Title: Symmetry Principles in Physics - Lecture 4A

Date: May 05, 2008 11:00 AM

URL: http://pirsa.org/08050008

Abstract:

Currents, charges and symmetries in QFT

Michele Arzano

Perimeter Institute

May 5, 2008

Currents, charges and symmetries in QFT

Michele Arzano

Perimeter Institute

May 5, 2008

Pirsa: 08050008 Page 4/72

Main problem: Fields in QFT are operator valued distributions

Pirsa: 08050008 Page 5/72

• Main problem: Fields in QFT are operator valued distributions (example of distribution Dirac's δ -function: $\int dx \, \delta(x-x') f(x) = f(x')$)

Pirsa: 08050008 Page 6/72

- Main problem: Fields in QFT are operator valued distributions (example of distribution Dirac's δ -function: $\int dx \, \delta(x-x') f(x) = f(x')$)
- Proofs of Noether's theorem involve manipulations which do not make sense when dealing with distributions (e.g. taking the product of two distributions)

Pirsa: 08050008 Page 7/72

- Main problem: Fields in QFT are operator valued distributions (example of distribution Dirac's δ -function: $\int dx \, \delta(x-x') f(x) = f(x')$)
- Proofs of Noether's theorem involve manipulations which do not make sense when dealing with distributions (e.g. taking the product of two distributions)
- In particular given a conserved current $j^{\mu}(x) \rightarrow \hat{j}^{\mu}(x)$ the conserved charge

$$\hat{Q} = \int d^3 \vec{x} \, \hat{j}^0(x)$$

- Main problem: Fields in QFT are operator valued distributions (example of distribution Dirac's δ -function: $\int dx \, \delta(x-x') f(x) = f(x')$)
- Proofs of Noether's theorem involve manipulations which do not make sense when dealing with distributions (e.g. taking the product of two distributions)
- In particular given a conserved current $j^{\mu}(x) \rightarrow \hat{j}^{\mu}(x)$ the conserved charge

$$\hat{Q} = \int d^3\vec{x} \, \hat{j}^0(x)$$

is not a well defined operator!

- Main problem: Fields in QFT are operator valued distributions (example of distribution Dirac's δ -function: $\int dx \, \delta(x-x') f(x) = f(x')$)
- Proofs of Noether's theorem involve manipulations which do not make sense when dealing with distributions (e.g. taking the product of two distributions)
- In particular given a conserved current $j^{\mu}(x) \rightarrow \hat{j}^{\mu}(x)$ the conserved charge

$$\hat{Q} = \int d^3 \vec{x} \, \hat{j}^0(x)$$

is not a well defined operator!

 A rigorous formulation of Noether's theorem in axiomatic quantum field theory does not exist (cfr. Lopuzsanki)

- Main problem: Fields in QFT are operator valued distributions (example of distribution Dirac's δ -function: $\int dx \, \delta(x-x') f(x) = f(x')$)
- Proofs of Noether's theorem involve manipulations which do not make sense when dealing with distributions (e.g. taking the product of two distributions)
- In particular given a conserved current $j^{\mu}(x) \rightarrow \hat{j}^{\mu}(x)$ the conserved charge

$$\hat{Q} = \int d^3\vec{x} \, \hat{j}^0(x)$$

is not a well defined operator!

- A rigorous formulation of Noether's theorem in axiomatic quantum field theory does not exist (cfr. Lopuzsanki)
- However methods of classical field theory can be adapted to the quantum case to prove the converse of Noether's theorem:

- Main problem: Fields in QFT are operator valued distributions (example of distribution Dirac's δ -function: $\int dx \, \delta(x-x') f(x) = f(x')$)
- Proofs of Noether's theorem involve manipulations which do not make sense when dealing with distributions (e.g. taking the product of two distributions)
- In particular given a conserved current $j^{\mu}(x) \rightarrow \hat{j}^{\mu}(x)$ the conserved charge

$$\hat{Q} = \int d^3 \vec{x} \, \hat{j}^0(x)$$

is not a well defined operator!

- A rigorous formulation of Noether's theorem in axiomatic quantum field theory does not exist (cfr. Lopuzsanki)
- However methods of classical field theory can be adapted to the quantum case to prove the converse of Noether's theorem:

The charge associated to a conserved current is the generator of a one-parameter continuous group of symmetry transformations:

$$U(\tau) = \exp(iQ\tau)$$

Pirsa: 08050008 Page 13/72

KRS Theorem (Kastler, Robinson and Swieca, 1966)

Given a local and locally conserved current $\hat{j}_{\mu}(x)$ the charge \hat{Q} defines a symmetry generator G

$$G \rhd \phi(x)|0\rangle \equiv [\hat{Q}, \phi(x)]|0\rangle$$

Pirsa: 08050008 Page 14/72

[j,(x),4(y)] = 0 Space - Liker

 $\left[j_{\mu}(x), \phi(y)\right] = 0$ $\left[j_{\mu}(x), j_{\mu}(y)\right] \times i_{\mu} \times i_$

