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Abstract: We analyze the trans-Planckian problem and its formulation in the context of cosmology, black-hole physics, and analogue models of
gravity. In particular, we discuss the phenomenologica approach to the trans-Planckian problem based on modified, locally Lorentz-breaking,
dispersion relations (MDR). The main question is whether MDR leave an detectable imprint on macroscopic physics. In the framework of the
semi-classical theory of gravity, this question can be unambiguously answered only through a rigorous formulation of quantum field theory on
curved space with MDR. In this context, we propose a momentum-space analysis of the Green\'s function, which will hopefully lead to the correct
renormalization of the stress tensor.
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Introduction

lp is very small, can we ignore trans-Planckian physics?
There are at least two phenomena in which physics at the
Planck scale can be crucial also in the macroscopic world:
and

In both cases, modes with Planck-size wavelength are
(red-shifted) by a very large factor, and can affect
macroscopic physics.
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Black holes emit radiation with thermal spectrum. The
modes involved satisfy

O =0
Outgoing null geodesics (characteristics) are given by
z = g eE0) k=1/4M
Frequency measured by a free-falling observer is
Q~w(l—m/r) L, m=2M
This property is - » =

Can we trust such a boundless grow:
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Divergence comes from w?® = p?
What happens if

1
(=— ' — X

w? = p* +p*/p; G(z,2) ~

Hawking radiation is robust [Unruh, 1981]

Unruh’s effect is robust [Navarro-Salas et al 2007, Rinaldi
2008]

Does this settle the problem? No, these results say that
Hawking radiation/Unruh effect are
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If inflation lasted enough (~ 70 e-foldings), then scales inside
Hubble radius today started out with A ~ [, at the beginning of
inflation.

Some people (e.g. Starobinski) claims that TP effects are
largely suppressed.

Others (e.g. Tanaka, Branderberger, and Martin) insist on
the possibility that TP effects are significant, as

, and the of TP modes cannot be neglected.
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To assess TP effects, we must estimate the
, in the semi-classical approximation

1
where (T, )T encodes also TP effects

How? Here we assume that TP effects are encoded in
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Modified Dispersion Helations

UV cut-off

There exits a UV cut-off at
If [, is a “zero-point length”, any process w1th E > E, will be

[Pad.m.a.na.bhan, 1998| proposed a duality in the path integral.

Gr(z, @) = ¥ emol=)1+ )
paths
1t follows that
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UV cut-oft

This is compatible with String Theory (T-duality) and (some
versions of) x-Poincaré algebra.

Calculations on the Unruh effect and Hawking radiation have
shown that the effects of this cut-off is on the
macroscopic physics.

The regularization of these theories is almost trivial.
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Modified Dispersion Helations

Lorentz-breaking MDR

A Lorentz-breaking modified dispersion relation appears in
momentum space as [Jacobson et al, 2000]

w? = m? + k]2 +

F(|E2) = a1|k|* + a2|E|® + ...
The sign of a; determines whether the modes are or

We assume that
In coordinate space, this corresponds to

[D—mﬁ— ]¢=0
V2 contains only. R ' =
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Preferred frames

, we need to add a dynamical
degree of freedom to the gravitational Lagrangian [Jacobson et
al, 2000]

This has the form of a

L = R—2A—b0FuF* — ba(V,uu*)? — 3R, uPu” +
byv’ u’V,u, Vot — A(guou”u” + 1)

pv Vuth, — V1,
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Lorentz-breaking MDR

Some of the terms vanish when u* is geodesics.

Higher derivative terms in u* are suppressed

Can be seen as an effective theory - Non linear realization of
the Lorentz group

The coefficients b, ... by are constrained by PPN analysis e.g.
in solar system [Durrer et al, 2007]
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Lorentz-breaking MDR

Any metric can then be written as
ds* = —(uudz*)? + qudzids” , ¢~ = g™ + vt

g is the on the surface orthogonal to u*.
With this, we define

¢2¢' = quvvp(qfvﬁqs)
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MDR for a scalar field coupled to the metric arise with
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where
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Preferred frames

The main question is: what happens to in the
semi-classical Einstein equations?
1
R,uv — éRgp-v = 877(;( T.tﬂf)ren
Formally
(Tpu>ren — T;;udea(w, V‘I’:g,um ) o Zﬁv

Our task is to find in the general case. Some result is

already available.
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Flat Space

