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Abstract: This talk is concerned with the existence of spectral triples in quantum gravity. | will review the construction of a spectral triple over a
functional space of connections. Here, the *-algebra is generated by holonomy loops and the Dirac type operator has the form of a global functional
derivation operator. The spectral triple encodes the Poisson structure of General Relativity when formulated in terms of Ashtekars variables. Finally
| will argue that the Hamiltonian of General Relativity may emerge from the construction via the requirement that inner automorphisms vanish on
the vacuum sector.
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» Motivation. Noncommutative Geometry: The Standard
Model + Gravity — single gravitational formulation.
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» Our Project. To formulate a model which combines
elements of NCG and QFT. Inspiration: LQG.
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» Motivation. Noncommutative Geometry: The Standard
Model + Gravity — single gravitational formulation.

Quantization?
» Our Project. To formulate a model which combines

elements of NCG and QFT. Inspiration: LQG.
» The Construction. A spectral triple (B.. D.. H.) over a
space _4 of connections where

» 35 is an algebra of loops (functions on 4)
» D, is a Dirac type operator (functional derivation)
» H, is a separable Hilbert space of states over .
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» Motivation. Noncommutative Geometry: The Standard
Model + Gravity — single gravitational formulation.

Quantization?
» Our Project. To formulate a model which combines

elements of NCG and QFT. Inspiration: LQG.
» The Construction. A spectral triple (B.. D.. H.) over a
space _4d of connections where

» [35 is an algebra of loops (functions on )
» DA is a Dirac type operator (functional derivation)
» H. is a separable Hilbert space of states over .

e [he interaction between D, and 5, reproduces the
Poisson structure of General Relativity.
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Content

» Motivation. Noncommutative Geometry: The Standard
Model + Gravity — single gravitational formulation.
Quantization?

» Our Project. To formulate a model which combines

elements of NCG and QFT. Inspiration: LQG.
» The Construction. A spectral triple (B,. D,. H,) over a

space A of connections where | |

» [5, is an algebra of loops (functions on )

» D, is a Dirac type operator (functional derivation)

» H, is a separable Hilbert space of states over .
e [he interaction between D, and 5, reproduces the
Poisson structure of General Relativity.
e Technical: The construction is based on a projective,
countable system of graphs.
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» Motivation. Noncommutative Geometry: The Standard

Model + Gravity — single gravitational formulation.
Quantization?

Our Project. To formulate a model which combines

elements of NCG and QFT. Inspiration: LQG.

The Construction. A spectral triple (5.. D,y H.) over a
space _4d of connections where

» [3, is an algebra of loops (functions on )

» D, is a Dirac type operator (functional derivation)

» H. is a separable Hilbert space of states over .
e [he interaction between D, and 55, reproduces the
Poisson structure of General Relativity.
e Technical: The construction is based on a projective,
countable system of graphs.

» D2 as a Hamiltonian?
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A Spectral Triple is a collection (B. D. H):
1y <-algebra B represented as operators on the Hilbert space H; a
self-adjoint. unbounded Dirac operator D with compact

‘esolvent. acting on H such that [D. b] is bounded 7b = B.
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a =-algebra B represented as operators on the Hilbert space H: a
self-adjoint. unbounded Dirac operator D with compact
resolvent, acting on H such that [D. b| is bounded 7b = B.

» Commutative algbra B — Riemannian spin-geometry
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Noncommutative

Geometry

A Spectral Triple is a collection (B.D. H):

a =-algebra B represented as operators on the Hilbert space H: a
self-adjoint. unbounded Dirac operator D with compact
resolvent, acting on H such that [D. b| is bounded 7b = B.

» Commutative algbra B — Riemannian spin-geometry

The Standard Model of Particle Physics (SM):

» B=C~(M) - Be, almost commutative algebra
Br =C=H = H = M3(C)
» D=Dpy - 1+-5 - D, Dg is the Yukawa coupling matrix

» H = fermionic content of SM
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Spectral action:

classical action of the Standard Model coupled to Gravity.
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Spectral action:

[ = (|D|w) + Tr ( (?))

classical action of the Standard Model coupled to Gravity.
(For B= C>~(M) — Einstein-Hilbert action)
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Spectral action: S

' P2
= b7 (- (2))

classical action of the Standard Model coupled to Gravity.
(For B = C~(M) — Einstein-Hilbert action)

Here

=04 A4 JdAS"

where A is a noncommutative 1-form generated by inner
automorphisms

A=Y a]b;. D]

A

- generates entire bosonic sector (including Higgs).
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Main point

Formulation of the Standard Model coupled to General Relativity
as a single gravitational theory. The Standard Model emerges
from a very simple modification of space-time geometry: seometry

Jesper Meller Grimstrup

C<(M) — C=<(M) = B
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Spectral action:
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classical action of the Standard Model coupled to Gravity.
(For B = C~(M) — Einstein-Hilbert action)
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A Spectral Triple is a collection (B.D. H):

a =-algebra B represented as operators on the Hilbert space H: a
self-adjoint. unbounded Dirac operator D with compact
resolvent, acting on H such that [D. b| is bounded 7b = B.

» Commutative algbra B — Riemannian spin-geometry

The Standard Model of Particle Physics (SM):

» B=C~(M) - Be, almost commutative algebra
Br =C —H = H = M3(C)
» D=Dpy - 1+-5 - Dr, Dg is the Yukawa coupling matrix

» H = fermionic content of SM
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Spectral action:

classical action of the Standard Model coupled to Gravity.
(For B = C~(M) — Einstein-Hilbert action)
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. ' D>
[ = (&} Tr(_(j\i )

classical action of the Standard Model coupled to Gravity.
(For B = C~(M) — Einstein-Hilbert action)

Here )
D=0D4+ A4+ JAS™

where A is a noncommutative 1-form generated by inner

automorphisms
fhe= Z a;[ b;. D]

- generates entire bosonic sector (including Higgs).
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as a single gravitational theory. The Standard Model emerges Rl e
from a very simple modification of space-time geometry: Geomeny
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C{M)— (M) = B

Two questions

e How does the quantization procedure translate into the
language of Noncommutative Geometry?

- this would presumably involve Quantum Gravity.
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Main point

Formulation of the Standard Model coupled to General Relativity
as a single gravitational theory. The Standard Model emerges M
from a very simple modification of space-time geometry: seometry
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C<(M) — C<(M) = B

T wo questions

e How does the quantization procedure translate into the
language of Noncommutative Geometry?

- this would presumably involve Quantum Gravity.

e How to explain the finite algebra Be?

Pirsa: 08050004 Page 23/163



On Spectral Triples in
Main point e
Formulation of the Standard Model coupled to General Relativity
as a single gravitational theory. The Standard Model emerges it

from a very simple modification of space-time geometry: seometry

Jesper Meller Grimstrup

C<(M) — C<(M) = B

Two questions

e How does the quantization procedure translate into the
language of Noncommutative Geometry?