KRS Theorem (Kastler, Robinson and Swieca, 1966)

Given a local and locally conserved current $\hat{j}_{\mu}(x)$ the charge \hat{Q} defines a symmetry generator G

$$G \rhd \phi(x)|0\rangle \equiv [\hat{Q}, \phi(x)]|0\rangle$$

Pirsa: 08050008 Page 18/72

KRS Theorem (Kastler, Robinson and Swieca, 1966)

Given a local and locally conserved current $\hat{j}_{\mu}(x)$ the charge \hat{Q} defines a symmetry generator G

$$G \rhd \phi(x)|0\rangle \equiv [\hat{Q}, \phi(x)]|0\rangle$$

Hilbert space of states of free quantum fields is defined as a representation of the group of symmetries of Minkowski space (Poincaré group), e.g.

Pirsa: 08050008 Page 19/72

KRS Theorem (Kastler, Robinson and Swieca, 1966)

Given a local and locally conserved current $\hat{j}_{\mu}(x)$ the charge \hat{Q} defines a symmetry generator G

$$G \rhd \phi(x)|0\rangle \equiv [\hat{Q}, \phi(x)]|0\rangle$$

Hilbert space of states of free quantum fields is defined as a representation of the group of symmetries of Minkowski space (Poincaré group), e.g.

$$T^{\mu\nu} \to Q^{\mu} \to P^{\mu} \to |\vec{p}\rangle$$

Path integral techniques offer an alternative way to implement classical symmetries in the quantum framework.

Pirsa: 08050008 Page 20/72

KRS Theorem (Kastler, Robinson and Swieca, 1966)

Given a local and locally conserved current $\hat{j}_{\mu}(x)$ the charge \hat{Q} defines a symmetry generator G

$$G \rhd \phi(x)|0\rangle \equiv [\hat{Q}, \phi(x)]|0\rangle$$

Hilbert space of states of free quantum fields is defined as a representation of the group of symmetries of Minkowski space (Poincaré group), e.g.

$$T^{\mu\nu} \rightarrow Q^{\mu} \rightarrow P^{\mu} \rightarrow |\vec{p}\rangle$$

Path integral techniques offer an alternative way to implement classical symmetries in the quantum framework.

A set of relations involving $j^{\mu}(x)$, $\phi(x)$ and G can be established, known as Ward identities

$$\partial_{\mu}\langle j^{\mu}(x)\phi(x_1)...\phi(x_n)\rangle = -i\sum_{i=1}^{n}\delta(x-x_i)\langle\phi(x_1)...G\rhd\phi(x_i)...\phi(x_n)\rangle$$

KRS Theorem (Kastler, Robinson and Swieca, 1966)

Given a local and locally conserved current $\hat{j}_{\mu}(x)$ the charge \hat{Q} defines a symmetry generator G

$$G \rhd \phi(x)|0\rangle \equiv [\hat{Q}, \phi(x)]|0\rangle$$

Hilbert space of states of free quantum fields is defined as a representation of the group of symmetries of Minkowski space (Poincaré group), e.g.

$$T^{\mu\nu} \to Q^{\mu} \to P^{\mu} \to |\vec{p}\rangle$$

Path integral techniques offer an alternative way to implement classical symmetries in the quantum framework.

A set of relations involving $j^{\mu}(x)$, $\phi(x)$ and G can be established, known as Ward identities

$$\partial_{\mu}\langle j^{\mu}(x)\phi(x_1)...\phi(x_n)\rangle = -i\sum_{i=1}^{n}\delta(x-x_i)\langle\phi(x_1)...G\rhd\phi(x_i)...\phi(x_n)\rangle$$

The Ward identities provide a **useful tool** for formulating the converse of Noether's theorem and for understanding genuinely quantum phenomena like anomalies. Page 22/72

Integrating the Ward identity

$$G \triangleright \phi(x') = \int_{V} dx \, \partial_{\mu} \langle j^{\mu}(x)\phi(x') \rangle = \int_{\partial V} d^{3}\vec{x} \, \langle j^{0}(x)\phi(x') \rangle$$

for a **local current** gives back the action $G \triangleright \phi(x') = [Q, \phi(x')]$, however the integral reps encompasses more general cases...

Pirsa: 08050008 Page 23/72

Integrating the Ward identity

$$G \rhd \phi(x') = \int_{V} dx \, \partial_{\mu} \langle j^{\mu}(x)\phi(x') \rangle = \int_{\partial V} d^{3}\vec{x} \, \langle j^{0}(x)\phi(x') \rangle$$

for a **local current** gives back the action $G \triangleright \phi(x') = [Q, \phi(x')]$, however the integral reps encompasses more general cases...

In 1+1-d QFT, integrable models exhibit non-local conserved currents...

[j,(x), d(y)] x~ y [j,(x), j,(y)] x~ y [j,(x), j,(y)] spec-cker sep.

