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Abstract: The dynamics of particles moving in a medium defined by its relativistically invariant stochastic properties is investigated. For this aim,
the force exerted on the particles by the medium is defined by a stationary random variable as a function of the proper time of the particles. The
eguations of motion for a single one-dimensional particle are obtained and numerically solved. A conservation law for the drift momentum of the
particle during its random motion is shown. Moreover, the conservation of the mean value of the total linear momentum for two particles repelling
each other according to the Coulomb interaction also follows. Therefore, the results indicate the realization of akind of stochastic Noether theorem
in the system under study.
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The dynamics of particles moving in a medium defined by its relativistic invariant stochastic
properties is investigated. For this aim, the force exerted on the particles by the medium is
defined by a stationary random variable of the proper time of the particle. The equations of a
single one dimensional particle are written and numerically solved. A conservation law for
the drit momentum of the particle during its random meotion is shown. Moreover, the
conservation of the mean value of the total linear momentum of two particles repelling one to
another according to the Coulomb interaction also follows. Thus. the results indicate the
realization of a kind of stochastic Noether theorem inthe systems under study.

The above properties suggest a possible use of the kind of construction employed in this
work, to explore the realization of ensemble descriptions of QM and QFT along the
D’'Broglie. Einstein and Bohm lines of though.
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1. Introduction

The objetive of this work aims to call for the attention about a particular point of view to the very old
problem of giving a stochastical interpretation of Quantum Mechanics (QM). A large quantity of
studies have been done in the literature since the original times of QM. Two of the most relevant
steps were the D'Broglie “Pilot wave”™ and the Bohm interpretions. The argues given here are far
from to be complete and we only intend to present some issues which extension in our view are
worth considering.

2 The idea: let us assume the Einstein’'s view about that
a matter particle could have always a well definite
position in space. Then the only apparently possible
way in which the QM phenomenoclogy could be
implied, seems to necessarily corresponds to a
situation in which the vacuum exerts a relativistic

y invariant random force on the particle. This view is the
idea behind the classical works of Boyer, de la Pena,
and many other authors.

;mg:* The present discussion only attempts to consider a

of the proper || Particular way of constructing the stochastic force

time: < which acts on the particle.

Basically, we study some consequences of assuming that the stochastic force is defined as

as an homogeneous random variable in the rest frame of the particle as a function of its proper
time. It will be argued that in this case a conservation law of a drift momentum of the particle arises
and also that the total sum of the drift momenta of a pair of particles conserves under a collision.
The results also rises some interesting possibilities for the extension of the work. that will be
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2. Equation of motion

// The equation of motion

~ Increase of the velocity in the
Fp[ T)dTt =mod e rest frame
A

/

Random force in the rest frame as a function of
the proper time

v4+d v/ Relativistic addition of the increment in

v+dv = g * \ the velocity in the rest frame and the
1 +

the velocity v of this rest frame with

=
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mg dv

-

Equation of motion in terms of the velocity in the laboraton
frame and the proper time

T

F) p— = -
A= A=y de

dx(r)
YV =

dt

| 2 -
Fp(t) = 1 — = Fp.(7).
o2

Generel relation between the spatial component of
the four-force in the rest frame and the [aboratory one

fFP{r)a’rﬂ—f“:nn)[
(1

moc

~

| The velocity of the laboratory
= dv, _—"] frame can be analytically
- '_:) ] determined in terms of the integral

over the proper time of the force

1+ & ) in the rest frame.
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v(t) =c - tanh

nioc

([ Fp(t)-dt —l—é

. C is an arbitrary constant |
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3. The random force

N
_f',v(r. Qi) = ; Zcuﬁ(u';[f\f}r —|—<,0;).
! —
8Ti _
w; (N) = /y' i=1,.... N,

JJ,,f’

- The expression employed for the random

| force in the rest frame as a function of the
proper time:

: Basically, it is a white noise with a finite
frequency bandwidth, approximately

- generated by N uniformly spaced values of
the frequency components with random
phases assigned to them.

100 150 200

g A. The figure shows a realizarion of the force field corresponding to a spec-
of N = 20 frequencies. The horizontal coordinate 1s the tme 1in seconds
the vertical one is the force n Newtons. The amplitode was fixed fi =1

Plot of the value of force as a function of the
proper time for a number of frequency
compeonents N=200.