- this would presumably involve Quantum Gravity.

e How to explain the finite algebra Bg?

Our goal

to construct a model which combines Noncommutative Geometry
with elements of Quantum Gravity.
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Spectral action:

= o= (+(2)

classical action of the Standard Model coupled to Gravity.
(For B = C>~(M) — Einstein-Hilbert action)
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Spectral action:

: D
= (Dl + Tr [ 2 | 5
r( (;\-— )

classical action of the Standard Model coupled to Gravity.
(For B = C>~(M) — Einstein-Hilbert action)

Here )
D =D+ A4+ JAS?

where A is a noncommutative 1-form generated by inner
automorphisms

A Z a;[ b;. D]

- generates entire bosonic sector (including Higgs).
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“A striking aspect of this approach to geometry of .1/¢ is that its
general spirit is the same as that of non-commutative geometry
and quantum groups: even though there is no underlying
differential manifold. geometrical notions can be developed by
exploiting the properties of the algebra of functions.”

[Ashtekar. Lewandowski. 1996]
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» [ he construction is based on a countable system of
embedded graphs (lattices, simplicial complexes). The
construction is essentially combinatorial.

» [ he structure of the Hamiltonian of GR emerges from a
condition which restricts the triple to a sector where inner
automorphisms play no role (turning off interactions —
vacuum).

» The triple (B,. D.. H,) depends on a set {a;} of scaling
parameters. [his resembles a regularization scheme.

» (Connes distance formula: distances between " geometries” .
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» T hen (heuristically)

_Jfr_.r J| D ; i‘L’I : T t 1,1!/ IV : J_I—J :— I, F‘ L E Eﬁ I L-} |. L} 2 :' The Hamiftonian

(we set «n = a, for n — x)
» [ his has the form of the Hamilton constraint of GR.
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Graphs
Tl"lﬂ Il“‘;r l‘\r"“l. .r'\‘F h Ir'\r"lr'\r'r"h\.r If‘\i"\r’\l_" :L‘ Al"‘!l_-' r'; r'*A K.I'i_"\. ‘|'hr" ir"i Il.l'"'l'i'kh"!
> ghﬁ:t focus ﬁ*om connections to FID'C)FIC}IT]IGS and ﬁux
variables

hf_(“” — HG“ 1!_ /—H Loop Quantum Gravity
[ loop on 2

S surface in 2=

» Poisson brackets e
I 3 f \ [ / .. G f A\ __3 [ i .
{F2(E). hc(A)} = +hc, (A)? he,(A) ,/
/-:/.I / <
¢ generator of su(2), My
C = (GG are curves in 2. TR
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_ontent

» Motivation. Noncommutative Geometry: The Standard
Model + Gravity — single gravitational formulation.
Quantization?

» Our Project. To formulate a model which combines

elements of NCG and QFT. Inspiration: LQG.
» The Construction. A spectral triple (B,. D,. H.) over a
space _d of connections where

» B, is an algebra of loops (functions on A)
» D, is a Dirac type operator (functional derivation)
» Ha is a separable Hilbert space of states over .

e [ he interaction between D, and 5, reproduces the
Poisson structure of General Relativity.
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A Spectral Triple is a collection (B.D. H):

a =-algebra B represented as operators on the Hilbert space H: a
self-adjoint. unbounded Dirac operator D with compact
resolvent, acting on H such that [D. b| is bounded 7b = B.

» Commutative algbra B — Riemannian spin-geometry

The Standard Model of Particle Physics (SM):

» B=C~(M) - Be, almost commutative algebra
Br =C—=—H - H = M3(C)
» D=Dpy - 1+-5 - D, Dg is the Yukawa coupling matrix

» H = fermionic content of SM
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Spectral action:

| = (D)} + Tr ( (‘[‘f))

classical action of the Standard Model coupled to Gravity.

(For B = C~(M) — Einstein-Hilbert action)

Here )
D=D4+ A+ JAS

where A is a noncommutative 1-form generated by inner
automorphisms

A=Y ab;. D]

- generates entire bosonic sector (including Higgs).
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A Spectral Triple is a collection (B.D. H):

a =-algebra B represented as operators on the Hilbert space H: a
self-adjoint. unbounded Dirac operator D with compact
resolvent, acting on H such that [D. b| is bounded 7b = B.

» Commutative algbra B — Riemannian spin-geometry

The Standard Model of Particle Physics (SM):

» B=C~(M) - Be, almost commutative algebra
BF =C —H - H = M3(C)
» D=Dpy - 1+-5 - Dr, Dgr is the Yukawa coupling matrix

» H = fermionic content of SM
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C*(M)— C>*(M) = Br

T wo questions

e How does the quantization procedure translate into the
language of Noncommutative Geometry?

- this would presumably involve Quantum Gravity.
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Main point Quacrum Geavity
Formulation of the Standard Model coupled to General Relativity
as a single gravitational theory. The Standard Model emerges PR
from a very simple modification of space-time geometry: Ceomery

Jesper Meller Grimstrup

C*(M)— C*(M) = BE

Two questions

e How does the quantization procedure translate into the
language of Noncommutative Geometry?

- this would presumably involve Quantum Gravity.

e How to explain the finite algebra Bg?

Our goal

to construct a model which combines Noncommutative Geometry
with elements of Quantum Gravity.
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Main point
Formulation of the Standard Model coupled to General Relativity

as a single gravitational theory. The Standard Model emerges
from a very simple modification of space-time geometry:

CH{(M)— €~ (M) = B¢

Two questions

e How does the quantization procedure translate into the
language of Noncommutative Geometry?

- this would presumably involve Quantum Gravity.

e How to explain the finite algebra Bg?

Our goal

to construct a model which combines Noncommutative Geometry
with elements of Quantum Gravity.

Inspiration
Losp*Qtantum Gravity (algebra. mathematical techniques, ideas)

On Spectral Triples in
Quantum Gravity

Jesper Meller Grimstrup

Noncommutative

GeomeTTy
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» Foliation: M =1R x 2

» Ashtekar variables
Al SU(2)-connection on .

L F,

E! = |dete jfe_;i' e‘ orthonormal frame field.
» Poisson brackets

-+ constraints (diffeomorphism. Hamilton. Gauss)
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» Shift focus from connections to holonomies and flux

variables
r.rl‘?fl_flj._‘]l } - HG“ I_‘A_qk J| LoD WUanNTuUm =aviny

[ loop on L

FElE] — / SRR Solen e e v b ¢

J 5

—

5 surtace n 2=
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» Shift focus from connections to holonomies and flux

variables

hi (A) = Hol(L. A)

[ loop on L
FS(E) / SO s R
S surface in 2.
» Poisson brackets -
o
:F:{Eﬁ hc(A)) ::hg_‘_f/—\)-‘h{;‘:b’—\} . /—/
Lo . Cs
/
¢ generator of su(2), .5 |

C = ;G are curves in 2.

