Title: Trans-Planckian physics and renormalization

Date: Apr 24, 2008 02:00 PM

URL: http://pirsa.org/08040068

Abstract: We analyze the trans-Planckian problem and its formulation in the context of cosmology, black-hole physics, and analogue models of gravity. In particular, we discuss the phenomenological approach to the trans-Planckian problem based on modified, locally Lorentz-breaking, dispersion relations (MDR). The main question is whether MDR leave an detectable imprint on macroscopic physics. In the framework of the semi-classical theory of gravity, this question can be unambiguously answered only through a rigorous formulation of quantum field theory on curved space with MDR. In this context, we propose a momentum-space analysis of the Green\'s function, which will hopefully lead to the correct renormalization of the stress tensor.

Pirsa: 08040068 Page 1/114

TRANS-PLANCKIAN PHYSICS AND RENORMALIZATION

Massimiliano Rinaldi

DIPARTIMENTO DI FISICA UNIVERSITÀ DI BOLOGNA

rsa: 08040068 Page 2/114

Outline

- 1 Introduction
- 2 Modified Dispersion Relations
- 3 Momentum Space Representation of G(x, x')
- 4 Analogue Models
- 6 Conclusions

Outline

- 1 Introduction
- 2 Modified Dispersion Relations
- 3 Momentum Space Representation of G(x, x')
- 4 Analogue Models
- 6 Conclusions

HEART STATE TO DO

Modified Dispersion Relations Momentum Space Representation of G(x, x')Analogue Models Conclusions

Introduction

WHAT HAPPENS AT THE PLANCK SCALE AND BEYOND?

Theoretical models:

- Loop Quantum Gravity
- String Theory
- Non-commutative geometry
- κ-Poincaré algebra

Facts:

- Lorentz group is non-compact
- Lorentz invariance implies ultraviolet divergences
- Analogue models of gravity

Modified Dispersion Relations Momentum Space Representation of G(x, x')Analogue Models Conclusions

Introduction

WHAT HAPPENS AT THE PLANCK SCALE AND BEYOND?

Theoretical models:

- Loop Quantum Gravity
- String Theory
- Non-commutative geometry
- κ-Poincaré algebra

Facts:

- Lorentz group is non-compact
- Lorentz invariance implies ultraviolet divergences
- Analogue models of gravity

Page 6/114

Modified Dispersion Relations Momentum Space Representation of G(x, x')Analogue Models Conclusions

Introduction

ARE TP EFFECTS VISIBLE?

- l_P is very small, can we ignore trans-Planckian physics?
- There are at least two phenomena in which physics at the Planck scale can be crucial also in the macroscopic world: early/inflationary cosmology and near-horizon black hole physics.
- In both cases, modes with Planck-size wavelength are stretched (red-shifted) by a very large factor, and can affect macroscopic physics.

Modified Dispersion Relations Momentum Space Representation of G(x, x')Analogue Models Conclusions

Introduction

ARE TP EFFECTS VISIBLE?

- l_P is very small, can we ignore trans-Planckian physics?
- There are at least two phenomena in which physics at the Planck scale can be crucial also in the macroscopic world: early/inflationary cosmology and near-horizon black hole physics.
- In both cases, modes with Planck-size wavelength are stretched (red-shifted) by a very large factor, and can affect macroscopic physics.

10 + 10 + 12 + 12 + 2 + 040

Modified Dispersion Relations Momentum Space Representation of G(x, x')Analogue Models Conclusions

Introduction

EXAMPLE: BLACK HOLES

 Black holes emit radiation with thermal spectrum. The modes involved satisfy

$$\Box \phi = 0$$

Outgoing null geodesics (characteristics) are given by

$$x = x_0 e^{k(t-t_0)}, \qquad k = 1/4M$$

Frequency measured by a free-falling observer is

$$\Omega \sim \omega (1 - r_h/r)^{-1}$$
, $r_h = 2M$

This property is universal

Can we trust such a boundless growth

Modified Dispersion Relations Momentum Space Representation of G(x, x')Analogue Models Conclusions

Introduction

EXAMPLE: BLACK HOLES

 Black holes emit radiation with thermal spectrum. The modes involved satisfy

$$\Box \phi = 0$$

Outgoing null geodesics (characteristics) are given by

$$x = x_0 e^{k(t-t_0)}, \qquad k = 1/4M$$

Frequency measured by a free-falling observer is

$$\Omega \sim \omega (1 - r_h/r)^{-1}$$
, $r_h = 2M$

- This property is universal
- Can we trust such a boundless growth?