The distribution functions (y axis) for the
values of force (x axis) in the rest frame

for N=250
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4. A particle in the medium

The expression of the random force can be
directly integrated to the form:

Velocity in the laboratory system of reference

as a function of the proper time and the
constant C:

.e#f”’ﬂﬂﬂr
T T N
, _ -
IF_PITJ=fFF[r}cfr=%f|:Zc05(%r + @i

0 o Li=l
7 L Sri
JO = O

= —sin 1.
3,7[;5" ( R )}

-

Then, after substituting in the formula
previously obtained, the velocity in the
laboratory frame can be explicitly expressed
as a function of the proper time as follows:

Fig 3. The velocity of the particle in the laboratory frame against the proper
time and the arbitrary constant C_ The parameters for the random force were
fo__ g (s, u‘;:ifrr—
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Fig. <. The velocites of the particles (divided by ) in the laboratory svsiem
vs. the proper ume for fowr specific values of C: {a) € =0_ () € =03,
{c) € = —0.2 and (d) € = —0.8. Note the non-vamshing value of the mean
velociry for C different from zero.

" i
— Ol
5 w0 / 1‘\5
- /11
4 FAR a7
006 008 01 G122 014
{a) v
30 } g0
- }‘\1 i — 60
S - L /’_ \
= [ \ j = /_f
i | | Bl
F M1 | s
035 028 03 032 034 04 045 0.46 0.4 045 0.39 05
by v < v

Fig. 3. The distribution functions: {a) wiv) for C =0.1. (b} wir) for € =03
Pirsaiq8040968) for C =1()._5. Note the distortion of the svmmetry around the center,
when C grows.

The plot of the velocity as a function of the
proper time for few values of the constant
C.

Note that each value of C determines a
conserved non vanishing value of the
velocity of the particle. Therefore, a kind of
stochastic conservation law of the mean
mamentum follows. Thus, the Lorentz

o | invariance of the equations of motion

suggests the validity of a kind of
“stochastic”™ Noether Theorem.

The distribution functions for the velocity for
various values of the constant C, showing a
non vanishing average in them. Note. that
due to the Lorentz invariance of the system,
it should be valid that the distributions of
velocities for two different values of C,

must be related by a particular Lorentz
transformation between the solutions for the
velocity for such values of C.
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formula

In order to determine the velocities and coordinates as functions of the
time in the laboratory system. the proper time should be found in terms
of the laboratory time for each solution. First, the laboratory time was
numerically found as a function of the proper time through the usual

f{T.C}:f _['ET.'" C}—}U:‘
{} S

t(0)y=0.

Then, the inverse mapping
expressing the proper time as a
function of the [aboratory one, was
also numerically evaluated. It is
illustrated in the figure:

Fig. 6. Dependence on ¢ of the proper time im the laboratory T = tir. C). with
oy runming along a thard axis. Note that. since the dependence. by defimition,
should always be monotonows. the random oscillation are not apparent. They
are however present in the local slope of the curves.
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Fig. 4. The velocites of the particles {divided by ) in the laboratory svstem
vs. the proper ume for four specific values of C: {a) C =0, {b) C =03,
ic) C=—0.2 and (d) C = —0.8. Note the non-vanishing value of the mean
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Fig. 5. The distribution functions: {a) wiv) for € =0.1. (b) wir) for € =0.3
Pirsadq8040968) for C =1().5. Note the distortion of the svmmetry around the center,
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The plot of the velocity as a function of the
proper time for few values of the constant
C.

Note that each value of C determines a
conserved non vanishing value of the
velocity of the particle. Therefore, a kind of
stochastic conservation law of the mean
momentum follows. Thus, the Lorentz

= invariance of the equations of motion

suggests the validity of a kind of
“stochastic”™ Noether Theorem.

The distribution functions for the velocity for
various values of the constant C, showing a
non vanishing average in them. Note, that
due to the Lorentz invariance of the system,
it should be valid that the distributions of
velocities for two different values of C,

must be related by a particular Lorentz
transformation between the solutions for the
velocity for such values of C.
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The velocities of the particle or various values of - |
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Fig. 7. The velocines in the laboratory frame (divided by o). bot now plot
as funcnons of the time ¢ in thes same frame of reference. for the values of

0.8 (a) € =0.0L.(b) € =04 (¢) € =—0.03.(d) C =—03.
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- — , | as functions of the time in the
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Fig. 8. The particle coordinates divided by ¢: T = L x(1) as functions of the time values of C.

-

in the laboratory frame. In (a) and (b) € =0.01 but the time scale is dafferent.
For (c) and (d) € =0.4 and asam the two scales are different. Note that for
small the randomness seems © be sreater than for lanser C.
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3. Two particles in the medium

o

F"*PI (x1.x2) =— Frepj {xp, x3) =

lx1 — x2]3

—x ). ‘-//N

1 d*x 1

(l— m )3_ dt?

f.'