Consider the in [Rinaldi, 2007]
O¢(z, t) — €€05¢(z, 1) =0, € >0

In momentum space, the massless propagator reads

1 1
G — —
®) = o + wp — Pg

The Wightman functions are given by

GE(z#, P = e cos(pAz) E($iﬁt\/p2+ )

2r /A VPP +

dp
 p » =
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Flat Space
For the IR behavior is the same as the relativistic
propagator
For we find
(éz(:z:“, a:’*“)) = GT+G =

- 2] (2)-(2)]

Az
- % °(Zarem) + 5 (Gomm) |
[ V2mweAt 2weAt
where S and C are Fresnel integrals.
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Flat Space
For the IR behavior is the same as the relativistic
propagator
For we find

Gr+G =
— E COS Az — sin E = &
2em 4eAt deAi
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where S and C are Fresnel integrals.
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Flat Space
In the At =0, Az = 0 this function is 1
unlike in the :
(2, @) ~ — In|Ad® — AP
The stress tensor (7, ) is as it depends on
derivatives of (¢?(z*, z'*)).
What happens in ?
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Cosmology

In Cosmology, we identify u* with the velocity of the
comoving observer.
The gravity action simplifies to

L= R—2A — (Vuu*)? — s R vy’ — AN(guu”u” +1)

We expect that to renormalize we need to re-define - and ',
together with A and Gy.
It depends on the symmetry of spacetime.
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Cosmology

In , the scalar field depends on time only. If
one uses the conformal metric

ds’ = C(1)[—dr? + §5dz* dz’]

the modes equation for the scaled field x(7) = v/ C¢ reads
O2x + [(§ — &) RC +wilx =0

with wf = k2 + C[m? + |-

The modes equation is still a differential
equation:

P > - &
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Modified Dispersion Relations

Cosmology

For metrics, we can renormalize in the usual way,
by absorbing divergences in the bare Gy and A:

(T = (Ta) — (T0)® —(T,0)® — (T,0)®

The last term is finite but necessary to recover the trace
anomaly in the relativistic limit (T#,) = —1/240n%a*

No terms like appears. The reason is the high degree
of .

Renormalization is achieved in the usual way by redefining
the Mazzitelli et

al, 2007]




Modified Dispersion Relations

Cosmology

Consider a metric

3
i = —C(n)dn’ + Y Cin)ds?, €= CiG:Cs

i=1

Then, the second adiabatic order correction to the 2-point

function is
5"
(¢2)(2) ~ ER+ K, =V,u,
These new terms are related to the of the
hypersurface orthogonal to w*. (T),)™® has similar structure.
To renormalize, we need to redefine and -, together

with the cosmological constant and Newton’s constant.




Modified Dispersion Relations

Stationary Backgrounds

For (e-g- black holes) we have
. Consider the simplest case: F(|k|?) = |k|*.
The satisfy the equation
(O—m* - €V)G(z,2) = —g~/8(z — )
The differential equation is now of . WKB

methods do not apply.

The is that the counter-terms must contain
of R, g, and u* [Mazzitelli et al, 2007]




Momentum Space Representation of G(z, z’)

Momentum Space Representation
of Green’s Functions




Momentum Space Representation of G(z, z’)

Riemann coordinates expansion

Complicated Green’s functions can be simplified in
momentum space:

We need a

Given two close points, we can always create a local
orthonormal coordinate system:
(RNC).

In RNC, the metric can be locally written as

1
Gpv = M — éRuavﬂyﬂyB T .-

The Fourier transform makes sense locally

dVk

G(z,2) = em)

N L




Momentum Space Representation of G(z, z’)

Riemann coordinates expansion

One expand the [] operator in RNC and Fourier transform.
The equation can be solved iteratively. For example, the B&P
expansion to second order of the Green’s functions is

= =
where Gy = (K"K, + *mz)_1 is the flat-space propagator.

Yes.... but it is horribly complicated!