Modified Dispersion Relations
Momentum Space Representation of G(x, x')Analogue Models
Conclusions

Introduction

- Divergence comes from $\omega^2 = p^2$
- What happens if

$$\omega^2 = p^2 + p^4/p_c^2$$
 or $G(x, x') \sim \frac{1}{(x - x')^2 - \lambda_p^2}$

- Hawking radiation is robust [Unruh, 1981]
- Unruh's effect is robust [Navarro-Salas et al 2007, Rinaldi 2008]
- Does this settle the problem? No, these results say that Hawking radiation/Unruh effect are low-energy effects
- Back-reaction is ignored

Modified Dispersion Relations Momentum Space Representation of G(x, x')Analogue Models Conclusions

Introduction

- Divergence comes from $\omega^2 = p^2$
- What happens if

$$\omega^2 = p^2 + p^4/p_c^2$$
 or $G(x, x') \sim \frac{1}{(x - x')^2 - \lambda_p^2}$

- Hawking radiation is robust [Unruh, 1981]
- Unruh's effect is robust [Navarro-Salas et al 2007, Rinaldi 2008]
- Does this settle the problem? No, these results say that Hawking radiation/Unruh effect are low-energy effects
- Back-reaction is ignored

Modified Dispersion Relations Momentum Space Representation of G(x, x')Analogue Models Conclusions

Introduction

EXAMPLE: BLACK HOLES

 Black holes emit radiation with thermal spectrum. The modes involved satisfy

$$\Box \phi = 0$$

Outgoing null geodesics (characteristics) are given by

$$x = x_0 e^{k(t-t_0)}, \qquad k = 1/4M$$

Frequency measured by a free-falling observer is

$$\Omega \sim \omega (1 - r_h/r)^{-1}$$
, $r_h = 2M$

This property is universal

Can we trust such a boundless growth

Modified Dispersion Relations Momentum Space Representation of G(x, x')Analogue Models Conclusions

Introduction

EXAMPLE: BLACK HOLES

 Black holes emit radiation with thermal spectrum. The modes involved satisfy

$$\Box \phi = 0$$

Outgoing null geodesics (characteristics) are given by

$$x = x_0 e^{k(t-t_0)}, \qquad k = 1/4M$$

Frequency measured by a free-falling observer is

$$\Omega \sim \omega (1 - r_h/r)^{-1}$$
, $r_h = 2M$

- This property is universal
- Can we trust such a boundless growth?

Modified Dispersion Relations Momentum Space Representation of G(x, x')Analogue Models Conclusions

Introduction

- Divergence comes from $\omega^2 = p^2$
- What happens if

$$\omega^2 = p^2 + p^4/p_c^2$$
 or $G(x, x') \sim \frac{1}{(x - x')^2 - \lambda_p^2}$

- Hawking radiation is robust [Unruh, 1981]
- Unruh's effect is robust [Navarro-Salas et al 2007, Rinaldi 2008]
- Does this settle the problem? No, these results say that Hawking radiation/Unruh effect are low-energy effects
- Back-reaction is ignored

Modified Dispersion Relations
Momentum Space Representation of G(x, x')Analogue Models
Conclusions

Introduction

- Divergence comes from $\omega^2 = p^2$
- What happens if

$$\omega^2 = p^2 + p^4/p_c^2$$
 or $G(x, x') \sim \frac{1}{(x - x')^2 - \lambda_p^2}$

- Hawking radiation is robust [Unruh, 1981]
- Unruh's effect is robust [Navarro-Salas et al 2007, Rinaldi 2008]
- Does this settle the problem? No, these results say that Hawking radiation/Unruh effect are low-energy effects
- Back-reaction is ignored

Modified Dispersion Relations Momentum Space Representation of G(x, x')Analogue Models Conclusions

Introduction

INFLATIONARY COSMOLOGY

- If inflation lasted enough (~ 70 e-foldings), then scales inside Hubble radius today started out with $\lambda \sim l_p$ at the beginning of inflation.
- Some people (e.g. Starobinski) claims that TP effects are largely suppressed.
- Others (e.g. Tanaka, Branderberger, and Martin) insist on the possibility that TP effects are significant, as adiabacity is broken, and the back-reaction of TP modes cannot be neglected.