Integrating the Ward identity

$$G \triangleright \phi(x') = \int_{V} dx \, \partial_{\mu} \langle j^{\mu}(x)\phi(x') \rangle = \int_{\partial V} d^{3}\vec{x} \, \langle j^{0}(x)\phi(x') \rangle$$

for a **local current** gives back the action $G \triangleright \phi(x') = [Q, \phi(x')]$, however the integral reps encompasses more general cases...

In 1+1-d QFT, integrable models exhibit non-local conserved currents...

the action of the symmetry gen. associated with charges Q^a is a braided commutator

$$= \frac{\begin{array}{c} C_z \\ -\overline{\omega} \\ \end{array}}{\begin{array}{c} \gamma \\ \end{array}} = \frac{\begin{array}{c} C_z \\ -\overline{\omega} \\ \end{array}}{\begin{array}{c} \gamma \\ \end{array}} \frac{\gamma \cdot }{z} \cdot \underline{\omega}$$

$$G^a \rhd \Phi^k = Q^a \Phi^k - \Theta_{bl}^{ak} \Phi^b Q^l$$

Integrating the Ward identity

$$G \triangleright \phi(x') = \int_{V} dx \, \partial_{\mu} \langle j^{\mu}(x)\phi(x') \rangle = \int_{\partial V} d^{3}\vec{x} \, \langle j^{0}(x)\phi(x') \rangle$$

for a **local current** gives back the action $G \triangleright \phi(x') = [Q, \phi(x')]$, however the integral reps encompasses more general cases...

In 1+1-d QFT, integrable models exhibit non-local conserved currents...

the action of the symmetry gen. associated with charges Q^a is a braided commutator

$$= \frac{\begin{array}{c} C_z \\ -\overline{\omega} \\ \end{array}}{\begin{array}{c} \gamma_{(y)} \end{array}} = \frac{\begin{array}{c} C_z \\ -\overline{\omega} \\ \end{array}}{\begin{array}{c} \gamma \\ \end{array}} \frac{\gamma \cdot }{z} \cdot \underline{\omega}$$

$$G^a \rhd \Phi^k = Q^a \Phi^k - \Theta_{bl}^{ak} \Phi^b Q^l$$

Integrating the Ward identity

$$G \rhd \phi(x') = \int_{V} dx \, \partial_{\mu} \langle j^{\mu}(x)\phi(x') \rangle = \int_{\partial V} d^{3}\vec{x} \, \langle j^{0}(x)\phi(x') \rangle$$

for a **local current** gives back the action $G \triangleright \phi(x') = [Q, \phi(x')]$, however the integral reps encompasses more general cases...

In 1+1-d QFT, integrable models exhibit non-local conserved currents...

the action of the symmetry gen. associated with charges Q^a is a braided commutator

$$= \frac{\begin{array}{c} C_z \\ -\overline{\omega} \\ \end{array} \begin{array}{c} \gamma \bullet \overline{z} \\ \overline{z} \\ \end{array} \begin{array}{c} \gamma \bullet \overline{z} \\ \overline{z} \\ \end{array} \begin{array}{c} \gamma \bullet \overline{z} \\ \overline{z} \\ \overline{z} \\ \end{array} \begin{array}{c} \gamma \bullet \overline{z} \\ \overline{z} \\ \overline{z} \\ \end{array} \begin{array}{c} \gamma \bullet \overline{z} \\ \overline{z}$$

$$G^a \rhd \Phi^k = Q^a \Phi^k - \Theta^{ak}_{bl} \Phi^b Q^l$$

ullet Q^a 's do not generate a group but a quantum group (Lie algebra o Hopf algebra)

Integrating the Ward identity

$$G \rhd \phi(x') = \int_{V} dx \, \partial_{\mu} \langle j^{\mu}(x)\phi(x') \rangle = \int_{\partial V} d^{3}\vec{x} \, \langle j^{0}(x)\phi(x') \rangle$$

for a **local current** gives back the action $G \triangleright \phi(x') = [Q, \phi(x')]$, however the integral reps encompasses more general cases...

In 1+1-d QFT, integrable models exhibit non-local conserved currents...

the action of the symmetry gen. associated with charges Q^a is a braided commutator

$$G^a \rhd \Phi^k = Q^a \Phi^k - \Theta^{ak}_{bl} \Phi^b Q^l$$

- ullet Q^a 's do not generate a group but a quantum group (Lie algebra o Hopf algebra)
- The information in the non-trivial algebraic structure of the Q^a's is enough to reconstruct the full S-matrix i.e. to completely solve the theory!

KRS Theorem (Kastler, Robinson and Swieca, 1966)

Given a local and locally conserved current $\hat{j}_{\mu}(x)$ the charge \hat{Q} defines a symmetry generator G

$$G \rhd \phi(x)|0\rangle \equiv [\hat{Q}, \phi(x)]|0\rangle$$

Hilbert space of states of free quantum fields is defined as a representation of the group of symmetries of Minkowski space (Poincaré group), e.g.

$$T^{\mu\nu} \to Q^{\mu} \to P^{\mu} \to |\vec{p}\rangle$$

Path integral techniques offer an alternative way to implement classical symmetries in the quantum framework.