Page 41/163
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The algebra of holonomy loops is described via the inductive
system of all finite, piece-wise analytic graphs

o v
. | *
“A B,
=0y, __r""-_'
— s /'{f P | "
— v — y v —
- - ¥ 'y :
W -
1 A d . o

e R e
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Graphs
The algebra of holonomy loops is described via the inductive
system of all finite., piece-wise analytic graphs

> A

[

>

/f—_{ﬂ_-a\m-
.f"F_L i ‘\/—F—.
q.k f- / L A Y e
e Nl

Let . be the space of smooth connections with gauge group
G. Denote by Ar the restriction of A to a finite graph I
Seen from [ a connection \ = 4 can be seen as a point in
the space G”

where n([) is the number of edges ¢; in [ and where
gi = Hol(\ . ¢;) is the holonomy of \ along ¢;.
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» Projective system of coarse grained spaces of connections:
. —  Ar —  Ap — A s
& Cr:l il é:?l I’ — Ly -
with structure maps

Prl__ : G.‘?Er ) G-nl_'-
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» Projective system of coarse grained spaces of connections:
- ,—1.|_ o ,—h_ i -—lr e win o
e C:rl El G s — I o
with structure maps

PI_I_' : Gr?il_ ) G-rll_}

» Example:

Pt - oA

+ L ]
[ e ™ - - 3 - ” t ..
f Dy i Ty Y — Dy~ D
\ol"o5Lr 53 oi ) =1 =3 ; ; TS
; ol
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» Result:
A — i@ Ap =2 A
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» Result: ﬁ
A — limAr =4
» Point: The space of connections is densely imbedded in a
pro-manifold .4~ — Ashtekar-Lewandowski measure. Hilbert
space structure ...
Page 47/163
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» Aim: To construct a spectral triple that involves an algebra
of loops. i.e. functions on _A:

LiN —He{V. L)< M1C)

where the interaction between Dirac type operator and the
loop algebra reproduces the Poisson structure of GR.
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» Aim: To construct a spectral triple that involves an algebra
of loops. i.e. functions on _:

L:\N —Hol(NV.L)= M, (C)

where the interaction between Dirac type operator and the
loop algebra reproduces the Poisson structure of GR.

» Strategy: Exploit the pro-manifold structure of A
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» Aim: To construct a spectral triple that involves an algebra
of loops. i.e. functions on _A:

L:V —HekV. L)€ M,(C)

where the interaction between Dirac type operator and the
loop algebra reproduces the Poisson structure of GR.

» Strategy: Exploit the pro-manifold structure of A

1. Construct a spectral triple (5. D. H)r at the level of each
finite graph . Since
-—{r — G”

this is easy (Haar measure, Dirac operator etc.)
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» Aim: To construct a spectral triple that involves an algebra
of loops. i.e. functions on _A:

L:N —HelV.L)y& M. |C)

where the interaction between Dirac type operator and the
loop algebra reproduces the Poisson structure of GR.

» Strategy: Exploit the pro-manifold structure of A

1. Construct a spectral triple (5. D. H)r at the level of each
finite graph . Since
. el T

this is easy (Haar measure, Dirac operator etc.)
2. Ensure compatibility with the structure maps

Pr.a,r,ﬂ : -—].r” = -—l.r__?r .

for all structures (Hilbert space, algebra, Dirac operator)
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» Aim: To construct a spectral triple that involves an algebra
of loops. i.e. functions on A:

L:N —HollV. L)< M (C)

where the interaction between Dirac type operator and the
loop algebra reproduces the Poisson structure of GR.
» Strategy: Exploit the pro-manifold structure of A

1. Construct a spectral triple (5. D. H)r at the level of each
finite graph . Since
= G"

this is easy (Haar measure, Dirac operator etc.)
2. Ensure compatibility with the structure maps

PF.J.F,H : -—ir,T — -—l.r.T,_ .

for all structures (Hilbert space, algebra, Dirac operator)
risa0sosooe Lake the projective/inductive limit to obtain a spectral triple
over the space of connections .

On Spectral Triples in
Quantum Gravity

Jesper Meller Grimstrup

The Project
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» We tried this in [hep-th 0503246] and [hep- [1271].

Problem: Too many different embeddings between graphs to
permit a Dirac type operator. — The setup is overcountable.
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» We tried this in [hepn-© 246] and [hep-t 1127].

Problem: Too many different embeddings between graphs to
permit a Dirac type operator. — The setup is overcountable.

» New Approach: Consider a restricted, countable system of

graphs.
> In [hep-t 302.1783] and [hep-t 2. 1734] we worked
with a triangulation 7 and its barycentric subdivisions.
s s
'<\ N
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» We tried this in [hep-th 0503246] and [hep-t [27].

LA

Problem: Too many different embeddings between graphs to
permit a Dirac type operator. — The setup is overcountable.
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Jur Project

» Aim: To construct a spectral triple that involves an algebra
of loops. i.e. functions on _A:

LN —Hae{V.L)}E M (C)

where the interaction between Dirac type operator and the
loop algebra reproduces the Poisson structure of GR.
» Strategy: Exploit the pro-manifold structure of A

1. Construct a spectral triple (5. D. H)r at the level of each
finite graph . Since
-—Er — G”

this is easy (Haar measure, Dirac operator etc.)
2. Ensure compatibility with the structure maps

Pr.-'.r-_'r? -_Irrr = '_t'r.'TT )

for all structures (Hilbert space, algebra, Dirac operator)
risa0sosooe Lake the projective/inductive limit to obtain a spectral triple
over the space of connections .

On Spectral Triples in

Liuantum Gravicy

Jesper Meller Grimstrup
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» Aim: To construct a spectral triple that involves an algebra
of loops. i.e. functions on _:

he Project

L iV —Helf V. L)< M. {C)

where the interaction between Dirac type operator and the
loop algebra reproduces the Poisson structure of GR.

» Strategy: Exploit the pro-manifold structure of A

1. Construct a spectral triple (5. D. H)r at the level of each
finite graph . Since
-—{r = G”

this is easy {Haar measure, Dirac operator atc.)
2. Ensure compatibility with the structure maps

Pr.qr»n :'—1rr1 == 3 -_l'r-r: .

for all structures (Hilbert space, algebra, Dirac operator)
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» We tried this in [hep-th 0503246] and [hep-t 1127].

Problem: Too many different embeddings between graphs to
permit a Dirac type operator. — The setup is overcountable.
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» We tried this in [hen-t 246] and [hep-t 1127].

Problem: Too many different embeddings between graphs to
permit a Dirac type operator. — The setup is overcountable.

» New Approach: Consider a restricted. countable system of
graphs.

> In | 2.1783] and [hep-1 ). 1734] we worked
with a triangulation 7 and its barycentric subdivisions.

Sa =
™, s Y

Pirsa: 08050004
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Jesper Meller Grimstrup

» We tried this in [hep-th 0503246] and [hep-t 1127].