Modified Dispersion Relations Momentum Space Representation of G(x, x')Analogue Models Conclusions

Introduction

INFLATIONARY COSMOLOGY

- If inflation lasted enough (~ 70 e-foldings), then scales inside Hubble radius today started out with $\lambda \sim l_p$ at the beginning of inflation.
- Some people (e.g. Starobinski) claims that TP effects are largely suppressed.
- Others (e.g. Tanaka, Branderberger, and Martin) insist on the possibility that TP effects are significant, as adiabacity is broken, and the back-reaction of TP modes cannot be neglected.

* C > * C > * E > * E > E = 00.0

Modified Dispersion Relations Momentum Space Representation of G(x, x')Analogue Models Conclusions

Introduction

 To assess TP effects, we must estimate the backreaction of the TP modes, in the semi-classical approximation

$$R_{\mu
u} - rac{1}{2} R g_{\mu
u} = 8 \pi \, G \langle \, T_{\mu
u}
angle_{ ext{TP}}^{ ext{ren}}$$

where $\langle T_{\mu\nu}\rangle_{\rm TP}^{\rm ren}$ encodes also TP effects

 How? Here we assume that TP effects are encoded in Modified Dispersion Relations

Modified Dispersion Relations Momentum Space Representation of G(x, x')Analogue Models Conclusions

Introduction

 To assess TP effects, we must estimate the backreaction of the TP modes, in the semi-classical approximation

$$R_{\mu
u} - rac{1}{2} R g_{\mu
u} = 8 \pi \, G \langle \, T_{\mu
u}
angle_{ ext{TP}}^{ ext{ren}}$$

where $\langle T_{\mu\nu}\rangle_{\rm TP}^{\rm ren}$ encodes also TP effects

 How? Here we assume that TP effects are encoded in Modified Dispersion Relations

Modified Dispersion Relations Lorentz Invariant Case

UV cut-off

• There exits a UV cut-off at $l_p = \sqrt{G\hbar/c^3}$.

Conclusions

- If l_p is a "zero-point length", any process with $E \gg E_p$ will be suppressed.
- [Padmanabhan, 1998] proposed a duality in the path integral.

$$G_F(x,x') = \sum_{ ext{paths}} e^{-m\sigma(x,x')(1+l_p^2/\sigma(x,x')^2)}$$

It follows that

$$\langle \phi^2 \rangle \sim \frac{1}{\sigma^2(x,x') - \frac{l_0^2}{l_0^2}}$$

Modified Dispersion Relations

Momentum Space Representation of G(x, x')Analogue Models
Conclusions

UV cut-off

• There exits a UV cut-off at $l_p = \sqrt{G\hbar/c^3}$.

- If l_p is a "zero-point length", any process with $E \gg E_p$ will be suppressed.
- [Padmanabhan, 1998] proposed a duality in the path integral.

$$G_F(x,x') = \sum_{ ext{paths}} e^{-m\sigma(x,x')(1+l_p^2/\sigma(x,x')^2)}$$

It follows that

$$\langle \phi^2 \rangle \sim \frac{1}{\sigma^2(x,x') - \frac{l_p^2}{r}}$$

UV cut-off

- This is compatible with String Theory (T-duality) and (some versions of) κ -Poincaré algebra.
- Calculations on the Unruh effect and Hawking radiation have shown that the effects of this cut-off is negligible on the macroscopic physics.
- The regularization of these theories is almost trivial.

UV cut-off

- This is compatible with String Theory (T-duality) and (some versions of) κ -Poincaré algebra.
- Calculations on the Unruh effect and Hawking radiation have shown that the effects of this cut-off is negligible on the macroscopic physics.
- The regularization of these theories is almost trivial.