Momentum Space Representation of G(z, =’)

Ultra-static metric case
We have tried for ultra-static metrics and for a V* dispersion:
ds® = —d7* + g;(z')dr'de’ , (O+m? —EVHe=0

Dimensional reduction G(z, ') = [ & e«("7) G(27, 27, w)
At fourth order, we find via B&P:

E‘,-j——g—oRPR,,,+6OR”Rm+ —_fea ngj+ R +401:i:,J




Momentum Space Representation of G(z, z’)

Ultra-static deWitt-Schwinger expansion

In coordinate space we have

dn+1 k = )
9(=*,=%) = (2m)n+ © = [1 —hD +sz2] Go
Define éﬂ —3 | IUCE ds e'iﬂ(k2+€2k4+m2_w2)
Find

Gly) = i/ﬂm ds e~ =(m"—w") [1 + (i8)(1 — 220 fy +

+ 2(is)?ef, + (is)*(1 — 220%)%| L(y,9)
Where

345 *
I(y,s) = ism)"/2 Z Al (163) 4"‘](

|

) [Rinaldi, 2007]

=




Momentum Space Representation of G(z, z’)

Ultra-static metric case
We have tried for ultra-static metrics and for a V* dispersion:
ds® = —d7* + g;(z')dr'de’ , (O+m? —EVHe=0

Dimensional reduction G(z, ') = [ & e¥("7) G(27, 27, w)
At fourth order, we find via B&P:

@ 1 oo |
Hij=_3_0Rp£Rpj+6_0R Rm+ R Rme+ R?!?+4OR'JP




Momentum Space Representation of G(z, z’)

Ultra-static deWitt-Schwinger expansion

In coordinate space we have

dﬂ.+1 k = i
g(ﬂ:‘“,z;’“) = (211.)“_1_1 e Un [1 _le_I_ngz] &o
Define aa | IUCU ds e*iﬂ(kz+ﬁ2k4+m2_w2)
Find

Gly) = ffum ds e~ =(m* ") [1 + (is)(1 — 2207, +

+ 2(is)?ef, + (is)(1 — 220°)%%| L(y,9)
Where

345 3
I(y,s) = ism)"/2 Z Al (163) 4"‘](

=i

) Rinaldi, 2007]

2




Momentum Space Representation of G(z, /)

Fermi coordinates expansion

Can we compute these terms for a ?
When there is a preferred direction, it is better to use the
(FNC):

ds® = goodi® + 2go;dtdz’ + g;;dz* dz’

where
1
goo = — Rﬂcﬁd(t)zczd Gab = 5{16 = éRacM(t)zczd
p.
%a —émjmd(t)ﬂ:cﬂ:d

the Riemann tensor components are calculated on the integral
curve of u”.




Momentum Space Representation of G(=z, ')

Fermi coordinates expansion




Momentum Space Representation of G(z, z/)

Fermi coordinates expansion

Can we compute these terms for a ?
When there is a preferred direction, it is better to use the
(FNC):

ds? = goodt® + 2go;didz’ + g;da’ dad

where
1
goo = — = R‘Ocﬁd(t)zczd Gab = 5{16 = éRacM(t)chd
2
Ya -:'_,;RDcad(t)-":cxd

the Riemann tensor components are calculated on the integral
curve of u”.




Momentum Space Representation of G(z, z’)

Fermi coordinates expansion
The modified Klein-Gordon equation is
(O-m?)¢+F [¥2] ¢ =0
with V2¢ = ¢*,V.(¢*3V?9). But:
(¢ = V2p — u®uPV, V3¢ — K u®8ad

where K = ¢**V ,u, is the . If,
in flat space, the
, we have

- u“u‘aVQVg:;S — Ku®8,¢6 — m?0=0




Momentum Space Representation of G(z, =’)

Fermi coordinates expansion

For Lorentz-invariant dispersions, n = 1 and a2 = 1.
The shifted Green’s functions must satisfy

91/4 Z a2n$2n(g—1/4a) . 91/4uAuBVAVB(g—1/4(_;) i

n=1
—91/4K uﬂa,q(g_l/'ia) —m’G = —4(z%)é(7)
where

G(z,7) = g(z)""/*G(z,z)g(z')~/*




Momentum Space Hepresentation of Gz, ')
= L y J

Fermi coordinates expansion

Expand the equation in FNC up to second order
Fourier transform

Gz, 7) = (g:)ﬁ 915k =" B (k2 12)

Impose and solve perturbatively to find...