Problem: Too many different embeddings between graphs to
permit a Dirac tvype operator. — The setup is overcountable.

» New Approach: Consider a restricted, countable system of
graphs.

> In [hep- 302.1783] and [hep-t ). 1734] we worked
with a triangulation 7 and its barycentric subdivisions.

; ‘_;-.:_FF o W ./:'
. . ‘\-i\\\ > .':-.

» Here: take a projective system of cubic lattices.
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Jesper Meller Grimstrup

» Let [ be a finite d-dim lattice with
edges {¢;} and vertices {v;} with
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On Spectral Triples in

"he construction g e

Jesper Meller Grimstrup

» Let [ be a finite d-dim lattice with
edges {¢;} and vertices {v;} with

Sl R VW g

» Assign to each edge ¢; a group element g; = G.
\ e —

Uy

G is a compact Lie-group. The space of such maps is
denoted _4r. Notice again:

Ar =~ G" because Ar=YV — (V(e)..... Vies)) € 6"
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"he construction * Quamum Gravie

Jesper Meller Grimstrup

» Let [ be a finite d-dim lattice with
edges {¢;} and vertices {v; | with

» Assign to each edge ¢; a group element g; = G.
YV 16— 8

E=T|

G is a compact Lie-group. The space of such maps is
denoted 4. Notice again:

-—lr .4 G-’T becaUSE ,—ir = T - (\—{'Ela} ***** Y(F?J) = G.—r

Pirsa: O 004

irst step: Construct a spectral triple over Ar.
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L & - L # L
» Algebra: A loop L is a finite & & & 4
sequence of edges
L={¢.€,.....€; } running in [ * A o
(choose basepoint vy). Discard I o o _- |
trivial backtracking.
# L
Vo
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Jesper Meller Grimstrup

& = & & &
» Algebra: A loop L is a finite D
sequence of edges
L ={€i.€p.... €, running in [ T I T 1 The comstet
(choose basepoint vy). Discard PP
trivial backtracking.
& L
Vo
» Product by gluing bygls = {La Lo}
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Jesper Meller Grimstrup

& L 4 # # #
» Algebra: A loop L is a finite S D
sequence of edges
[ =1{€i,-€iye....€; f running in [ T I [ 1 il i
(choose basepoint vy). Discard (L
trivial backtracking.
# L
Vo
» Product by gluing LyoLa = {Ls. Lo}
> Inversion: L = o B €4
with celr)=8L—7); TEWN 1)
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L 2 &
» Algebra: A loop L is a finite —
sequence of edges
L ={€i-€iye....€;  running in [ T I
(choose basepoint vy ). Discard
trivial backtracking.
Vo
» Product by gluing byols = $by. L)
» |nversion: L = sone Epaian €: }
with Sl =%l1—1): TE}8 1}

» (Consider formal, finite series of loops

G=3 Sl Gl

Pirsa: 08050004
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» The product between two elements a and b is defined

o

e L 3B )Ly o Ly
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Jesper Meller Grimstrup
» The product between two elements a and b is defined

achb=Y (a-b)Liol,

—

» [ he involution of a is defined

¥ = S 3;L"
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Jesper Meller Grimstrup

L 3 & # : 4 #
Algebra: A loop L is a finite £ & Lo 4 .l
sequence of edges
[ ={€i,-€iye....€; f running in [ t I A o
(choose basepoint vy ). Discard L J
trivial backtracking.
L : ]
Vo
» Product by gluing Liols = 1k . s}
» [nversion: L =k s B aaas €; }
with STy =81—-7]; TEL L)

> (Consider formal, finite series of loops

=" Slp. @rel
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Jesper Meller Grimstrup

» The product between two elements a and b is defined

- LS

22b=> (a b)Li=L
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Jesper Meller Grimstrup

» The product between two elements a and b is defined

» [ he involution of a is defined

¥ N g
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Jesper Meller Grimstrup

» The product between two elements a and b is defined

Fo b= Sf_a' - Bp)Lio Ly
» [ he involution of a is defined

a =X &y

» | hese elements have a natural norm

|a|| = sup T‘a:‘{*[i.:}-’(;

N =_4r —

where the norm on the rhs is the matrix norm in G. The
closure of the «-algebra of loops with respect to this norm is
a C"-algebra. We denote this loop algebra by 5.
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» Hilbert space: There is the (somewhat) natural Hilbert Jesper Meller Grimstrup
space
H=ILG".CATG" = M{C))
involving the Clifford bundle over G” (/ size of rep. of G).
L= is with respect to the Haar measure on G”.
» The loop algebra 5 has a natural representation on 'H The construction

(V) =15 V(L) (V). v=H

where the first factor acts on the Clifford-part of the Hilbert
space and the second factor acts by matrix multiplication on
the matrix part of the Hilbert space

— Fo- ’ S5 i)
L — 1%1: 4. 553 |

fL~ g1-8a-(g6)” (g3) ™

Pirsa: 08050004 Page 74/163



Jesper Meller Grimstrup

» Dirac operator: We choose the Dirac operator D on G”
D)= eVe(S). £=H

(choose a metric on G and use Levi-Civita) and obtain
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On Spectral Triples in

Quantum Grawvity
» Hilbert space: There is the (somewhat) natural Hilbert Jesper Mgller Grimstrup
space
H—I(G"..CI(T"E* = M{T))
involving the Clifford bundle over G” (/ size of rep. of G).

-

L= is with respect to the Haar measure on G”.
» The loop algebra 5 has a natural representation on H The construction

fi-e(V)=(12V(L) (V). v=H

where the first factor acts on the Clifford-part of the Hilbert
space and the second factor acts by matrix multiplication on
the matrix part of the Hilbert space

A
L
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Jesper Meller Grimstrup

» Dirac operator: We choose the Dirac operator D on G”
D)= eVe(S). £=H

(choose a metric on G and use Levi-Civita) and obtain
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On Spectral Triples in

» Hilbert space: There is the (somewhat) natural Hilbert Jesper Meller Grimstrup
space
H=I(G".CYT &% = M{C))
involving the Clifford bundle over G” (/ size of rep. of G).
= is with respect to the Haar measure on G”.
» The loop algebra I5 has a natural representation on H The construction

fi- 0N ) =1 & ViL)) - #V)= W =H

where the first factor acts on the Clifford-part of the Hilbert
space and the second factor acts by matrix multiplication on
the matrix part of the Hilbert space

L ; L d L 4
= ':_ 5 R o Fr Z }'
= 3
- ) v —1 oy —1
fi ~g1-g2-(g6) -(23)
¢ *
Vo
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» Hilbert space: There is the (somewhat) natural Hilbert Jesper Meller Grimstrup
space
H=IL(G".CAT*G" = Mi{CT)
involving the Clifford bundle over G” (/ size of rep. of G).
L= is with respect to the Haar measure on G”.
» The loop aigebra I5 has a natural representation on 'H The construction

f - ey =t 2 V(D)) - &%) awcH

where the first factor acts on the Clifford-part of the Hilbert
space and the second factor acts by matrix multiplication on
the matrix part of the Hilbert space

| — -:.r'—'l1i—'4_|"-'g1f-'

fL~ grga(gs)” (g3)™

)
L
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Jesper Meller Grimstrup

» Dirac operator: We choose the Dirac operator D on G”

