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Abstract: Certain structures arising in Physics (mub\'s and sic-povm\'s) can be viewed as sets of linesin complex space that are as large as possible,
given some simple constraints on the angles between distinct lines. The analogous problems in real space have long been of interest in
Combinatorics, because of their relation to classical combinatorial structures. In the complex case there seems no reason for any combinatorial

connection to exist. will discuss some of the history of the real problems, and describe some recent work that relates the complex problems to some
very interesting classes of graphs.
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EQUIANGULAR LINES

INNER PRODUCTS

am
. R i ;
We use (x|y) to denote the usual inner product. So if we work In
C4, then
xly) =x*y =&y
while in R¢,
ely) = xTy
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EQUIANGULAR LINES

ANGLES

It seems natural to represent a line by a unit vector that spans
it. We define the angle between lines spanned by unit vectors x
and y to be

[ (x[v)).
(We should perhaps use arccos(|{x|y)|), but it will not be worth
the effort.)

DEFINITION

A set of lines in C¢ (or RY) is equiangular if the angle between
and two distinct lines is the same.
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EQUIANGULAR LINES

PROJECTIONS

Although it may be natural to represent a line by a unit vector
that spans it, there is an alternative that is often more
convenient. If a line ¢ is spanned by a unit vector x then the
matrix

P=XxK

is a projection (P* = P and P* = P); in fact P represents
orthogonal projection onto /.
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EQUIANGULAR LINES

ANOTHER INNER PRODUCT

The space of Hermitian operators on C¥ is a vector space over
R with an inner product given by

(P1O) = &(PO)
If P = xx* and Q = yv*, then
PO =xx"yy ={(x"y)xy
and hence

tr(PQ) = (x*y) tr(xy*) = (x*y)(y * x) = |{x|¥)|*.
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EQUIANGULAR LINES

SUMMARY

If P and Q are the orthogonal projections onto lines in F¢, then
the angle between the two lines is determined by tr(PQ). These

projections are elements of the vector space of Hermitian
operators on F”. (F is C or R.)
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EQUIANGULAR LINES GEOMETRY BOUNDS CONSTRUCTIONS

LLINEARLY INDEPENDENT OPERATORS

Suppose we have a set of m equiangular lines in C¢, given by
projections Py.....P,.

LEMMA
T'he operators P, . . . . . P,, are linearly independent.
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EQUIANGULAR LINES

THE PROOF

PROOF.
There is a non-negative real number ~ such that (P;|P;) = .
Suppose there are scalars ¢;.. . ..c, such that

C]PI = gt —f_(‘um =0.

Then multiply both sides of this by P, and take the trace to get

0:(11 +'-1C: +"' _{'"{‘fn) — {l __,.: }f_‘] +‘:ZCL
1

This shows that ¢, is determined by v and > _ ¢;, and it follows
that ¢, = --- = ¢,,. We conclude that all the ¢;'s are zero. ]
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EQUIANGULAR LINES

THE ABSOLUTE BOUND

THEOREM

The size of a set of equiangular lines in C¢ is at most d*. The
size of a set of equiangular lines inR¢ is at most (‘“{'  ?

PROOF.

The size of a set of equiangular lines is bounded by the size of
a basis in the space spanned by the projections corresponding
to the lines.

The Hermitian operators on C¢ form a vector space of
dimension 4”.

Real symmetric operators on R¢ form a vector space of
dimension (“1"). ]
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EQUIANGULAR LINES

SIC-POVM’S

DEFINITION

A set of d* equiangular lines in C? is known, to physicists, as a
SIC-POVM.

The paper at arXiv:quant-ph/0310075 by Renes,
Blume-Kohout, Scott and Caves is a convenient starting point
to the physical literature.

The first work was carried out in 1975 by Delsarte, Goethals
and Seidel, who derived the basic bounds and constructed
examples in C? and C°. (See Seidel’s “Selected Works”.)
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EQUIANGULAR LINES

EQUALITY

If equality holds in the absolute bound, then 7 lies in the span of
the line projections P;. Hence there are scalars ¢; such that

Z ciP; = 1.
,.

If we multiply both sides by P; and then take traces, we get
G(l—7)+7) c=1,
f.

from which it follows that the ¢;'s are all equal, and hence that
all are equal to d/m. Consequently

d— d-
m — ,
| — @~
In the complex case we deduce that 7~ = -~ in the real case

|

i@ find that ~ = pas 1
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EQUIANGULAR LINES
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EQUIANGULAR LINES GEOMETRY BOUNDS CONSTREUCTIONS

OUTLINE
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EQUIANGULAR LINES GEOMETRY BOUNDS CONSTRUCTIONS

COMPLEX CONSTRUCTIONS

Examples of sets of ¢* equiangular complex lines in C¢ are
known for the following values of d:

2.3.4.5.6.7.8.19.