A set of relations involving $j^{\mu}(x)$, $\phi(x)$ and G can be established, known as Ward identities

$$\partial_{\mu}\langle j^{\mu}(x)\phi(x_1)...\phi(x_n)\rangle = -i\sum_{i=1}^{n}\delta(x-x_i)\langle\phi(x_1)...G\rhd\phi(x_i)...\phi(x_n)\rangle$$

The Ward identities provide a **useful tool** for formulating the converse of Noether's theorem and for understanding genuinely quantum phenomena like anomalies. Page 30/72

Could something similar to the 1+1d case happen to more familiar currents (e.g. energy-momentum tensor $T^{\mu\nu}$) in 3+1d?

Pirsa: 08050008 Page 31/72

Integrating the Ward identity

$$G \rhd \phi(x') = \int_{V} dx \, \partial_{\mu} \langle j^{\mu}(x)\phi(x') \rangle = \int_{\partial V} d^{3}\vec{x} \, \langle j^{0}(x)\phi(x') \rangle$$

for a **local current** gives back the action $G \triangleright \phi(x') = [Q, \phi(x')]$, however the integral reps encompasses more general cases...

In 1+1-d QFT, integrable models exhibit non-local conserved currents...

the action of the symmetry gen. associated with charges Q^a is a braided commutator

$$G^a \rhd \Phi^k = Q^a \Phi^k - \Theta^{ak}_{bl} \Phi^b Q^l$$

- ullet Q^a 's do not generate a group but a quantum group (Lie algebra o Hopf algebra)
- The information in the non-trivial algebraic structure of the Q^a's is enough to reconstruct the full S-matrix i.e. to completely solve the theory!

Could something similar to the 1+1d case happen to more familiar currents (e.g. energy-momentum tensor $T^{\mu\nu}$) in 3+1d?

Pirsa: 08050008 Page 33/72

Could something similar to the 1+1d case happen to more familiar currents (e.g. energy-momentum tensor $T^{\mu\nu}$) in 3+1d?

 Common belief in the QG community: QFT observables (i.e. operators) obtained from a full theory of QG exhibit non-locality

Pirsa: 08050008 Page 34/72

Could something similar to the 1+1d case happen to more familiar currents (e.g. energy-momentum tensor $T^{\mu\nu}$) in 3+1d?

- Common belief in the QG community: QFT observables (i.e. operators) obtained from a full theory of QG exhibit non-locality
- treatment similar to 1+1-d case to charges associated to space-time symmetries

Could something similar to the 1+1d case happen to more familiar currents (e.g. energy-momentum tensor $T^{\mu\nu}$) in 3+1d?

- Common belief in the QG community: QFT observables (i.e. operators) obtained from a full theory of QG exhibit non-locality
- treatment similar to 1+1-d case to charges associated to space-time symmetries

Poincaré (Lie) algebra $\rightarrow \kappa$ -Poincaré (Hopf) algebra

Could something similar to the 1+1d case happen to more familiar currents (e.g. energy-momentum tensor $T^{\mu\nu}$) in 3+1d?

- Common belief in the QG community: QFT observables (i.e. operators) obtained from a full theory of QG exhibit non-locality
- treatment similar to 1+1-d case to charges associated to space-time symmetries

Poincaré (Lie) algebra $\rightarrow \kappa$ -Poincaré (Hopf) algebra

• Same algebraic tools neede to deal with non-locality of the charges allow to introduce an observer independent length (mass⁻¹) scale $\kappa \simeq E_p = 10^{19} GeV$ Doubly Special Relativity (DSR)

Pirsa: 08050008 Page 37/72

Could something similar to the 1+1d case happen to more familiar currents (e.g. energy-momentum tensor $T^{\mu\nu}$) in 3+1d?

- Common belief in the QG community: QFT observables (i.e. operators) obtained from a full theory of QG exhibit non-locality
- treatment similar to 1+1-d case to charges associated to space-time symmetries

Poincaré (Lie) algebra → κ-Poincaré (Hopf) algebra

- Same algebraic tools neede to deal with non-locality of the charges allow to introduce an observer independent length (mass⁻¹) scale $\kappa \simeq E_p = 10^{19} GeV$ Doubly Special Relativity (DSR)
- The converse of Noether's theorem allows to characterize the deformed generators of translation symmetries P^{μ}_{κ} in terms of the conserved charges Q^{μ}_{κ}

Could something similar to the 1+1d case happen to more familiar currents (e.g. energy-momentum tensor $T^{\mu\nu}$) in 3+1d?