Dr.'._i:n:YeiTei{L}. cEesH

(choose a metric on G and use Levi-Civita) and obtain
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Jesper Meller Grimstrup

» Dirac operator: We choose the Dirac operator D on G”

D)= eVe(S). £=H o

(choose a metric on G and use Levi-Civita) and obtain

» the spectral triple
(B. 0. H ) .

on the level of the simplicial complex I.
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Jesper Meller Grimstrup

» Dirac operator: We choose the Dirac operator D on G”
D) =) eVal). <X

(choose a metric on G and use Levi-Civita) and obtain
» the spectral triple

(8. 0.98; -

on the level of the simplicial complex .

» Second step: is to allow the complexity of the simplicial
complex to grow infinitely while keeping control of the
spectral triple.

— More refined version of the functional space Ar.
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esper Meller Grimstrup

» (Consider a system of nested. |attices

fp=s Ti== Py,

[

with [; a subdivision of [;_;

[0 [ >

On the level of the associated manifolds A this gives rise
to projections
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» (onsider next a corresponding system of spectral triples

with the additional condition that the spectral triples are
compatible with the projections embeddings between them.
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On Spectral Triples in

LJuantum Gravity

Jesper Meller Grimstrup

» (Consider next a corresponding system of spectral triples

ne CoOnNStruCTion

(B.D. Hjry — (B. D.H),

with the additional condition that the spectral triples are
compatible with the projections embeddings between them.

» For the Hilbert space compatibility is easily obtained
(weighted inner product) and compatibility for the algebra is
clear.

To obtain compatibility for the Dirac operator we need to
work a little:
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On Spectral Triples in
Quantum Gravity

Jesper Meller Grimstrup

» |t all boils down to study the G G
simple case
P:G>—G. (g1.2)— 81 & I
G— Tha TrCtion

corresponding to the compatibility condition
P (Div)(g1-2) = D2(Pv)(g1.82) . v = L3(G.CI(T™G))

where D; is a Dirac operator on G using the Levi-Civita
connection and D- is a Dirac operator on G- to be
constructed. [)> has the form

D=D+aD, . aeR

where D probes the embedded G and D its orthogonal
complement. a is a free parameter.

Pirsa: 08050004 Page 86/163



On Spectral Triples in

Quantum Gravity

Jesper Meller Grimstrup

» (Consider next a corresponding system of spectral triples
(5.0, H)r — (_!:':". D.}Lf_}r._ — (:f:;. L. }‘[)r_ e

with the additional condition that the spectral triples are
compatible with the projections embeddings between them.

» For the Hilbert space compatibility is easily obtained
(weighted inner product) and compatibility for the algebra is
clear.

To obtain compatibility for the Dirac operator we need to
work a little:
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esper Meller Grimstrup

» After repeated subdivisions this gives rise
to an infinite series of free parameters {a; |. he constr
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Jesper Meller Grimstrup

» After repeated subdivisions this gives rise

to an infinite series of free parameters | 3; 1. ' i cometmesion
» By solving the G= — G problem repeatedly ;

we end up with a Dirac-like operator on

the level of [; '

P=3" 5bVs
L= i)
k

where & is an orthonormal set of covectors over G”
and & the corresponding element in C/(7T-G"). (exact form
Is complicated).
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Jesper Mealler Grimstrup

» In the limit. this gives us a candidate for a spectral triple
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On Spectral Triples in
Quantum Grawvity

Jesper Meller Grimstrup

In the limit, this gives us a candidate for a spectral triple

(Ba.Da. Ha)

Result: For a compact Lie-group G the triple (B,. Dy. H,)
is a semi-finite™ spectral triple:

Da’s resolvent (1 + D)~ ! is compact (wrt. trace) and
the commutator [D,. 3] is bounded

Provided the sequence {a;} approaches ¢ sufficiently fast.
For G = U(1) we find

g, =2"0. . lim 8 =%
—

“semi-finite: everything works up to a certain symmetry
group with a trace.

Pirsa: 08050004 Page 91/163



Jn Spectral Triples in

paces of connections

Jesper Meller Grimstrup

» Denote

or roughly:

T i
» 1 is a space of ge neralised connections. To see this map
the graphs {I;} into a manifold .\

hil; —1:e M
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Jesper Meller Grimstrup
» Denote by A the space of smooth G-connections. There is a
natural map

x A=A . (V&)= Hol(V.€)

where Hol(\ . ¢;) is the holonomy of \ along ¢; (now in .\ ).
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Jesper Meller Grimstrup

Denote by A the space of smooth G-connections. There is a
natural map

v 2. A4 — A ;

\ {Tlfr— )= Hal( V .&:)

where Hol(\ . ¢;) is the holonomy of \ along ¢; (now in .\ ).

Result: \ is an embedding

A— A
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Jesper Meller Grimstrup

» Denote by A the space of smooth G-connections. There is a
natural map

A

y 1 A— A \(V)(e;) = Hol(V . €;)

where Hol(\ . €;) is the holonomy of \ along ¢; (now in _\1).

» Result: \ is an embedding

A= A

Argument: given \ ;.\ > =
they will differ in a point m = .M
and in a neighbourhood U of m. i mg |

Choose a small edge ¢; in a graphs
[, so that ¢, = U. Thus

!
i o
' b

Hol (V1. ¢;) = Hol(Y a. €;) 5
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Jesper Meller Grimstrup

— A = . s s s
» [hus: 4 contains all smooth connections. This implies:

The Dirac operator is a kind of functional derivation
operator over -

of connections. s o Gt e
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Jesper Meller Grimstrup

— A " : i = ’
» [hus: 4 contains all smooth connections. This implies:

>~ The Dirac operator is a kind of functional derivation
operator over

i)

5 -

a1

)
of connections. In fact, it is a global operator Spaces of Connections

i)

Da~>» V(X)) ——

N (.X)

where N (x) represents a degree of freedom in each point.
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_‘_‘x = . . = ¥
» [hus: 4 contains all smooth connections. This implies:

The Dirac operator is a kind of functional derivation
operator over

i)

Dg_ e S
()
of connections. In fact, it is a global operator Spaces of Connections
)
D._x T T‘ Y PR e
e (x) W\ x)

where Y (x) represents a degree of freedom in each point.
The inner product of the Hilbert space is a functional
integral over

VW~ / A Tr...

_

e
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» [hus: 4 contains all smooth connections. This implies:

>~ The Dirac operator is a kind of functional derivation
operator over

)

Pl =

)

of connections. In fact, it is a global operator

D_“. R E T(“f) F(X{j

where Y (x) represents a degree of freedom in each point.