In all cases where these bounds can be realised, examples can
be constructed using generalised Pauli matrices.
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EQUIANGULAR LINES GEOMETRY BOUNDS CONSTREUCTIONS

GENERALISED PAULI MATRICES

Let .. ... e, denote the standard basis for C¢, where the
indices are taken modulo 4, and let . be a primitive d-th root of

unity. Forj =0..... d — 1, define operators X (i) and Y(j) on C¢
by
JK

X(J) cepr>exy;; T)) e —uwe;.

The group
I'=(X()Y(k):j. k€ Zy;)

has order &°. Its centre has order 4 and is generated by ./; the
quotient group modulo the centre is isomorphic to Z3.
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EQUIANGULAR LINES GEOMETRY BOUNDS CONSTREUCTIONS

FIDUCIAL VECTORS

DEFINITION
If v is a non-zero vector in C¢, then the vectors

span at most ¢? distinct complex lines. If we obtain exactly ¢
lines and these lines are equiangular, we say that v is a fiducial
vector.

All known examples of maximal sets of equiangular lines have
been found by making a suitable choice of fiducial vector.

Pirsa: 08040071 Page 21/73




EQUIANGULAR LINES GEOMETRY BOUNDS CONSTREUCTIONS

GENERALISED PAULI MATRICES

Letep. .. .. e, denote the standard basis for C¢, where the
iIndices are taken modulo d, and let . be a primitive d-th root of

unity. Forj =0..... d — 1, define operators X(i) and Y(j) on C¢
by
JK

X(j):exr— egyj, Y():er— e
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EQUIANGULAR LINES EOMETRY BOUNDS CONSTRUCTIONS

APPROXIMATELY FIDUCIAL VECTORS

Renes et al have found vectors in C¢ for 5 < d < 45 that are
fiducial to machine precision. (What this means is not clear.)
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EQUIANGULAR LINES GEOMETRY BOUNDS CONSTREUCTIONS

THE REAL CASE

m An equiangular set of lines in R¢ has size at most ("}“‘).
Examples of maximal size are known when
d = {2.3.7.23}. It seems unlikely that other examples exist
(but we do not really have a clue).

m [hese examples are not constructed using anything like
the fiducial-vector method.
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EQUIANGULAR LINES GEOMETRY BOUNDS CONSTREUCTIONS

FIDUCIAL VECTORS
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EQUIANGULAR LINES GE TRY BOUNDS CONSTRUCTIONS

FIDUCIAL VECTORS

DEFINITION
If v is a non-zero vector in C¢, then the vectors

span at most ¢? distinct complex lines. If we obtain exactly ¢
lines and these lines are equiangular, we say that v is a fiducial
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All known examples of maximal sets of equiangular lines have
been found by making a suitable choice of fiducial vector.
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EQUIANGULAR LINES GEOMETRY BOUNDS CONSTRUCTIONS

APPROXIMATELY FIDUCIAL VECTORS

Renes et al have found vectors in C¢ for 5 < d < 45 that are
fiducial to machine precision. (What this means is not clear.)
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EQUIANGULAR LINES GEOMETRY BOUNDS CONSTRUCTIONS

THE REAL CASE

m An equiangular set of lines in R? has size at most ("’:“).
Examples of maximal size are known when
d = {2.3.7.23}. It seems unlikely that other examples exist
(but we do not really have a clue).
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EQUIANGULAR LINES GEOMETRY BOUNDS CONSTREUCTIONS

THE REAL CASE

u"-i-l ) .

m An equiangular set of lines in R¢ has size at most (
Examples of maximal size are known when
d = {2.3.7.23}. It seems unlikely that other examples exist

(but we do not really have a clue).

m [hese examples are not constructed using anything like
the fiducial-vector method.
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INTRODUCTION

OUTLINE

MURB'S
m Introduction
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MUB’'S INTRODUCTION

MUTUALLY UNBIASED BASES

DEFINITION

Two orthonormal bases x;.... .. xgand y;..... yg in C4 are
unbiased if the angles

| (xi ;) |
are the same for all choices of i and ;. A set of orthonormal

bases is mutually unbiased if each pair of distinct bases is
unbiased.