- Common belief in the QG community: QFT observables (i.e. operators) obtained from a full theory of QG exhibit non-locality
- treatment similar to 1+1-d case to charges associated to space-time symmetries

Poincaré (Lie) algebra → κ-Poincaré (Hopf) algebra

- Same algebraic tools neede to deal with non-locality of the charges allow to introduce an observer independent length (mass⁻¹) scale $\kappa \simeq E_p = 10^{19} GeV$ Doubly Special Relativity (DSR)
- The converse of Noether's theorem allows to characterize the deformed generators of translation symmetries P^{μ}_{κ} in terms of the conserved charges Q^{μ}_{κ}
- P_{κ}^{μ} 's describe a deformed Hilbert with a **richer structure** than standard local QFT

Could something similar to the 1+1d case happen to more familiar currents (e.g. energy-momentum tensor $T^{\mu\nu}$) in 3+1d?

- Common belief in the QG community: QFT observables (i.e. operators) obtained from a full theory of QG exhibit non-locality
- treatment similar to 1+1-d case to charges associated to space-time symmetries

Poincaré (Lie) algebra → κ-Poincaré (Hopf) algebra

- Same algebraic tools neede to deal with non-locality of the charges allow to introduce an observer independent length (mass⁻¹) scale $\kappa \simeq E_p = 10^{19} GeV$ Doubly Special Relativity (DSR)
- The converse of Noether's theorem allows to characterize the deformed generators of translation symmetries P^{μ}_{κ} in terms of the conserved charges Q^{μ}_{κ}
- ullet P_{κ}^{μ} 's describe a deformed Hilbert with a richer structure than standard local QFT

subject of current research:

Could something similar to the 1+1d case happen to more familiar currents (e.g. energy-momentum tensor $T^{\mu\nu}$) in 3+1d?

- Common belief in the QG community: QFT observables (i.e. operators) obtained from a full theory of QG exhibit non-locality
- treatment similar to 1+1-d case to charges associated to space-time symmetries

Poincaré (Lie) algebra → κ-Poincaré (Hopf) algebra

- Same algebraic tools neede to deal with non-locality of the charges allow to introduce an observer independent length (mass⁻¹) scale $\kappa \simeq E_p = 10^{19} GeV$ Doubly Special Relativity (DSR)
- The converse of Noether's theorem allows to characterize the deformed generators of translation symmetries P^{μ}_{κ} in terms of the conserved charges Q^{μ}_{κ}
- \bullet P_{κ}^{μ} 's describe a deformed Hilbert with a **richer structure** than standard local QFT

subject of current research: understanding the statistics of κ -particles (with D. Benedetti)

Could something similar to the 1+1d case happen to more familiar currents (e.g. energy-momentum tensor $T^{\mu\nu}$) in 3+1d?

- Common belief in the QG community: QFT observables (i.e. operators) obtained from a full theory of QG exhibit non-locality
- treatment similar to 1+1-d case to charges associated to space-time symmetries

Poincaré (Lie) algebra → κ-Poincaré (Hopf) algebra

- Same algebraic tools neede to deal with non-locality of the charges allow to introduce an observer independent length (mass⁻¹) scale $\kappa \simeq E_p = 10^{19} GeV$ Doubly Special Relativity (DSR)
- The converse of Noether's theorem allows to characterize the deformed generators of translation symmetries P^{μ}_{κ} in terms of the conserved charges Q^{μ}_{κ}
- \bullet P_{κ}^{μ} 's describe a deformed Hilbert with a **richer structure** than standard local QFT

subject of current research:
understanding the statistics of κ-particles (with D. Benedetti)

cersa: 98050008ences for black hole info paradox (with A. Hamma and S. Severini)

Page 42/72

Bibliography

- J. Lopuszanski, "An Introduction to symmetry and supersymmetry in quantum field theory" Singapore, Singapore: World Scientific (1991) 373 p
- C. A. Orzalesi, "Charges and generators of symmetry transformations in quantum field theory" Rev. Mod. Phys. 42, 381 (1970).
- O P. Di Francesco, P. Mathieu and D. Senechal, "Conformal Field Theory" New York, USA: Springer (1997) 890 p
- D. Bernard and A. Leclair, "Quantum group symmetries and nonlocal currents in 2-D QFT" Commun. Math. Phys. 142, 99 (1991).
- M. Arzano, "Quantum fields, non-locality and quantum group symmetries" Phys. Rev. D 77, 025013 (2008) [arXiv:0710.1083 [hep-th]].
- G. Amelino-Camelia, "Relativity in space-times with short-distance structure governed by an observer-independent (Planckian) length scale," Int. J. Mod. Phys. D 11, 35 (2002)
- M. Arzano and A. Marciano, "Fock space, quantum fields and kappa-Poincaré symmetries," Phys. Rev. D 76, 125005 (2007) [arXiv:0707.1329 [hep-th]].

Could something similar to the 1+1d case happen to more familiar currents (e.g. energy-momentum tensor $T^{\mu\nu}$) in 3+1d?