> The inner product of the Hilbert space is a functional
integral over

» Remark: The Dirac-type operator D, is gauge invariant.

Pirsa: 08050004
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» Loop Quantum Gravity works with the space A~ of
generalised connections based on a projective system of
piecewise analytic graphs.

Pirsa: 08050004 Page 100/163



On Spectral Triples in

=
iuanium ey i
af UL LA T Jiav LY

Jesper Meller Grimstrup

» Loop Quantum Gravity works with the space A of

generalised connections based on a projective system of
piecewise analytic graphs.

» T[hus. there are two different completions of the space .{ of -
. _h? _-l oA Rl il J 41 - fi=SY L8 b
smooth connections: 4 and A
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Quantum Gravity

Jesper Meller Grimstrup

» Loop Quantum Gravity works with the space A~ of
generalised connections based on a projective system of
piecewise analytic graphs.

» [ hus. there are two different completions of the space .{ of
. —a —A
smooth connections: 4 and A

W S (P

» [ he difference between these completions is their
corresponding symmetry groups:

e In LQG: Analytic diffeomorphisms
e Here: discrete diffeomorphisms which preserve the graph
structure: Diff(.).
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Jesper Meller Grimstrup

» We observe the following:

A - action of diff(_.\1)

- no Hilbert space structure

- no Dirac-like operator e of Eoestnes
17 - - action of (analytic) diff(.\1)

- Hilbert space structure (non-separable)
- no Dirac-like operator

A" - no action of diff(_\1) (few discrete)
- Hilbert space structure (separable)
- Dirac-like operator
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Jesper Meller Grimstrup

» |n short: the choice of completion of the space of
connections A is decisive for:

the amount of remaining diffeomorphisms
the separability of the corresponding Hilbert space
the existence of a Dirac-like operator.
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Jesper Meller Grimstrup

» |n short: the choice of completion of the space of
connections A is decisive for:
the amount of remaining diffeomorphisms
the separability of the corresponding Hilbert space
the existence of a Dirac-like operator.

spaces of Connections

» |t appears that the use of a restricted system of graphs
(simplicial complexes or cubic lattices) correspond to a kind
of (partly) gauge fixing of the diffeomorphism group.
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» Alternative interpretation: Notice that a cubic graph I is
also a piecewise analytic graph. Thus:

_— %

L:(“_lu) _ L;(j } Spaces of Connections

In LQG there is the Hilbert space H g of (spatial)
diffeomorphism invariant states. A surjection:
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» We find the diagram:

rT-
i

‘ 1|
iy
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Jesper Meller Grimstrup

» We find the diagram:

» [he amount by which the map = fails to be injective is
exactly the symmetry group diff( ) of discrete
diffeomorphisms of graphs.
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Juantum Gravity

Jesper Meller Grimstrup

» We find the diagram:

L_’( '_1 } — --"Lﬂ;:jlf;'r:!: Spaces of Connections

» [ he amount by which the map = fails to be injective is
exactly the symmetry group diff(..) of discrete
diffeomorphisms of graphs.

» [ his means that H . is directly related to the Hilbert space
of (spatial) diffeomorphism invariant states known from

LQG (here we set G = SU(2)).
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On Spectral Triples in
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Jesper Meller Grimstrup

» We find the diagram:

L_ ( .,—l ‘} — .fLﬂ JifF Spaces of Connections

» [ he amount by which the map = fails to be injective is
exactly the symmetry group diff(..) of discrete
diffeomorphisms of graphs.

» [ his means that H . is directly related to the Hilbert space

of (spatial) diffeomorphism invariant states known from
LQG (here we set G = SU(2)).

- so we should view a loop in B, as an equivalence class of
loops. up to diffeomorphisms.
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» First. for a single group element g corresponding to the /"th
copy of G in G" we find

j § | o . .
[Di*g]:EZ‘ + g¢y) - & (a5 = 1)

[

where & = CI/(T*G") and ¢ 'twisted generator of the Lie
algebra g.
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“"he Poisson Structure
Jesper Meller Grimstrup
» First. for a single group element g corresponding to the /"th
copy of G in G" we find
[D,\.U]ZEZ{':FE;}-S{ (a; = 1)
AY s n . = ) . f ;
The Pois Structure

where & = CI{T"G") and ¢ 'twisted” generator of the Lie

algebra g.
» Next. the commutator between D and the loop L is

[‘D-_‘.* r}_] — [D gf"-_]gr"; o 'g.'r_ . ga_[D gf:] i g, G
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"he Poisson Structure

Jesper Meller Grimstrup

» First. for a single group element g corresponding to the /"th
copy of G in G" we find

1)

E.J

[Dogf=—> [*a&) & |

where &, = CI{T"G") and €& 'twisted generator of the Lie
algebra g.

» Next. the commutator between D and the loop L is

[0s. i | = [ B8 185 ... 8 481D 85 .- . 8 + «n

» In short: the action of D is to insert generators &, at each
vertex in the loop.

Pirsa: 08050004 Page 113/163
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Jesper Meller Grimstrup

» First. for a single group element g corresponding to the /"th
copy of G in G" we find

The Poisson Structure
where & = C/(T"G") and ¢ "twisted  generator of the Lie
algebra g.

» Next. the commutator between D and the loop L is

|DA. fi]l = [D.g: e - ... 8. +&8.10.8.].-.8i + -

» In short: the action of D is to insert generators &, at each
vertex in the loop. Fx: fi ~ g19-g

51

=i . | .
D.*r] =S ¢ =W A O T W + & 9
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» Quantization: assume the operators FZ. C exist and satisfy
=+ [Fa.C] =407 0y

where C = C; - C, and where S intersects C in ¢ () G.
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Jesper Meller Grimstrup

» Quantization: assume the operators FZ. C exist and satisfy
= [Fa.C]==4Ci7"Cs

where C = C; - C5, and where S intersects C in G () G.

S ,_ .
» (Consider curves restricted to a T e
lattice [; and surfaces S; which \Avi )
intersects loops only at vertices. ex )

Pirsa: 08050004 Page 116/163



On Spectral Triples in

Quantum Gravity

Jesper Meller Grimstrup

» Quantization: assume the operators FZ. C exist and satisfy
= [Fa.C| =4Ci7"Cy

where C = C; - C; and where S intersects C in G () G.