Modified Dispersion Relations Lorentz Breaking Case

Modified Dispersion Relations Lorentz Breaking Case

sa: 08040068 Page 27/114

Lorentz-breaking MDR

 A Lorentz-breaking modified dispersion relation appears in momentum space as [Jacobson et al, 2000]

$$\omega^2 = m^2 + |\vec{k}|^2 + F(|\vec{k}|^2)$$

- $F(|\vec{k}|^2) = a_1|\vec{k}|^4 + a_2|\vec{k}|^6 + \dots$
- The sign of a_i determines whether the modes are super or sub
- luminal
- We assume that rotational invariance is preserved.
- In coordinate space, this corresponds to

$$\left[\Box - m^2 - \mathcal{F}(\hat{\nabla}^2)\right]\phi = 0$$

 $\hat{\nabla}^2$ contains spatial derivatives only.

Modified Dispersion Relations

Momentum Space Representation of G(x, x')Analogue Models

Conclusions

Lorentz-breaking MDR

 A Lorentz-breaking modified dispersion relation appears in momentum space as [Jacobson et al, 2000]

$$\omega^2 = m^2 + |\vec{k}|^2 + F(|\vec{k}|^2)$$

- $F(|\vec{k}|^2) = a_1|\vec{k}|^4 + a_2|\vec{k}|^6 + \dots$
- The sign of a_i determines whether the modes are super or sub
- luminal
- We assume that rotational invariance is preserved.
- In coordinate space, this corresponds to

$$\left[\Box - m^2 - \mathcal{F}(\hat{\nabla}^2)\right]\phi = 0$$

 $\hat{\nabla}^2$ contains spatial derivatives only.

Conclusions

Preferred frames

- To keep general covariance, we need to add a dynamical degree of freedom to the gravitational Lagrangian [Jacobson et al, 2000]
- This has the form of a unit time-like vector u^μ

$$\mathcal{L} = R - 2\Lambda - b_1 F_{\mu\nu} F^{\mu\nu} - b_2 (\nabla_{\mu} u^{\mu})^2 - b_3 R_{\mu\nu} u^{\mu} u^{\nu} + b_4 u^{\rho} u^{\sigma} \nabla_{\rho} u_{\mu} \nabla_{\sigma} u^{\mu} - \lambda (g_{\mu\nu} u^{\mu} u^{\nu} + 1)$$

$$F_{\mu\nu} = \nabla_{\mu} u_{\nu} - \nabla_{\nu} u_{\mu}$$

Then

$$\nabla_{\mu} T^{\mu\nu} = 0$$

Conclusions

Lorentz-breaking MDR

 A Lorentz-breaking modified dispersion relation appears in momentum space as [Jacobson et al, 2000]

$$\omega^2 = m^2 + |\vec{k}|^2 + F(|\vec{k}|^2)$$

- $F(|\vec{k}|^2) = a_1|\vec{k}|^4 + a_2|\vec{k}|^6 + \dots$
- The sign of a_i determines whether the modes are super or sub
- luminal
- We assume that rotational invariance is preserved.
- In coordinate space, this corresponds to

$$\left[\Box - m^2 - \mathcal{F}(\hat{\nabla}^2)\right]\phi = 0$$

 $\hat{\nabla}^2$ contains spatial derivatives only.

Modified Dispersion Relations

Momentum Space Representation of G(x, x')Analogue Models
Conclusions

Lorentz-breaking MDR

 A Lorentz-breaking modified dispersion relation appears in momentum space as [Jacobson et al, 2000]

$$\omega^2 = m^2 + |\vec{k}|^2 + F(|\vec{k}|^2)$$

- $F(|\vec{k}|^2) = a_1|\vec{k}|^4 + a_2|\vec{k}|^6 + \dots$
- The sign of a_i determines whether the modes are super or sub
- luminal
- We assume that rotational invariance is preserved.
- In coordinate space, this corresponds to

$$\left[\Box - m^2 - \mathcal{F}(\hat{\nabla}^2)\right]\phi = 0$$

 $\hat{\nabla}^2$ contains spatial derivatives only.