If two bases are unbiased, the angle must be L_f
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INTRODUCTION

AN EXAMPLE
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INTRODUCTION

MATRICES

We can represent orthonormal bases in C? by d x d matrices.

DEFINITION

A matrix over C is flat if all its entries have the same absolute
value.

If U and V are unitary matrices, then the corresponding bases
are unbiased if and only if U*V is flat. (And if U*V is flat, then
the basis formed by its columns is unbiased relative to the
standard basis.)
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MUB’S INTRODUCTION

HADAMARD MATRICES

DEFINITION

A d x d matrix H is a Hadamard matrix if each entry is +1 and

HTH = dI

If 4 > 2 and a Hadamard matrix exists, then 4|d. If H is

Hadamard then 1

—H
vV d

Is flat and unitary.

(Physicists refer to flat unitary matrices as generalised
Hadamard matrices.)
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INTRODUCTION

BOUNDS

THEOREM
A set of mutually unbiased bases in C? has size at mostd + 1.
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INTRODUCTION

THE PROBLEM

For which values of d does there exist a mutually unbiased set
of orthogonal bases of size d + 17?
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MUB’S INTRODUCTION

[LOWER BOUNDS

It follows from work of Klappenecker and Rétteler that if 4 > 2,
then there is at least a triple of mutually unbiased bases.
(If a triple exists in R?, then 4|d and d is a square.)
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OUTLINE

MUB'S

m Graphs
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(What follows is joint work with Aidan Roy.)
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MUB’S

AFFINE PLANES

Let IF be a finite field, e.g., Z,. The points of the affine plane are
represented by ordered pairs (x.y) from F x F. The lines of
finite slope (not parallel to the y-axis) can be represented by
ordered pairs [a. b] from F x F.

The point (x.v) is on the line [a.b] if y = ax + b (just as in high
school). The lines with the same slope form a parallel class.
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A GRAPH

Given F with order g, we construct a graph X as follows.
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A GRAPH

Given [ with order g, we construct a graph X as follows.

m The vertices of X are the ¢~ points (x.y) and the ¢~ lines
[H. b].
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A GRAPH

Given [ with order g, we construct a graph X as follows.

m The vertices of X are the ¢° points (x.y) and the ¢° lines
[H. b].

m [he vertex (x.v) is adjacent with the line [a. 5] if the point is
on the line.
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PROPERTIES

The graph just constructed is:

BIPARTITE: point vertices are adjacent only to line vertices,
and vice versa.

REGULAR: each vertex has exactly ¢ neighbors.

DIAMETER 4: two points with the same x-coordinate are at
distance four, two lines in the same parallel class
are at distance four; any other pair of vertices are
at distance at most three.
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SYMMETRIES

Our graph has two abelian groups of symmetries of order 4,
each with g + 1 orbits.
I..: maps (x.y) to (x+ u.y+ v) and [a.b| to
la.b+ v — aul.
Sw-: maps (x.y) to (x,y+z+ wx) and [a.b] to
la+v.b+ z|.
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MUB’S

AN ABELIAN GROUP

If we define
H.r.y_r = TxySy0-

then the set
H = {H;y o x.yc ¥}

is an abelian group of order ¢* that acts transitively on the
points and on the lines.
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Let F be a finite field and let H be the group just defined. Let Hy
be the subset of H defined by

Hp — {H”J} U E F}

Each character of H is a function on H. its restriction to Hp Is a

e

vector in C4.
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Let F be a finite field and let H be the group just defined. Let Hy
be the subset of H defined by

Hy = {-H”.{} U e IF}

Each character of H is a function on H. its restriction to Hp Is a

il

vector in CH4.
THEOREM

These g* vectors, together with the standard basis vectors,
form a set of g + 1 mutually unbiased bases in C9.
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SEMIFIELDS

DEFINITION

A semifield is an algebraic structure that satisfies the axioms for

a field, except that we do not require multiplication to be
associative.

