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@ Main problem: Fields in QF T are operator valued distributions
(example of distribution Dirac’s d-function: [ dzrd(z —z')f(z) = f(z))

@ Proofs of Noether's theorem involve manipulations which do not make sense when
dealing with distributions (e.g. taking the product of two distributions)

@ In particular given a conserved current j*(z) — }*(zx) the conserved charge
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does not exist (cfr. Lopuzsanki)
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The fate of Noether's theorem in QFT

Main problem: Fields in QFT are operator valued distributions
(example of distribution Dirac’s d-function: [dzé(z —z')f(z) = f(z'))

Proofs of Noether's theorem involve manipulations which do not make sense when
dealing with distributions (e.g. taking the product of two distributions)

In particular given a conserved current j*(x) — j*(z) the conserved charge
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is not a well defined operator!

A rigorous formulation of Noether's theorem in axiomatic quantum field theory
does not exist (cfr. Lopuzsanki)

However methods of classical field theory can be adapted to the quantum case to
prove the converse of Noether s theorem:
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The fate of Noether's theorem in QFT

Main problem: Fields in QFT are operator valued distributions
(example of distribution Dirac’s d-function: [ dzrd(z —z')f(z) = f(z'))
Proofs of Noether's theorem involve manipulations which do not make sense when

dealing with distributions (e.g. taking the product of two distributions)

In particular given a conserved current j*(z) — j*(x) the conserved charge
Q= [ £7°@)

is not a well defined operator!

A rigorous formulation of Noether's theorem in axiomatic quantum field theory
does not exist (cfr. Lopuzsanki)

However methods of classical field theory can be adapted to the quantum case to
prove the converse of Noether s theorem:

The charge associated to a conserved current is the generator of a
one-parameter continuous group of symmetry transformations:

Ulr) = exp(iQ1)
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Charges, generators and the Ward identity

irsa: 08050008 Page 13/72




Charges, generators and the Ward identity

KRS Theorem (Kastler, Robinson and Swieca, 1966)

Given a local and locally conserved current jp(r) the charge Q defines a
symmetry generator G

G > o(z)|0) = [Q. ¢(2)]| 0)
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KRS Theorem (Kastler, Robinson and Swieca, 1966)

Given a local and locally conserved current j,.(x) the charge Q defines a
symmetry generator G

G > &(z)|0) = [Q. 6(x)]|0)
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KRS Theorem (Kastler, Robinson and Swieca, 1966)

Given a local and locally conserved current j.(x) the charge Q defines a
symmetry generator G

G > o(z)|0) = [Q. 6(2)]| 0)

Hilbert space of states of free quantum fields is defined as a representation of the group
of symmetries of Minkowski space (Poincare group), e.g.
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Charges, generators and the Ward identity

KRS Theorem (Kastler, Robinson and Swieca, 1966)

Given a local and locally conserved current j.(x) the charge Q defines a
symmetry generator G

G > o(z)|0) = [Q, ¢(x)]| 0)

Hilbert space of states of free quantum fields is defined as a representation of the group
of symmetries of Minkowski space (Poincare group), e.g.

T — Q" — P* —|p)
Path integral techniques offer an alternative way to implement classical symmetries in
the quantum framework.
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Charges, generators and the Ward identity

KRS Theorem (Kastler, Robinson and Swieca, 1966)

Given a local and locally conserved current j.(x) the charge Q defines a
symmetry generator G

G > o(x)|0) = [Q, o(x)]| 0)

Hilbert space of states of free quantum fields is defined as a representation of the group
of symmetries of Minkowski space (Poincaré group), e.g.

T — Q" — P* — |5)
Path integral techniques offer an alternative way to implement classical symmetries in
the quantum framework.
A set of relations involving j*(x), o(x) and G can be established, known as Ward
identities
I (3 (2)B(x1)...0(xn)) = —i ¥ 8(x — 2:)(@(x1)...G D> &(Zs)...0(zn))
=1
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Charges, generators and the Ward identity

KRS Theorem (Kastler, Robinson and Swieca, 1966)

Given a local and locally conserved current j.(x) the charge Q defines a
symmetry generator G

G > o(z)|0) = [Q, o(x)]| 0)

Hilbert space of states of free quantum fields is defined as a representation of the group
of symmetries of Minkowski space (Poincare group), e.g.