- Common belief in the QG community: QFT observables (i.e. operators) obtained from a full theory of QG exhibit non-locality
- treatment similar to 1+1-d case to charges associated to space-time symmetries

Poincaré (Lie) algebra → κ-Poincaré (Hopf) algebra

- Same algebraic tools neede to deal with non-locality of the charges allow to introduce an observer independent length (mass⁻¹) scale $\kappa \simeq E_p = 10^{19} GeV$ Doubly Special Relativity (DSR)
- The converse of Noether's theorem allows to characterize the deformed generators of translation symmetries P^{μ}_{κ} in terms of the conserved charges Q^{μ}_{κ}
- \bullet P_{κ}^{μ} 's describe a deformed Hilbert with a **richer structure** than standard local QFT

subject of current research: understanding the statistics of κ -particles (with D. Benedetti)

Could something similar to the 1+1d case happen to more familiar currents (e.g. energy-momentum tensor $T^{\mu\nu}$) in 3+1d?

- Common belief in the QG community: QFT observables (i.e. operators) obtained from a full theory of QG exhibit non-locality
- treatment similar to 1+1-d case to charges associated to space-time symmetries

Poincaré (Lie) algebra → κ-Poincaré (Hopf) algebra

- Same algebraic tools neede to deal with non-locality of the charges allow to introduce an observer independent length (mass⁻¹) scale $\kappa \simeq E_p = 10^{19} GeV$ Doubly Special Relativity (DSR)
- The converse of Noether's theorem allows to characterize the deformed generators of translation symmetries P^{μ}_{κ} in terms of the conserved charges Q^{μ}_{κ}
- ullet P_{κ}^{μ} 's describe a deformed Hilbert with a **richer structure** than standard local QFT

subject of current research:

Could something similar to the 1+1d case happen to more familiar currents (e.g. energy-momentum tensor $T^{\mu\nu}$) in 3+1d?

- Common belief in the QG community: QFT observables (i.e. operators) obtained from a full theory of QG exhibit non-locality
- treatment similar to 1+1-d case to charges associated to space-time symmetries

Poincaré (Lie) algebra → κ-Poincaré (Hopf) algebra

- Same algebraic tools neede to deal with non-locality of the charges allow to introduce an observer independent length (mass⁻¹) scale $\kappa \simeq E_p = 10^{19} GeV$ Doubly Special Relativity (DSR)
- The converse of Noether's theorem allows to characterize the deformed generators of translation symmetries P^{μ}_{κ} in terms of the conserved charges Q^{μ}_{κ}

Pirsa: 08050008 Page 46/72

 HOHO HO---- 07(Pro(1700172)00--0172) 月の月の---の7(アル(1月)の1月200--の1月2) = [j(x), d(x) -(アル1月21日)・-の1月27+ 1月20(アル1月27)の-・の Horo--07([j(x),4(x)) [j(x),j(x)] -(Polf:>>0-01] -(Polf:>>0-01] -(Polf:>>0-01] -(Polf:>>0-001)

HOHO---07(
[j(x),4(x)

Pr(17017,70--017,7) =
[j(x), j(x)

-(Pr(17,70-017,7) + 17,70(Pr(17,7))

-(Pr(17,7)0-017,7) + 17,70(Pr(17,7))

-(Pr(17,7)0-0

Horonor(
[j,(x),4(y)]

Pr(1P)01P,20-01P,2) = [j,(x),j(y)]

-(P,01P,2)0-01P,2) = [j,(x),j(y)]

-(P,01P,2)0-01P,2) = [j,(x),j(y)]

-(P,01P,2)0-01P,2) = [j,(x),4(y)]

-(P,01P,2)0-1P,2) = [

PiP æ7(() () 月ララ 2--@IPm>)= (PD/P2) JP, = P, & 1 + Page 53/P Pirsa: 08050008

PiP - 87([j, (, 一日で、)一月で、) (x 180.-81P2)+ (PD/P2) 21+10P SP, = P, & 1 + E

Could something similar to the 1+1d case happen to more familiar currents (e.g. energy-momentum tensor $T^{\mu\nu}$) in 3+1d ?

- Common belief in the QG community: QFT observables (i.e. operators) obtains
 from a full theory of QG exhibit non-locality
- treatment similar to 1+1-d case to charges associated to space-time symmetries

Poincaré (Lie) algebra → κ-Poincaré (Hopf) algebra

- Same algebraic tools neede to deal with non-locality of the charges allow to introduce an observer independent length (mass⁻¹) scale κ ≃ E_p = 10¹⁹GeV Doubly Special Relativity (DSR)
- The converse of Noether's theorem allows to characterize the deformed generator of translation symmetries P_{κ}^{μ} in terms of the conserved charges Q_{κ}^{μ}
- P\(^{\mu}\)'s describe a deformed Hilbert with a richer structure than standard local QF

Could something similar to the 1+1d case happen to more familiar currents (e.g. energy-momentum tensor $T^{\mu\nu}$) in 3+1d?