The Poisson Structurs

g

- B /__jf ""/./.--\

» (Consider curves restricted to a L7 €2
lattice [; and surfaces 5; which \ v A
intersects loops only at vertices. ex )

» Expand the twisted generators (ref .::,'-"] ¢ = bj& K
and define the new operators

Fl = Y 5
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» [hen the operator

L\.iziyfi-[Filez:F;

) &= '

-

satisfy the algebra

1 w
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» [ hen the operator

[I>
|
| =
|
[
H
-
I
|
-
LAl
H

satisfy the algebra

1 ; 1 =
[AL.Cl==) (£C¢)-&

N &t

» [ his is exactly the commutator between the Dirac operator
D, and a line segment «;.
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» |n the limit we obtain a representation of the Poisson
brackets of General Relativity. This representation is based
on a more restrictive choice of graphs than is the
representation used in LQG. —
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Jesper Meller Grimstrup

» |n the limit we obtain a representation of the Poisson
brackets of General Relativity. This representation is based
on a more restrictive choice of graphs than is the
representation used in LQG. ———

» Recall that the Hilbert space 'H, corresponds to a partial
solution to the (spatial) diffeomorphism constraint.

Pirsa: 08050004 Page 121/163



On Spectral Triples in

e b = T
AUINTUM ‘e Iy

Jesper Meller GrimsiTup

» |[n the limit we obtain a representation of the Poisson
brackets of General Relativity. This representation is based
on a more restrictive choice of graphs than is the
representation used in LQG. T

» Recall that the Hilbert space 'H, corresponds to a partial
solution to the (spatial) diffeomorphism constraint.

Thus. we can think of our construction as a quantization
scheme which deals first with the constraints (partially) and
next with the actual quantization (not a Dirac-type
quantization).
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» In LQG the area operators play an important role

A(B)—3 FLF- 4.

r
#
(]
0

where S =, 5.
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Jesper Meller Grimstrup

» In LQG the area operators play an important role

A(S)=Y v Fs FL 5 .

where S ={J,S,. We find that

D2=%"...A%S,) ~ / [dVol]A%(x)
e J M

where A(x) is a kind of area density operator.
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Jesper Meller Grimstrup

» In LQG the area operators play an important role

f

where S = J,S,. We find that

D2 =

. A%(S,) / [dVol]A2(x)
o W1

where A(x) is a kind of area density operator.

» [ he spectral action has the form of a Feynman integral

Trexp(—s+/(Ds)?) ~ /

—A

[d\ ] exp (—S V (Da }3) o (V)
JA

- otsare D2 plays the role of an action or an energy. Page 1251163
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"he Hamiltonian

Jesper Meller Grimstrup

» [he algebra 5, will. due to its noncommutativity. contain
inner automorphisms of the form

where v is a unitary element of L,. v v = uu" =1.
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» In LQG the area operators play an important role

4

A(S)= > /FiFL ;.

|"|'

where S = J,S,. We find that
A . 5 T / dVol]A2(x
13 /. lavallaz(x)

where A(x) is a kind of area density operator.

» [ he spectral action has the form of a Feynman integral

Trexp(—sv/(Da)?) ~ /—L«. [d\ ] exp (_5\”' (Da }:) byl ¥
JA

- otélaere D2 plays the role of an action or an energy. Page 1271163
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Jesper Meller Grimstrup

» [he algebra 5, will. due to its noncommutativity. contain
inner automorphisms of the form

ay(b) =ubu” .b= DB,

where u is a unitary element of B,. v v = uu" = 1.
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» In LQG the area operators play an important role

A(S) =3/ FLFL 8
where S = J,S,. We find that

D2 — Z . A2(S,) ~ t/’”[d\/c}l].&‘{'x)

where A(x) is a kind of area density operator.

» [ he spectral action has the form of a Feynman integral

Trexp(—sv/(Ds)?) ~ /

—A

[d¥ ] exp (—sv/(Ds)?) 55(Y)
JA

- otslare D2 plays the role of an action or an energy. Page 1291163
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Jesper Meller Grimstrup

» [he algebra B, will. due to its noncommutativity. contain
inner automorphisms of the form

a,(b) =ubu” .b= B,

where u is a unitary element of b,. v v = uu” = 1.

= ey 1
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"he Hamiltonian

» [he algebra B, will. due to its noncommutativity. contain
inner automorphisms of the form

ay(b) = ubu™ .b € B,

where v is a unitary element of b,. v"'u = uu™ = 1.

» |[nner automorphisms generate fluctuations of the Dirac type
operator D,

o~

s = L == W

where W = W~ has the general form

W =Y njbi[bj. D] . bi.bj<Bs. nj €R

W is. in the terminology of noncommutative geometry. a
one-form.

Pirsa: 08050004
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he Hamiltonian
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Jesper Meller Grimstrup

» [he algebra B, will. due to its noncommutativity. contain
inner automorphisms of the form

ay(b)=ubu™ .b= B

where v is a unitary element of b,. v u=uu" = 1.
» |[nner automorphisms generate fluctuations of the Dirac type
Operat{:}r D& The Hamiltonian
D_\ — D& - LV

where W = W~ has the general form

W =Y njbi[bj. D] . bi.bj<Bs. nj R

W is. in the terminology of noncommutative geometry. a
one-form.

sz 69 Connes formulation of the Standard Model the entire Page 1321163
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Jesper Meller GrimstTup

» Gravity has no inner automorhisms. Therefore, let us
consider a sector of H, which is not affected by these
fluctuations. We consider the operator constraint

Tr|Di—Di|W=0. ¥&H,

|'i\k

| TN B Py N o ne
2 Mamitonia

( Tr is the matrix trace) which implies

Tr ({Da. W} +{W. WhHW¥ =0
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Let us find a /ocal,
this expression. Consider a fluctuation

W = L1[Ds. L;]

and write

where E/. F/  are the classical fields.

I pr

Pirsa: 08050004
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/ interpretation of

L~1+a*F,ds 4+
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» Gravity has no inner automorhisms. Therefore. let us
consider a sector of H, which is not affected by these
fluctuations. We consider the operator constraint

( Tr is the matrix trace) which implies

Tr({Da- W+ {W. W)W =0.
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L _'-‘-' . ]
Let us find a /ocal. classical interpretation of
this expression. Consider a fluctuation e1 § } e
W = Li|Da. Ls] S Y
| = e1-er-e3t €5 | |
and write

Dy~ EE . L~1+0a2F,ds+O(*)

ra—

N
FA

where E;. F!  are the classical fields.
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Jesper Meller Grimstrup

» [ hen (heuristically)

Tr{ D_‘_* W ]I e : W. W : ::lﬁ'i*ii_':—’" ¢ i F‘J E E,: +— ) (o - ) The Hamiltonian

Omne Velrtex

(we set a« = a, for n — x)
» [ his has the form of the Hamilton constraint of GR.
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» (Consider next the sum over all small

loops of area a” & of L
AII'_ =3 = r—'_w f—_l f—____ IE‘r__— S " §
l—il_"l B
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» (Consider next the sum over all small

loops of area o By of £
L =) £ €9 f—:l f—: ID_-' — » o
> Th@ﬂ .—‘P The Hamiltonian

5]

Tr({Da WiH{W. W}) = / d*xlNe’  Fr, . EFEf +0(a®)

g
W]

where N(x) is the weighting of each small loop.
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» (Consider next the sum over all small
loops of area o~

Lad
=
e
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[

L:F{j*f—'l-r—'ir{—'_l- -

» Then —*p
Tr ( IDy. WIH{W. W ;.) e / d3xNe'  Fr . EFEY +O(a
where N(x) is the weighting of each small loop.