T Q@ — P* - |p)
Path integral techniques offer an alternative way to implement classical symmetries in

the quantum framework.
A set of relations involving j*(x), o(x) and G can be established, known as Ward

identities
B (3" (2)0(x1)...0(xn)) = —i ¥ _ 8(x — z:)($(x1)...G > &(2:)...0(xn))
=1

The Ward identities provide a useful tool for formulating the converse of Noether's
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theorem and for understanding genuinely quantum phenomena like anomalies.




“Mutant” charges in 2d QFT

Integrating the Ward identity

GD@"—"):/ dz 3, (j*(x)o(z")) = &7 (j°(z)o(z"))
V aVv

for a local current gives back the action G > o(z’) = [Q, ¢(z")], however the integral
reps encompasses more general cases...
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“Mutant” charges in 2d QFT

Integrating the Ward identity
G o(z') = [ dz 8, (j* (x)o(z")) = d&F (j°(z)o(z"))
Jv av

for a local current gives back the action G > ¢(z’) = [Q, ¢(z")], however the integral
reps encompasses more general cases. ..
In 14+1-d QFT, integrable models exhibit non-local conserved currents...
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“Mutant” charges in 2d QFT

Integrating the Ward identity

Go o) = [ dra.(*@ee) = [ £FG@E)

for a local current gives back the action G > o(z') = [Q. ¢(z")], however the integral

reps encompasses more general cases. ..
In 14+1-d QFT, integrable models exhibit non-local conserved currents...

the action of the symmetry gen. associated with charges Q“ i1s a braided commutator
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“Mutant” charges in 2d QFT

Integrating the Ward identity

Go o) = [ dra.(*@ee) = [ £EE@E)

for a local current gives back the action G > ¢(z) = [Q, ¢(z")], however the integral
reps encompasses more general cases...

In 14+1-d QFT, integrable models exhibit non-local conserved currents...
the action of the symmetry gen. associated with charges Q“ I1s a braided commutator
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“Mutant” charges in 2d QFT

Integrating the Ward identity

Go o) = [ dra. G (@e@) = [ PEG@6E))

for a local current gives back the action G > o(z’) = [Q, ¢(z")], however the integral
reps encompasses more general cases...

In 14+1-d QFT, integrable models exhibit non-local conserved currents...

the action of the symmetry gen. associated with charges Q“ is a braided commutator
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@ Q%'s do not generate a group but a quantum group (Lie algebra — Hopf algebra)
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“Mutant” charges in 2d QFT

Integrating the Ward identity

Go o) = [ dra.(*@ee) = [ £EG@E)

for a local current gives back the action G > ¢(z2) = [Q, ¢(z")], however the integral
reps encompasses more general cases...

In 14+1-d QFT, integrable models exhibit non-local conserved currents...
the action of the symmetry gen. associated with charges Q“ i1s a braided commutator
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@ Q%'s do not generate a group but a quantum group (Lie algebra — Hopf algebra)

@ The information in the non-trivial algebraic structure of the Q“’s is enough to
reconstruct the full S-matrix i.e. to completely solve the theory!
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Charges, generators and the Ward identity

KRS Theorem (Kastler, Robinson and Swieca, 1966)

Given a local and locally conserved current j.(x) the charge Q defines a
symmetry generator G

G > o(z)|0) = [Q, ¢(x)]| 0)

Hilbert space of states of free quantum fields is defined as a representation of the group
of symmetries of Minkowski space (Poincare group), e.g.

™ — Q" — P* —|p)
Path integral techniques offer an alternative way to implement classical symmetries in

the quantum framework.
A set of relations involving j“(x), o(x) and G can be established, known as Ward

identities
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=1

The Ward identities provide a useful tool for formulating the converse of Noether's
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Going non-local in 4d: DSR and all that

Could something similar to the 1+1d case happen to more familiar currents
(e.g. energy-momentum tensor T"" ) in 3-+1d ?
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“Mutant” charges in 2d QFT

Integrating the Ward identity
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for a local current gives back the action G > ¢(z’) = [Q, ¢(z")], however the integral
reps encompasses more general cases...