- Common belief in the QG community: QFT observables (i.e. operators) obtained from a full theory of QG exhibit non-locality
- treatment similar to 1+1-d case to charges associated to space-time symmetries

Poincaré (Lie) algebra → κ-Poincaré (Hopf) algebra

- Same algebraic tools neede to deal with non-locality of the charges allow to introduce an observer independent length (mass⁻¹) scale $\kappa \simeq E_p = 10^{19} GeV$ Doubly Special Relativity (DSR)
- The converse of Noether's theorem allows to characterize the deformed generators of translation symmetries P^{μ}_{κ} in terms of the conserved charges Q^{μ}_{κ}
- P_{κ}^{μ} 's describe a deformed Hilbert with a **richer structure** than standard local QFT

Emmy Noether 1882-1935

"She was not clay, pressed by the artistic hands of God into a harmonious form, but rather a chunk of human primary rock into which he had blown his creative breath of life."

Emmy Noether 1882-1935.

Mathematician

- · Born in Ertlangen. Father Max Noether distinguished professor of mathematics at University of Erlangen.
- · At 18, decided to abandon career in school teaching; for two years audits courses in mathematics at the university.
- Women allowed to matriculate. From 1903-1904 audits courses in Göttingen.
- In 1908, at 26, is awarded doctorate in mathematics at Erlangen, thesis on algebraic invariants under Paul Jordan.
- In 1915, invited by David Hilbert and Felix Klein to Göttingen; unpaid lectures under Hilbert's name.
- 1918, Einstein finds it "a great injustice" that E. N. cannot lecture officially, after reading her 1918 paper on invariance problem.
- · 1919, Habilitation, leading to associate professorship (privatdozent).
- 1921, publishes "Theory of Ideals in Rings".

- Born in Ertlangen. Father Max Noether distinguished professor of mathematics at University of Erlangen.
- At 18, decided to abandon career in school teaching; for two years audits courses in mathematics at the university.
- Women allowed to matriculate. From 1903-1904 audits courses in Göttingen.
- In 1908, at 26, is awarded doctorate in mathematics at Erlangen, thesis on algebraic invariants under Paul Jordan.
- In 1915, invited by David Hilbert and Felix Klein to Göttingen; unpaid lectures under Hilbert's name.
- 1918, Einstein finds it "a great injustice" that E. N. cannot lecture officially, after reading her 1918 paper on invariance problem.
- 1919, Habilitation, leading to associate professorship (privatdozent).
- 1921, publishes "Theory of Ideals in Rings".
- 1922, appointed "unofficial, extraordinary professor". Eventually small salary.
- 1933 driven out of Göttingen by Nazis. Offered visiting fellowship at Bryn Mawr college in USA.
- 1935 died after operation from removal of uterine tumour.

- At 18, decided to abandon career in school teaching; for two years audits courses in mathematics at the university.
- Women allowed to matriculate. From 1903-1904 audits courses in Göttingen.
- In 1908, at 26, is awarded doctorate in mathematics at Erlangen, thesis on algebraic invariants under Paul Jordan.
- In 1915, invited by David Hilbert and Felix Klein to Göttingen; unpaid lectures under Hilbert's name.
- 1918, Einstein finds it "a great injustice" that E. N. cannot lecture officially, after reading her 1918 paper on invariance problem.
- 1919, Habilitation, leading to associate professorship (privatdozent).
- 1921, publishes "Theory of Ideals in Rings".
- 1922, appointed "unofficial, extraordinary professor". Eventually small salary.
- 1933 driven out of Göttingen by Nazis. Offered visiting fellowship at Bryn Mawr college in USA.
- 1935 died after operation from removal of uterine tumour.

LOCAL SYMMETRIES

Recall Noether condition for quasi-invariance:

$$\sum_{i} E_{i} \delta \phi_{i} + \Delta_{\mu} \left[\sum_{i} \left(\frac{\delta \mathcal{L}}{\delta (\partial_{\mu} \phi_{i})} \delta \phi_{i} \right) + \mathcal{L} \delta z^{\mu} - C^{\mu} \right] = 0$$
interior (bulk)
boundary

Now
$$\delta_{x}^{\mu}$$
, δ_{ϕ} depend on arbitrary functions $f_{k}(x)$ $(k=1,...,p)$
and $\delta_{\phi} = \sum_{k} \left[a_{ki} f_{k}(x) + b^{\nu}_{ki} \partial_{\nu} f_{k}(x) \right]$

Arbitrariness of fa => interior, boundary terms vanish independently

NOETHER'S ZND THEOREM.

"BIANCHI IDENTITIES "

LOCAL SYMMETRIES

Recall Noether condition for quasi-invariance:

$$\sum_{i} E_{i} \bar{\delta} \phi_{i} + \Delta_{\mu} \left[\sum_{i} \left(\frac{\delta \mathcal{L}}{\delta (\partial_{\mu} \phi_{i})} \bar{\delta} \phi_{i} \right) + \mathcal{L} \delta_{x}^{\mu} - C^{\mu} \right] = 0$$

interior (bulk)

boundary

Now 82 , 50; depend on arbitrary functions fx (2)

and
$$5\phi_i = \sum_{k} \left[a_{ki} f_k(x) + b^{\nu}_{ki} \partial_{\nu} f_k \right]$$

Arbitrariness of fa => interior, boundary to independ

NOETHER'S ZND THEOREM.