» [ his has the form of the Hamiltonian of GR. N plays the
role of the lapse field.

Pirsa: 08050004
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» \Warning: This is not rigorous.
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» Warning: This is not rigorous.

A) Additional structure is needed for this to work (Real
structure, extended Dirac operator, extended action of the
algebra...) e
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Jesper Meller Grimstrup

» Warning: This is not rigorous.

A)) Additional structure is needed for this to work (Real

structure, extended Dirac operator. extended action of the
algebra...)

B) A rigorous formulation of a classical limit ...

» However. the general structure is clear.
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» The expression Dy — Dz for a Hamilton constraint is
canonical.

lesper Mealler Grimstrup
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Jesper Meller Grimstrup

» The expression Dy — Dz for a Hamilton constraint is
canonical.

» The expression is free of ordering ambiguities and requires
no regularization.
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= 3 - : z = Jesper Meller Grimstrup
» The expression Dy — Dz for a Hamilton constraint is

canonical.

» The expression is free of ordering ambiguities and requires
no regularization.

» [he full’ system has inner automorphisms = additional
degrees of freedom.

- It is only when one turns off’ the inner automorphisms
that we obtain the structure of the Hamilton constraint.

The Hamiltonian
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Remarks:
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» The expression Dy — Dz for a Hamilton constraint is
canonical.

The expression is free of ordering ambiguities and requires
no regularization.

The full’” system has inner automorphisms = additional
degrees of freedom.

- It is only when one "turns off’ the inner automorphisms
that we obtain the structure of the Hamilton constraint.

We can think of either

as the Hamiltonian. The advantage of the latter is that it is
positive.

Pirsa: 08050004

On Spectral Triples in
Quantum Gravity

Jesper Meller Grimstrup

The Hamiltonian
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Remarks:
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The expression Dy — Dz for a Hamilton constraint is
canonical.

The expression is free of ordering ambiguities and requires
no regularization.

The full’” system has inner automorphisms = additional
degrees of freedom.

- It is only when one turns off’ the inner automorphisms
that we obtain the structure of the Hamilton constraint.

We can think of either

as the Hamiltonian. The advantage of the latter is that it is
positive.

Time evolution operator

U(t) = exp (H_Di)

Pirsa: 08050004
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Jesper Meller Grimstrup
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» The role of the parameters |a;} e
Is to set a scale. A 'coarse
grained’ loop corresponds to small —_— " .
a's. A ‘refined loop corresponds
to large a's. i =% & &
— B
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» Natural choice:

However. exactly here D, fails to be spectral — infinities
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Jesper Meller Grimstrup

» Natural choice:

However. exactly here D, fails to be spectral — infinities

» T[ry instead

and take the limit ¢ — 0. regularization.
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Jesper Meller Grimstrup

» The Goal is to obtain a classical limit characterized by an
almost commutative algebra

B— C=(M) < Be
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» Connes distance formula: Given a spectral triple
(A. D.H) over a manifold .\ the distance formula reads

d(&e. &) = SL:I[._};{ Ex(a) — &(a)l|I[D- 4]| < 1}

where &,.&, are homomorphisms .4 — C. This can be
generalized to noncommutative spaces; algebras.

» Question: What about Connes distance formula for the
spectral triple (B,.D,. H,)? A distance between field
configurations? Yes.

_onnes Distance Formula

» |f two geometries differ on a large scale, then the distance
d(NV 1.V 2) between their Levi-Civita connections will be
large’ (difference weighted with small a's - large distance)

» |f they differ only on short scales. then the distance will be
‘small” (difference weighted with large a's - small distance).
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» \We have constructed a semi-finite spectral triple
(Ba. Ds. Ha) where:
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» We have constructed a semi-finite spectral triple
(Ba. Da. Ha) where:

» 3, is an algebra of (holonomy) loops.
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Jesper Meller Grimstrup

» \We have constructed a semi-finite spectral triple
(Ba. Da. Ha) where:

» 3, is an algebra of (holonomy) loops.
» [, resembles a global functional derivation operator.
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.onclussion

Jesper Meller Grimstrup

» We have constructed a semi-finite spectral triple
(Ba. Da. Ha) where:
» B, is an algebra of (holonomy) loops.
» [, resembles a global functional derivation operator.
» Ha corresponds (up to a descrete symmetrv group) to the
Hilbert space of (spatial) diffeomorphism invariant states.
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.onclussion

» \We have constructed a semi-finite spectral triple

(Bs.

>

=

-

Pirsa: 08050004

D..H,) where:

B. is an algebra of [holonomy) loops.

D~ resembles a global functional derivation operator.

Ha corresponds (up to a descrete symmetry group) to the
Hilbert space of (spatial) diffeomorphism invariant states.
The interaction between 51 and Da encodes the Poisson

structure of GR.

D4 is gauge invariant (Gauss constraint).

On Spectral Triples in
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Jesper Meller Grimstrup
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» [ he construction is based on a countable system of
embedded graphs (lattices, simplicial complexes). The
construction is essentially combinatorial.
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Jesper Meller Grimstrup

» [ he construction is based on a countable system of
embedded graphs (lattices, simplicial complexes). The
construction is essentially combinatorial.

» [ he structure of the Hamiltonian of GR emerges from a
condition which restricts the triple to a sector where inner
automorphisms play no role (turning off interactions —
vacuum).
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Jesper Meller Grimstrup

» [ he construction is based on a countable system of
embedded graphs (lattices, simplicial complexes). The
construction is essentially combinatorial.

» [ he structure of the Hamiltonian of GR emerges from a
condition which restricts the triple to a sector where inner
automorphisms play no role (turning off interactions —
vacuum).

» The triple (B,. D.. H,) depends on a set {a;} of scaling “onclussion
parameters. [his resembles a regularization scheme.

Pirsa: 08050004 Page 161/163



- On Spectral Triples in
)UtIOOk Open qUEStIOHS Quantum Gravity

Jesper Meller Grimstrup

» [ he construction is based on a countable system of
embedded graphs (lattices, simplicial complexes). The
construction is essentially combinatorial.

» [ he structure of the Hamiltonian of GR emerges from a
condition which restricts the triple to a sector where inner
automorphisms play no role (turning off interactions —
vacuum).

» The triple (B,. D.. H,) depends on a set {a;} of scaling T
parameters. T[his resembles a regularization scheme.

» (Connes distance formula: distances between " geometries” .
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Jesper Meller Grimstrup

» Exact formulation of the Hamiltonian.

» [he spectral action. It resembles a Feynman integral - what
exactly is it?

» Computations of the inner fluctuations. What kind of
degrees of freedom do they represent?

» Formulation of a classical limit.

» Noncompact structure group? Conclussion
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