In 14+1-d QFT, integrable models exhibit non-local conserved currents...
the action of the symmetry gen. associated with charges Q“ is a braided commutator
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Pirsa: 08050008 Page 32/72




Going non-local in 4d: DSR and all that

Could something similar to the 1-+-1d case happen to more familiar currents
(e.g. energy-momentum tensor T"" ) in 3+1d ?
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Going non-local in 4d: DSR and all that

Could something similar to the 1-+-1d case happen to more familiar currents
(e.g. energy-momentum tensor T"" ) in 3-+1d ?

@ Common belief in the QG community: QFT observables (i.e. operators) obtained
from a full theory of QG exhibit non-locality
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@ Common belief in the QG community: QFT observables (i.e. operators) obtained
from a full theory of QG exhibit non-locality

@ treatment similar to 1+1-d case to charges associated to space-time symmetries
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Going non-local in 4d: DSR and all that

Could something similar to the 1--1d case happen to more familiar currents
(e.g. energy-momentum tensor T"" ) in 3-+1d ?

@ Common belief in the QG community: QFT observables (i.e. operators) obtained
from a full theory of QG exhibit non-locality

@ treatment similar to 1+1-d case to charges associated to space-time symmetries

Poincare (Lie) algebra — s-Poincare (Hopf) algebra
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Going non-local in 4d: DSR and all that

Could something similar to the 1-+-1d case happen to more familiar currents
(e.g. energy-momentum tensor T"" ) in 3-+1d ?

@ Common belief in the QG community: QFT observables (i.e. operators) obtained
from a full theory of QG exhibit non-locality

@ treatment similar to 1+1-d case to charges associated to space-time symmetries
Poincare (Lie) algebra — s-Poincare (Hopf) algebra

@ Same algebraic tools neede to deal with non-locality of the charges allow to
introduce an observer independent length (mass ') scale k ~ E, = 10" GeV

Doubly Special Relativity (DSR)
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Could something similar to the 1+1d case happen to more familiar currents
(e.g. energy-momentum tensor T"" ) in 3-+1d ?

@ Common belief in the QG community: QFT observables (i.e. operators) obtained
from a full theory of QG exhibit non-locality

@ treatment similar to 1+1-d case to charges associated to space-time symmetries
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Doubly Special Relativity (DSR)

@ The converse of Noether's theorem allows to charactenize the deformed generators
of translation symmetries P. in terms of the conserved charges Q.
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from a full theory of QG exhibit non-locality

@ treatment similar to 1+1-d case to charges associated to space-time symmetries
Poincare (Lie) algebra — s-Poincare (Hopf) algebra
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@ The converse of Noether's theorem allows to charactenize the deformed generators
of translation symmetries P. in terms of the conserved charges Q..

@ PC’'s describe a deformed Hilbert with a richer structure than standard local QFT
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Going non-local in 4d: DSR and all that

Could something similar to the 1+1d case happen to more familiar currents
(e.g. energy-momentum tensor T"" ) in 3-+1d ?

@ Common belief in the QG community: QFT observables (i.e. operators) obtained
from a full theory of QG exhibit non-locality

@ treatment similar to 1+1-d case to charges associated to space-time symmetries
Poincare (Lie) algebra — s-Poincare (Hopf) algebra

@ Same algebraic tools neede to deal with non-locality of the charges allow to
introduce an observer independent length (mass ') scale k ~ E, = 10" GeV

Doubly Special Relativity (DSR)

@ The converse of Noether's theorem allows to charactenize the deformed generators
of translation symmetries P. in terms of the conserved charges Q.

@ P.’'s describe a deformed Hilbert with a richer structure than standard local QF T

subject of current research:
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Going non-local in 4d: DSR and all that

Could something similar to the 1+1d case happen to more familiar currents
(e.g. energy-momentum tensor T"" ) in 3-+1d ?

