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Abstract: This talk will report recent work on two themes that relate concepts in graph theory to problems in quantum information theory. We will
discuss the quantum analogue of expander graphs which prove to be of key importance when de-randomizing algorithms in classical computer
science. Using powerful ideas of discrete phase space methods, efficiently implementable quantum expanders can be constructed based on an
argument that barely fills three lines. We also briefly report news on novel measurement-based models of quantum computing, based on quantum
systems distributed on a graph, beyond one-way computing. Work done in collaboration with D. Gross D. Gross, J. Eisert, \'Quantum Margulis
expanders\’, Quant. Inf. Comp. (2008), arXiv:0710.0651. D. Gross, J. Eisert, \'Quantum computational wires\', in preparation (2008). D. Gross, J.
Eisert, N. Schuch, D. Perez-Garcia, \'Measurement-based quantum computation beyond the one-way model\', Phys. Rev. A 76, 052315 (2007),
arXiv:0706.3401. D. Gross, J. Eisert, \'Novel schemes for measurement-based quantum computation\', Phys. Rev. Lett. 98, 220503 (2007).
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Tales from graphland

Jens Eisert, Imperial College London

Joint work with D Gross
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» "Generalized graph states” » Quantum expanders
Ihe computational power of quantum wires and expander graphs
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» "Generalized graph states” ® Quantum expanders
. ) and expander graphs
Ihe computational power of quantum wires
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e Given a simple undirected graph (' = (L. L)

o There will be a graph state associated with it
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e Given a simple undirected graph (- = (L. L)

o Associate vertices with C-, prepare eachin — = [0} — |L},and apply
phase gate

T =xlag( 1. L L. =1)

to each edge £ of graph
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e Then, local measurements are just as powerful as the circuit model for QC

e “Graph states can be universal resources”
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P i i o “Read out”
Input Computing

e Then, local measurements are just as powerful as the circuit model for QC

e “Graph states can be universal resources”
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» Now, very nice, but what if we do not have a graph state?

¢ "Generalized graph states with computational power’!
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e Optical preparation? e Cold atoms in
optical lattices?
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» Physics motivation:

- Different meaningful preparation mechanisms, states tailored to architecture

- Protected via ground states
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» Computer science motivation:

- Explore properties of “universal states and phases”
- Efficient classical simuleerbarity (see Maarten) vs. universality for QC
- Computational complexity of tensor contractions
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» Properties of the cluster:

o
g

e Graph states have a number of interesting, but also very extremal properties

- Maximal entanglement!
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» Properties of the cluster:

e Graph states have a number of interesting, but also very extremal properties

- Maximal entanglement!
- No long-range correlations!
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» Properties of the cluster:

e Graph states have a number of interesting, but also very extremal properties

- Maximal entanglement!
- No long-range correlations!
- Maximal localizable entanglement!
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» What states have universal computational power?

For years, essentially only graph states known
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» Recent progress:

Classes of alternative models
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» What states have universal computational power?

For years, essentially only graph states known
' 86 (20

86 (2
» Recent progress:

Classes of alternative models

» Agenda today:

Steps towards a systematic toolbox for constructing new models

o If there is time: teaser on some completely different connection
Tre¥Weeen graphs and quantum information: Quantum margulis expandeérs



® New measurement-based models:
Framework of a toolbox
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e Much can be gained by looking at states in right way:

- Matrix-product states (as being generated in DMRG),
- higher dimensional “tensor product states”, "PEPS” on graphs

Tools from many-body physics
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» Formal ingredients:

e Substructure C (“correlation space”) for some dimension ¢/
e Two complex < ( matrices -1 0]. -1 1]

'l il _ J,l ) ..
e Two vectors L . [?) & " representing boundary conditions
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» Matrix-product state:

Al v 3 o S _f_ — _E:&} _—l_.'-q'“j W ‘—ILF*«J_ L }

“Physical state” “Matrices in abstract correlation space”
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» Matrix-product state:

,'-i]_ ,,,,,, "‘._-'.5 ! = _E'_i] ‘—l__'q'l”j 5y ‘—1_’:1']_“. L ;

e Intuition:

A 0. .11 operators acting on “correlation space” C*
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s Now measurements:

» Refine for general local projections onto 0

Alo = (0|lo)A 0] + (1o A[l]

& Théns (s = o 1) = LB Alo,]... :l-r'_JL-_ /8
e This can be reread as computation in correlation space!
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“Preparation”
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“Preparation” “Processing”
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“Preparation” “Processing”
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“Preparation” “Processing” “Prob of occuring”

e "Measurement is driving the computation forward in correlation space”

e "It is all in the correlations™, here in the MPS correlation space
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» General framework:

» General lattices defined by graphs(: — (L. [ ), tensor networks
with tensors of degree specified by vertex degree
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» General framework:

» General lattices defined by graphs(: = (L. L), tensor networks

with tensors of degree specified by vertex degree

[l 10! : 1l e % (ol
‘_l 2| NOwW map (]: lexft q: down — ([1'11-" . q:“l'i_,'_'."lll

i
L Al Alsie]
L — Alsaq] = Als2.2] —
L 1 Alnil— Alsns]—
5 [l
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® (lassification of
quantum computational wires
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e As a
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primitive to systematically build up new models:

e states on a | D chain of qubits

¢ allowing for transport of a logical qubit
o preparable by nearest-neighbor gates
e translationally invariant

e can be coupled to 2D resource
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e Simplest example: | D cluster

—1A[0] = |+)(0

e Measure in |— .| — ) -basis
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e Simplest example: | D cluster

—1A[0] P= |+,(0 —*A[l])»: —{1

e Measure in |—). | —-basis

irsa: 08050016 Page 35/78



-1-‘;1:_]-1- +|4.i1:_:-r —r*‘—l[—ﬁ-* +;—l[—:“’"

=i H HZ HZ

e Simplest example: | D cluster

— 1[0

R ]

=

>— |+)(0 —A[l]P=|-){1

» Measure in | —).|—-basis

« Characteristics:

I. “Always on interaction” /4
2. “Byproduct” £

3.pl+) =p(—) =1/2
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e 4. characteristic: one-parameter “freedom of choice”

: o , "L 0 L
Asina+) —icosal—)| ~ H ( 0 o ) ==z DL )

irsa: 08050016 Page 37/78



» Interpretation:

I. “always on operation” f{
allows for universality
2. “by-product operator” Z

necessary evil of entanglement

pl+) =pl—=)=1/2

W

signature of maximal entanglement of cluster

4. Freedom of choice

allows to adapt to different algorithms
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» Axioms for computational wires:

a) states on | D chain of qubits

b) preparable by nearest-neighbor unitary gates

€) translationally invariant

d) allowing for transport of a logical qubit

&)t be coupled to 2D resource g 3978



» Axioms for computational wires:

a) states on | D chain of qubits

a matrix-product state with d = 2

b) preparable by nearest-neighbor unitary gates

€) translationally invariant

d) allowing for transport of a logical qubit

B )kltr be coupled to 2D resource
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a) states on | D chain of qubits

a matrix-product state with d = 2

b) preparable by nearest-neighbor unitary gates
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» Axioms for computational wires:

a) states on | D chain of qubits

a matrix-product state with d = 2

b) preparable by nearest-neighbor unitary gates
D =2, A[0]. A[l are2 x 2 -matrices
€) translationally invariant

A 0]. A1} position independent

d) allowing for transport of a logical qubit

&)t be coupled to 2D resource age 4278



» Axioms for computational wires:

a) states on | D chain of qubits

a matrix-product state with d = 2

b) preparable by nearest-neighbor unitary gates

D =2, A[0]. A]1] are2 x 2 -matrices

€) translationally invariant
A 0]. A1] position independent
d) allowing for transport of a logical qubit
for some basis 1. t>)the matrices.1 ¢'1]. AA[¢ 3] are up to factor unitary

&)t be coupled to 2D resource e 4378



e Structure of quantum computational wires:

e A quantum wire is described by
|.an always on interaction || < (/(2)
2.a by-product angle 0 < (.27

3.2 bias parameter( < [(). 277)

Al+] = sin W’
Al—=] =cosH W S(o)

4. lucky mathematical coincidence: is always one-parameter degree of freedom!
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Observation: No maximal entanglement, yet still “universal™!