Momentum Space Representation of G(z, /)

Fermi coordinates expansion

— 8% Ho Do + @ ko K*D(D — 300) Gy
Q%a (D + Do)Go — K DDoGo| +
Qus k* k® [ D(D + Do) Go — 4 3 Go D Go |

8
[

+ +




Momentum Space Representation of G(z, z’)

Fermi coordinates expansion

The are

1 1
g = —6R0b , Q% =R%g, Hg=Rqgq+ :;Rﬂcad

In the , we recover the previous results.
The coefficients Q4; and H,;

via adiabatic regularization.
They can be written as , using

Rabed = Ropyse®a b €724

[Rinaldi, 2008]




Momentum Space Representation of G(z, z’)

Fermi coordinates expansion

— 0% Hos DTy + Q@ ko K*D(D — 3D) G
Q%a (D + Do)Go — K3 DDoGo| +
Qus k* k® [ D(D + Do) Go — 4 K3 Go D Go |

3
[

+ +

G (-5 K)”

- a8 as
S=Y con(-1)"K¥*", DoS= 5, DS=_
E k2 ok>




Momentum Space Representation of G(z, z’)

Fermi coordinates expansion

The are

1 1
Q= —6R0b , Q% =R%g, Hg=Rlqq+ :;R“md

In the , we recover the previous results.
The coefficients Q4; and H,;

via adiabatic regularization.
They can be written as , using

5
Rabed = Ropyse®a b €7 €24

[Rinaldi, 2008




Momentum Space Representation of G(z, /)

Fermi coordinates expansion

In the
S=—k, DG =-DGo=-G2, Go= (K —K+m?!

G(rel) —HG2 +2Q% k2GS +8Qus K°k°G3 — 8Qus k*p° K2 Gy
different from the !

& — L@
6
The reason is that in FNC we expand around a flat metric
, not a point as in RNC!
However, the are the same.




Analogue Models

Analogue Models




| A-_uﬁln.gue Models

Analogue models

Let us consider a fluid which is
Irrotational: v = ‘3’1,0
Homentropic: the pressure is a function of the density p only
No external forces

§=- _/ d'z [Paﬂ/) i %p(ﬁ'ﬂ))z + u(p)

where the energy demnsity is given by u = du/dp and ¢ is the
Newtonian (i.e. laboratory) time.




A-_ual-.:;gu-e Models

Analogue models

We now look at

p = po + p1, v=v%+t%

Then as linear terms drop out (they describe
mean fluctuations).

The dynamics of the perturbations p; and ¥, is then
described by

1 — : -
% = — [d'z (T — 2 +5- )’
du

—| = speed of sound
pdppn Sp




Analogue Models

Analogue models

Variation of S w.r.t. ¥ (eq. for p; inserted) gives
— 8| P50+ )| +
- 6"-{% -g(ma)-m] +po€fw1} =

This equation can be written as

with




.Analc.:;gu-e Models

Analogue models

By defining the matrix ¢*” such that f** = /—gg¢"*”, the
equation becomes

ie. the

The curvature is locally given by the background fluid
velocity wp and the local speed of sound c.
Also the action can be re-written as

So=— / d*z\/—gg" 8,101 8,11




A_ualdgue Models

Analogue models

Inverting ¢*¥ one can write the
po i . 3 -
ds? = 2 |—(* — B)dt* — 265v§da’ dt + Sda’ da’ |

which is the form! One can actually construct also an
in two dimensions with a simple




.Analn.gue Models

Analogue models

By defining the matrix ¢*” such that f** = /—gg¢*”, the
equation becomes

i.e. the

The curvature is locally given by the background fluid
velocity wp and the local speed of sound c.
Also the action can be re-written as

Sp = — / d*zv/—gg" 8,118,




Analogue Models

Analogue models

Inverting ¢*¥ one can write the
po 3 . : .
ds? = 2 |—(* — B)dt* — 265v§da dt + b da’ da’ |

which is the form! One can actually construct also an
in two dimensions with a simple




| An.aln.gu-e Models

Analogue models

Such devices can be built in a lab using

Gross-Pitaevskii equation

2

Madelung representation: ¥ = v/ e/ with 7 = V8 /m
Fluctuation: i=n+f; and § =0 + 61

We find:
With ds? = 2 [—c2dt®? + (dZF — udt)2]
This result holds for cw=45k

More accurate calculations for




Conclusions

Conclusions

The work done so far is necessary to find the
energy-momentum tensor with the

T lim A7E  itry, [fr(modes) _ F(MDR)
( ,U-F)I'En (2T)N [ 77 ]

With this expression, we can test many predictions in
and
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Momentum Space Representation of G(z, z’)

Fermi coordinates expansion
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Momentum Space Representation of G(z, z’)

Fermi coordinates expansion
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