Common belief in the QG community: QFT observables (i.e. operators) obtained
from a full theory of QG exhibit non-locality

treatment similar to 1+1-d case to charges associated to space-time symmetries
Poincare (Lie) algebra — s-Poincare (Hopf) algebra

Same algebraic tools neede to deal with non-locality of the charges allow to
introduce an observer independent length (mass ') scale k ~ E, = 10" GeV

Doubly Special Relativity (DSR)

The converse of Noether's theorem allows to charactenze the deformed generators
of translation symmetries P. in terms of the conserved charges Q..

P!'s describe a deformed Hilbert with a richer structure than standard local QFT

subject of current research:
understanding the statistics of k-particles (with D. Benedetti)
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Going non-local in 4d: DSR and all that

Could something similar to the 1+1d case happen to more familiar currents
(e.g. energy-momentum tensor T"" ) in 3-+1d ?

Common belief in the QG community: QFT observables (i.e. operators) obtained
from a full theory of QG exhibit non-locality

treatment similar to 1+1-d case to charges associated to space-time symmetries
Poincare (Lie) algebra — s-Poincare (Hopf) algebra

Same algebraic tools neede to deal with non-locality of the charges allow to
introduce an observer independent length (mass ') scale k ~ E, = 107 GeV

Doubly Special Relativity (DSR)

The converse of Noether's theorem allows to charactenze the deformed generators
of translation symmetries P. in terms of the conserved charges Q.

P!'s describe a deformed Hilbert with a richer structure than standard local QFT

subject of current research:
understanding the statistics of s-particles (with D. Benedetti)
coaweguences for black hole info paradox (with A. Hamma and S. Severini)  ruean
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oIng non-local In 4d: DSK and all'tha

Could something similar to the 1. 1d case happen to more familiar currents
(e.g. energy-momentum tensor T ) in 34.1d ¢

o Common belief in the QG community: QFT observablos (1.e. operators) obtaing
from a full theory of QG exhibit non:locality

o treatment similar to 1-4:1-d case to charges associated to spaco-time symmetrle
Polncard (Lie) algebra —+ x<Poincaré (Hopf) algebra

o Same algebraic tools neede to deal with non-locality of the charges allow to
introduce an obseever independent length (mass V) scale s = E, ¢ 10" eV

Doubly Special Rolativity (DSR)

o The converse of Noether's theorem allows to characterize the deformed generator
i 1 " i
of translation symmaotries I in terms of the consorved chargoes O

I"'s describe a deformed Hilbert with a richer structure than standard local QF

Parionatar Inatitute) Cuerents, tharpes and wyment tries in QFT



Going non-local in 4d: DSR and all that

Could something similar to the 1+1d case happen to more familiar currents
(e.g. energy-momentum tensor T"" ) in 3-+1d ?

@ Common belief in the QG community: QFT observables (i.e. operators) obtained
from a full theory of QG exhibit non-locality

@ treatment similar to 1+1-d case to charges associated to space-time symmetries
Poincare (Lie) algebra — s-Poincare (Hopf) algebra

@ Same algebraic tools neede to deal with non-locality of the charges allow to
introduce an observer independent length (mass ') scale k ~ E, = 10" GeV

Doubly Special Relativity (DSR)

@ The converse of Noether's theorem allows to charactenze the deformed generators
of translation symmetries P. in terms of the conserved charges Q).

@ PY's describe a deformed Hilbert with a richer structure than standard local QF T
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Emmy Noether 1882-1935
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Heomonn Weyl 1935




Emmy Noether 1882 —1935.
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identity?

One could ask: what is the source of the [twice contracted] Bianchi identities?
The

ISWET IS T Iﬂl"ﬂw mam -.te COvVaranc :-‘L“ aCLET C:! EHS-EE .'5 EENSOr C“'.
E}I
YVE 5 :“i F.‘-IEHE

h
m the existence of 2 variational principle leading o G™.

and fro
a way as to exhibic che reason for their validity: covariance

the dentites in such a
with respect o all the ocansformatons.™
n 44

identides. They are a

“The proof also shows the character of the Bianchi
- |

consequence of the invariance of the gravimtonal acton, that is. they are
consequence of the temporal character of the theory which is covariant wich
respect to all ransformadons™

954

Robert Wald, General Relariviry,

The Bianchi identity “may be viewed as a consequence of the invariance of the
Hilbert acton under diffecmorphisms”™ p. 345,
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