=

p(+) = sin” 0. p(—) = cos>(6)

I

Pirsa: 08050016 <8 Page 46/78



"";4[4—]"" "’A[[}f] — +44[_|_]+ —Hlﬁl[—

2

= W IV S(a) i WS5(o)

« O W =explin /X ). k2

0 =m/d, o=mx
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« Or W =explin/bX). £En?2

0 =/l =7

Observation: Long-range correlations are no obstacle to universality!
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» Physical examples:

000

» Gapped ground state of (slightly modified) AKLT Hamiltonian

H — Z fif |

Observation: Ground states of NN-Hamiltonians can be quantum wires
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» Physical examples:

~N A A A
e ©© 9 ©

e Bose-Hubbard wires: Use tunneling to neighbors

- folgInt (y+1)
i = E i-”L ] ap
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» Physical examples:
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e Bose-Hubbard wires: Use tunneling to neighbors
H = E (a2 Tad ™

e Wire with maximal localizable entanglement + arbitrary rotation in a plane

e |deas towards realization: Use atoms in optical superiattices
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o Steps towards classification of 2D switches (is technical, unfortunately)

e Switch based on phase gates:

t
QQQ =
.1.:—F-__"|._u
O I:r-:—- : I = ETSTIS S — L -
e Switch based on exchange interaction: O O O

Qo O Q

«=Fentle couplings™ with little entangling power Page 2176




e Gives rise to a toolbox of constructing new schemes, e.g.,

Q
O Q

Q Q

Q Q
g @ 9 8§
Q Q

Q Q
e § @ ¢
Q Q

_ Exchange interaction

oo o Q Phase gate
O
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® Kitaev's planar code state and
“computational phases”
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» Kitaev’s toric code state:

2 @ | e

Q QA Q Q
o M W =

o Q Q Q

e State with non-trivial topological properties
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» Kitaev’s toric code state:

o | | @9

2 T« | W
® M W =

o Q Q Q
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» Kitaev’s toric code state:

I’fH

A H
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e "“Vertical™:
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e Very nice, is entangling 2-qubit gate in correlation space!
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e For any measurement in the Y-Z plane with angle

IX,H [C)] =

e Very nice, is entangling 2-qubit gate in correlation space!

e In fact, not universal: Measurements on the toric code state is
efficiently “simuleerbar”!
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e Modify slightly, essentially by phase gate
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o Modify slightly, essentially by phase gate

E:H [O}

Ifﬂ [O}

vV ZH

e Can use ancillae, ZZ-controlled phase between logical qubit and ancilla like

local Z-rotation (“rerouting”)

* Single-qubit gate:

l '- fli
H - L

l H
i i B

« TwWo-qubit gate:

a)

Pirsa: 08050016
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o “Computational phases of matter”

Universal
phase

State with
different phase

Efficiently
simulatable
phase

Kitaev's
toric code
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® A late interlude on three pages:

What | did not speak about, but might be worthwhile to have an informal
discussion about

Expander graphs and quantum expanders
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« Expander graphs: 'Highly connected graphs”

P
-
-9
o(; = (L. FE)isad-regular graph with n vertices and adjacency matrix .1
: 1
.. = _f‘l is then a transition matrix of a random walk
{

» Random walks on expander graphs are extremely quickly mixing:

Atp — iz £ Vi

Xal AY]s | A ()| £ o

s Yery helpful in algorithm construction Page 64/78

where u = (1..... 1)/nis uniform and & a parameter,



» How to construct classical expanders? E.g., Margulis expander:

» Vertex set discrete /1 < 11— plane, viewed as 2D vector space Z,, < Z,

» Consider four affine mappings:

- 1 2 o | 1 0 1
ll ; W _ “ J_ _ { lj Lt = _ 2 J_ d A [J' )
. 1 )T | 1 0 0

Is5: 0 — 5> 1 |¢ Tgz s | o v | )

e Neighbors of vertex':images under maps and their inverses

s £@ws to construct quantum expanders - CPMs that are mixing page 65778
on quantum systems in the same way as random walks on classical expanders!?