A finite semifield has order p”, where p is a prime.
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MUB’S

SEMIFIELDS AND MUB'’S

m In the construction just presented, everything still works if
we use a commutative semifield in place of field.
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MUB’S

SEMIFIELDS AND MUB’'S

m In the construction just presented, everything still works if
we use a commutative semifield in place of field.

m All known MUB's can be obtained from this construction
using suitable commutative semifields.
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MUB’S

SEMIFIELDS AND MUB’'S

m In the construction just presented, everything still works if
we use a commutative semifield in place of field.

m All known MUB’'s can be obtained from this construction
using suitable commutative semifields.

s An equivalent construction was found by Calderbank,
Cameron, Kantor and Seidel.
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MUB’S

SEMIFIELDS AND MUB’S

m In the construction just presented, everything still works if
we use a commutative semifield in place of field.

m All known MUB’'s can be obtained from this construction
using suitable commutative semifields.

m An equivalent construction was found by Calderbank,
Cameron, Kantor and Seidel.

m Each commutative semifield gives rise to an affine plane. If
the semifield is not a field, the plane is not Desarguesian.
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SPIN MODELS

OUTLINE

SPIN MODELS
m Type-ll Matrices
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SPIN MODELS TYPE-II MATRICES SPIN MODELS AND MUB'S

SCHUR PRODUCT

DEFINITION

If A and B are m x n matrices, their Schur product A o B is the
m x n matrix given by

(A c BHJ' — A,'J'B;J',
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SPIN MODELS TYPE-II MATRICES SPIN MODELS AND MUB'S

INVERSES

s [he matrix J with all entries equal to 1 is the identity for
Schur multiplication.
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SPIN MODELS TYPE-II MATRICES SPIN MODE

INVERSES

m [he matrix J with all entries equal to 1 is the identity for
Schur multiplication.

m If no entry of A is zero, there is a unique matrix A'~) such
that
AocA\™) =1

we call A~/ the Schur inverse of A.
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SPIN MODELS TYPE-II MATRICES SPIN MODE

TYPE 11

DEFINITION
A v x v complex matrix W is a type-ll matrix if

wwoIT — 1
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SPIN MODELS TYPE-II MATRICES SPIN MODELS AND MUB'S

TYPE 11

DEFINITION
A v x v complex matrix W is a type-Il matrix if

wwoT —
So if W is a type-Il matrix then

H’_.r—l — l H_.r{ — T .

!
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SPIN MODELS TYPE-II MATRICES SPIN MODELS

FLAT UNITARY MATRICES

THEOREM

Let W be ad x d matrix over C. Then any two of the following
imply the third:

B W is a type-Il matrix.

B W is flat.

Some scalar multiple of W is unitary.
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SPIN MODELS TYPE-II MATRICES SPIN MC

SPIN MODELS

DEFINITION
If no entry of W is invertible, define

W,

/.

i . o (—)
2= We; o {We:,— ) .

We say that W is a spin model if each of the vectors W, ; is an
eigenvector for W.
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SPIN MODELS TYPE-II MATRICES SPIN MODELS AND M

THE CycLic SPIN MODEL

EXAMPLE

Choose # so that #* is a primitive complex v-th root of 1, and let
W be the v x v matrix given by

Wij =60 o0<ij<v
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SPIN MODELS TYPE-II MATRICES SPIN

SUMMARY

m Spin models were introduced by Vaughan Jones in his
work on operator theory and link invariants.
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SPIN MODELS TYPE-II MATRICES SPIN MODELS AND MUB'S

SUMMARY

m Spin models were introduced by Vaughan Jones in his
work on operator theory and link invariants.

m [hey provide representations of the Braid group(s).
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SPIN MODELS TYPE-II MATRICES SPIN MODELS AND MUB'S

SUMMARY

s Spin models were introduced by Vaughan Jones in his
work on operator theory and link invariants.

m [hey provide representations of the Braid group(s).
m Tlhere are very few examples.
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SPIN MODELS [YPE-II MATRICES SPIN MODELS AND MUB'S

OUTLINE

SPIN MODELS

m Spin Models and MUB's
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SPIN MODELS [YPE-II MATRICES SPIN MODELS AND MUB’S

LEMMA

Let A be a type-ll matrix of order n x n and let D; be the diagonal
matrix with r-th diagonal entry equal to the r-th entry of the j-th
column of \/nA'~). IfA is a spin model, then forj=1.....n,

o [ c
DAD"' = A™'D;A.

(Chan, Godsil, Munemasa.)
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SPIN MODELS PE-11 MIATRICE SPIN MODELS AND MUB'S

COROLLARY

Suppose A is a unitary type-Il matrix. If A is a spin model, the
column sets of the matrices I, A and D;A form a set of three
mutually unbiased bases.

PROOF.

By the previous lemma, A~'D;A = DJ,-AD),.". The diagonal
entries of D; have norm 1, and so D; is unitary. Hence DjADj-_l IS
a flat unitary matrix and therefore A—'D;A is flat and unitary. [
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