\
/

The Columb force
between two particles

The equations of motions for
the two particles interacting
through a repulsive Coulomb
potential. The radical factors
multiply the Coulomb force in
order to express the laboratory
frame forces in terms of the
forces acting in the rest frames
of each particle. It was
assumed that the velocities and
the Coulomb forces are small
in order to disregard retardation
effects.

| {f:'
=Fp1{T1.}+(l— p. ) FFEPI{I‘[ X?)
‘ o d* x>
(1 e x5 (1)> )3..-'- dt-
| ) G
‘ it — > Frep, (x] )
c2
dTi (1 X (1) )”3
— = — . -
dt c?
T (fg) = T1g- X1 () = X1q-
dry | .TE{F}Z )H:
dr 2 : —
T24i66) daoao063 2y, - ¥2(f0) = x2,. o) =uv2

\

The relations between the proper
times of each of the particles and the
time in the laboratory frame.

-

The initial conditions for
the proper time and
particle coordinates.
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| The plot of the velocities of the two
partlcles as functions of the
Iaborator}; frame. Note that the
velomtles are exchanged. That is.

' the impact is elastic and the

. addition of the drift momenta

- conserves. Thus, again the Noether
. Theorem result appears: The
Lorentz invariance of the system
seems to determine the
conservation of the total momentum
associated to the conserved drift

Vitlie

-01 1

-02

velocities.

(vig) =0, (v2,) =0.152,
(Ul_r} =0 152, (l.‘gf} —
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Fig. 10. The nme dependence for the velocities (divided by ¢) of both particles:
(@) vy(r)/c and (b} v2(r)/c in the considered shock. Note. the exchange of their
mean velocity values.
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Possible extensions of the work

1) To generalize the discussion for considering more spatial dimensions.

2) To study the formulation of a “stochastic™ Noether theorem in which the symmetries of the system
extends to be symmetries of the random forces acting on it.

3) The ability of formulating that theorem, could open the possibitily of considering the conservation
of the total angular momentum (spin plus orbital one) and general internal charges.

4)

In the cases of the number of spatial dimensions being greater than one, the following interesting
possibility is suggested.

Consider the preparation of initial states for the collision of two particles with given drift velocities.
In 1+1 dimension, the only result of the collision should be the exchange of the velocities.
However, for more than one spatial dimensions, the resulting conserved drift velocities will be
oriented stocastically as the they should depend on the specific realization of the stochastic force
when they are near one from another.

Then, let us consider an ensemble of a large number of those identical collisions and the
associated spatial distributions of the particle density (or any other local quantity) at any arbitrarily
given laboratory instant of time.

It should be the case that if a particle is detected at a far away position of the region of collision
{which can be estimated by the form of the construction of the experience). another particle
should be detected in a postion which can be approximately calculated given the initial velocities
of the particles.

The same is true for the momenta. due to the conservation of the total drift momenta: measuring
the impulse of one of the particles allows to know the other momentum.

Therefore. if the described ensemble can be shown to be dynamically driven by the laws of
Quantum Mechanics. then, it seems that the EPR paradox could have a solution in the picture.
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3) Some observations suggests the possibility that the stochastic properties of the considered
ensembles could be determined by relativistic wave equations, perhaps after properly choosing a
required structure for the stochastic force. Some of these observation are:

« [t naturally follows that all the ensembre densities for a given laboratory time t after the collision,
vanish outside a circle of radius R=c t with c the velocity of light.

+ Assumed the validiy of the Noether Theorem, it could be the case that all the symmetries of the
stochastic forces will determine associated conserved quantities.

+ The above two observations suggests that perhaps, the appropriate way of assuring these
properties is that the particle density in the ensembles could be be associated to the known
conserved particle densities following from linear wave equations. like the Dirac one by example. The
search for this possibility seems to be an interesting extension of the work.

6) Inthe case of small mass of the particle, it follows that a small force can accelerate it to the
velocity of light. Then. it seems motivating to explore the possibity that in this limit of zero mass, the
stochastic description could lead to a picture in which, the massless particles (by example | the
photons) move in stright lines with given values of their internal propeties (frequency. helicity... ). This
view seems to be compatible with the Dirac’s Delta like form of the propagator in the light cone for the
D'Alembert equation. Thus, one could also ask that, up to what measure the Maxwell equations for
photons, by example, could be represented as a stochastic distributions of point particles following
stright line trajectories. and having given helicities.and frequencies. In this case the EM field
components could turn to be no other things that some mean values of the internal properties of
particles (helicities, energies...).

7) More in general, the discussion also suggests, the (remote perhaps!) possibility of a consistent
picture for QM and QFT in which the particles udergo movements guided by random stationary states,
defined by some stochastically conserved quantities (quantum numbers. eigenfuntions?). and
eyeniuglly they are able to emit (by causal contact interactions perhaps) other kind of partigles,, After
the emission. the stochastic vacuum force could pilot the particle, but now undergoing a different
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