e [ake affine maps literally, acting in discrete phase space of quantum system. Done.

e Think of Z,, < Z,, as discrete phase space with a Wigner function!! ,

=
1

Action on Wigner function:
Shift: X:|v)—|r+1 Woxvilg.p) = Wylg+ L1op
Z ¢ | — 657 |
Rotate: Wi iilg.p) = W, (S(g. p -

| | :
- - g L . - y - [ . ; A . B {"'II_- - 1 \ -"II - 1. -II
» Classical: 2 E Lilu) o Quantum: p 3 E b L el (

* Acts on Wigner functions as classical expander on classical distributior
(hence properties like gap inherited)
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» How to construct classical expanders? E.g., Margulis expander:

e Vertex set discrete /1 < 11— plane, viewed as 2D vector

space Ly X Ly,

» Consider four affine mappings:

1-]_ G

J_[g :

{ 1

R

1
()
1
2

=)

L
()
&

—

E b

1o v —

Y

Tg

ar

-2

S =

()
|

0 |

1

e Neighbors of vertex ':images under maps and their inverses

| w e o

s.@ws to construct quantum expanders - CPMs that are mixing page 67178
on quantum systems in the same way as random walks on classical expanders!?



® A late interlude on three pages:

What | did not speak about, but might be worthwhile to have an informal
discussion about

Expander graphs and quantum expanders
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» Expander graphs: 'Highly connected graphs”

—9-

o(; = (L. FE)isad-regular graph with n vertices and adjacency matrix _1
: !
oA = —{‘l is then a transition matrix of a random walk
{

» Random walks on expander graphs are extremely quickly mixing:

Aty — iy € Vg

Aa(A)], [Xa(A)] £ ai
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» How to construct classical expanders? E.g., Margulis expander:

e Vertex set discrete /1 < 11— plane, viewed as 2D vector space Z,, < Z,

» Consider four affine mappings:

e ] - [1 0] 1
ll.:—*_[.} l_i 1o 24— | | l_f*<[})

0] (0

2 1 |° 1

e Neighbors of vertex':images under maps and their inverses

-2

I

. F 1wl |
J_(;gff‘—* 2 1 v Tllf.'—‘

. —

S =

T —_— J - u...q____;
" i . HH"‘}: oy o
! e G ¥
. o . | " 'l--H,‘___"
s £@ws to construct quantum expanders - CPMs that are mixing page 70178

on quantum systems in the same way as random walks on classical expanders!



e Take affine maps literally, acting in discrete phase space of quantum system. Done!

e Think of Z,, < Z,, as discrete phase space with a Wigner function!!

Action on Wigner function:
Shift: X:|lo)—|r+1 W,ctlg.p) =Wyulg+ Lop
R =7 "f
Rotate: W is(g.n) = W, (S(g, p)T
I.:J \ ! L .

I, L oS oo
» Classical: 11 — 3 Z Li(u) o Quantum: p — z Z( WEN WY

o Acts on Wigner functions as classical expander on classical distributior
(hence properties like gap inherited)
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e Simplest known (efficient) quantum expander

e Similar ideas for a link of graph theory and quantum info!?
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® So..summary and open questions
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« This talk:

* New models of measurement-based computing, beyond graph states
o Matrix-product state/tensor network approach

e Classification of quantum wires, primitives to construct large class of models
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 This talk:

 New models of measurement-based computing, beyond graph states

o Matrix-product state/tensor network approach

e Classification of quantum wires, primitives to construct large class of models
e “Quantum LEGO®",
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 This talk:

 New models of measurement-based computing, beyond graph states

e Matrix-product state/tensor network approach

e Classification of quantum wires, primitives to construct large class of models
e “Quantum LEGO®",
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» Open questions:

e What gapped ground states of nearest-neighbor Hamiltonian universal?

e Can turn round and learn about classical efficient sirm:latai::rili1:;,/@]&’976,78
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e By-product angle ©
o,

Pirsa: 08050016

Page 77/78



(:):}";'

i

s

e By-product angle ©
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