" BIANCHE (3

LOCAL SYMMETRIES

Recall Noether condition for quasi-invariance:

$$\sum_{i} E_{i} \delta \phi_{i} + \Delta_{\mu} \left[\sum_{i} \left(\frac{\delta \mathcal{L}}{\delta (\partial_{\mu} \phi_{i})} \delta \phi_{i} \right) + \mathcal{L} \delta z^{\mu} - C^{\mu} \right] = 0$$
Interior (bulk)
boundary

Now δx^{μ} , $\delta \phi_i$ depend on arbitrary functions $f_k(x)$ (k=1,...,p)and $\delta \phi_i = \sum_{k} \left[a_{ki} f_k(x) + b^{\nu}_{ki} \partial_{\nu} f_k(x) \right]$

Arbitrariness of fa => interior, boundary terms vanish independently

Vanishing of interior term => \(\sum_{i} a_{\mathbb{R}i} = d_{\mu} \sum_{i} \left(\begin{align*}{c} \mathbb{E}_{i} \ b_{\mu}i \end{align*} \)

NOFTHER'S ZND

NOETHER'S ZND THEOREM.

"BIANCHI IDENTITIES"

HILBERT 1915.

· Second order.

$$R = g^{\mu\nu}R_{\mu\nu}$$
$$= g^{\mu\nu}R^{\alpha}_{\mu\nu\alpha}.$$

Contains all second HIL order terms in Lynn

EINSTEIN

$$\mathcal{L}_{grav} = g^{\mu\nu} \Gamma^{\alpha}_{\mu\beta} \Gamma^{\beta}_{\nu\alpha} \sqrt{-g}$$

$$\mathcal{L}_{Em} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} \sqrt{-g}$$

$$F_{\mu\nu} = A\nu_{,\mu} - A_{\mu,\nu}$$

$$1913 : \Gamma^{\alpha}_{\mu\beta} = \frac{1}{2} g^{\alpha\lambda} g_{\lambda\mu,\beta}$$

$$1915 \Gamma^{\alpha}_{\mu\beta} = \frac{1}{2} g^{\alpha\lambda} (g_{\lambda\mu,\beta} + g_{\lambda\beta,\mu} - g_{\mu\beta,\lambda})$$

Arbitrary coordinates :

- · first order in derivs of gar
- · not a scalar density

1-1 Lagrangian

HAMILTON'S PRINCIPLE IN MATTER-FREE GR :

Euler-Lagrange quations:

VACUUM FIELD ERNS.

D. Lovelock 1969.

(Strictly) invariant action in 54-dim spacetime must take form:

if it is second-order & gives rise to second-order field equations

D. Grigore 1992

Quasi-invariant action, first order, must take form

Common assumption: only gov & derive count.

THE CASE OF GENERAL RELATIVITY I PURE GRAVITY

Arbitrary transformation of coordinates x" = x" = x" + h"(x), h small

NOETHER CONDITIONS for quasi-invariance of S

$$-g^{\mu\nu}_{j\infty}E_{\mu\nu} = 2(E_{\mu\alpha}g^{\sigma\mu})_{j\sigma} = \frac{S\mathcal{L}_{grav}}{Sg^{\mu\nu}}$$

tensor density

Given metric compatibility gus = 0, we get

Assuming Lynn = RV-g (Hilbert) OR Lynn = gmu (Tap TB - TB TB)V-9

(twice) contracted BIANCHI IDENTITY

General covariance as explanation of Bianchi identity?

Leopold Infeld and Jerzy Plebanksy, Motion and Relativity, 1960.

p. 42.

"One could ask: what is the source of the [twice contracted] Bianchi identities? The answer is: they follow from the covariant character of Einstein's tensor $G^{\alpha\beta}$ and from the existence of a variational principle leading to $G^{\alpha\beta}$. We shall prove the identities in such a way as to exhibit the reason for their validity: covariance with respect to all the transformations."

p.44.

"The proof also shows the character of the Bianchi identities. They are a consequence of the invariance of the gravitational action, that is, they are a consequence of the temporal character of the theory which is covariant with respect to all transformations."

Robert Wald, General Relativity, 1984.

The Bianchi identity "may be viewed as a consequence of the invariance of the Hilbert action under diffeomorphisms." p. 345.

THE CASE OF GENERAL RELATIVITY I PURE GRAVITY

Arbitrary transformation of coordinates x" + x" = x" + h"(x), h small

NOETHER CONDITIONS for quasi-invariance of S

$$-g^{\mu\nu}_{j\alpha}E_{\mu\nu} \doteq 2(E_{\mu\alpha}g^{\sigma\mu})_{j\sigma} = \frac{S\mathcal{L}_{\mu\nu}}{Sg^{\mu\nu}}$$

tensor density

Given metric compatibility g is = 0, we get

Assuming Lynn = RV-g (Hilbert) OR Lynn = gmu (Tap To - To Top) J-g

so: GM; = 0 (twice) contracted BIANCHI IDENTITY