
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The final state

* global topology: twisted torus
* |local structure: square |attice

e 4 modes per vertex induces a
factor of 4 overhead (useful?)

e phasematching bandwidth is
10* times bigger than the free
spectral range - natural large
Clusters!

e state preparation completed in
one step, one cavity, and with a
"= &dhistant number of pumps (15) A



First steps: creating square clusters

1
HV

0

——————

Pirsa: 08050019

L

6.,

L,

Single pump beam
(with polarization)

e | § Many square clusters

by

24 Sy 3u &
SF 2y 4 3y

Page 95/101

Walther et al Nature 2005



Next steps: creating ring clusters

.
I::.. | *f t
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Long quantum wires are universal
UL for single mode tranformations



Irresponsible speculation
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Zhang, Xie, Peng
arXiv:0711.0820

* measure x and p on
certain nodes to create
the toric code state

e Gaussian operations
alone can create
anyonic quasiparticles
and braid them

¢ natural toroidal structure
could give a natural
system for quantum
memory

e 4d toric code?
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Open questions

¢ Fault tolerance for continuous
variables?

e Utilize 4-fold redundancy for
protection from errors?

e Easily convert to a discrete
encoding? (GKP)

* How much squeezing is
enough?
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