Momentum Space Representation of G(x, x')Analogue Models

Conclusions

Preferred frames

- To keep general covariance, we need to add a dynamical degree of freedom to the gravitational Lagrangian [Jacobson et al, 2000]
- This has the form of a unit time-like vector u^µ

$$\mathcal{L} = R - 2\Lambda - b_1 F_{\mu\nu} F^{\mu\nu} - b_2 (\nabla_{\mu} u^{\mu})^2 - b_3 R_{\mu\nu} u^{\mu} u^{\nu} + b_4 u^{\rho} u^{\sigma} \nabla_{\rho} u_{\mu} \nabla_{\sigma} u^{\mu} - \lambda (g_{\mu\nu} u^{\mu} u^{\nu} + 1)$$

$$F_{\mu\nu} = \nabla_{\mu} u_{\nu} - \nabla_{\nu} u_{\mu}$$

Then

$$\nabla_{\mu} T^{\mu\nu} = 0$$

Preferred frames

- To keep general covariance, we need to add a dynamical degree of freedom to the gravitational Lagrangian [Jacobson et al, 2000]
- This has the form of a unit time-like vector \boldsymbol{v}^{μ}

$$\mathcal{L} = R - 2\Lambda - b_1 F_{\mu\nu} F^{\mu\nu} - b_2 (\nabla_{\mu} u^{\mu})^2 - b_3 R_{\mu\nu} u^{\mu} u^{\nu} + b_4 u^{\rho} u^{\sigma} \nabla_{\rho} u_{\mu} \nabla_{\sigma} u^{\mu} - \lambda (g_{\mu\nu} u^{\mu} u^{\nu} + 1)$$

$$F_{\mu\nu} = \nabla_{\mu} u_{\nu} - \nabla_{\nu} u_{\mu}$$

Then

$$\nabla_{\mu} T^{\mu\nu} = 0$$

Lorentz-breaking MDR

- Some of the terms vanish when u^{μ} is geodesics.
- Higher derivative terms in u^{μ} are suppressed
- Can be seen as an effective theory Non linear realization of the Lorentz group
- The coefficients $b_1 ldots b_4$ are constrained by PPN analysis e.g. in solar system [Durrer et al, 2007]

Lorentz-breaking MDR

- Some of the terms vanish when u^{μ} is geodesics.
- Higher derivative terms in u^{μ} are suppressed
- Can be seen as an effective theory Non linear realization of the Lorentz group
- The coefficients $b_1 \dots b_4$ are constrained by PPN analysis e.g. in solar system [Durrer et al, 2007]

Conclusions

Preferred frames

- To keep general covariance, we need to add a dynamical degree of freedom to the gravitational Lagrangian [Jacobson et al, 2000]
- This has the form of a unit time-like vector \boldsymbol{u}^{μ}

$$\mathcal{L} = R - 2\Lambda - b_1 F_{\mu\nu} F^{\mu\nu} - b_2 (\nabla_{\mu} u^{\mu})^2 - b_3 R_{\mu\nu} u^{\mu} u^{\nu} + b_4 u^{\rho} u^{\sigma} \nabla_{\rho} u_{\mu} \nabla_{\sigma} u^{\mu} - \lambda (g_{\mu\nu} u^{\mu} u^{\nu} + 1)$$

$$F_{\mu\nu} = \nabla_{\mu} u_{\nu} - \nabla_{\nu} u_{\mu}$$

$$\nabla_{\mu} T^{\mu\nu} = 0$$

Conclusions

Preferred frames

- To keep general covariance, we need to add a dynamical degree of freedom to the gravitational Lagrangian [Jacobson et al, 2000]
- This has the form of a unit time-like vector ψ^μ

$$\mathcal{L} = R - 2\Lambda - b_1 F_{\mu\nu} F^{\mu\nu} - b_2 (\nabla_{\mu} u^{\mu})^2 - b_3 R_{\mu\nu} u^{\mu} u^{\nu} + b_4 u^{\rho} u^{\sigma} \nabla_{\rho} u_{\mu} \nabla_{\sigma} u^{\mu} - \lambda (g_{\mu\nu} u^{\mu} u^{\nu} + 1)$$

$$F_{\mu\nu} = \nabla_{\mu} u_{\nu} - \nabla_{\nu} u_{\mu}$$

$$\nabla_{\mu} T^{\mu\nu} = 0$$

Introduction

Modified Dispersion Relations

Momentum Space Representation of G(x, x')Analogue Models

Conclusions

Lorentz-breaking MDR

- Some of the terms vanish when u^{μ} is geodesics.
- Higher derivative terms in u^{μ} are suppressed
- Can be seen as an effective theory Non linear realization of the Lorentz group
- The coefficients $b_1 ldots b_4$ are constrained by PPN analysis e.g. in solar system [Durrer et al, 2007]

Analogue Models Conclusions

Preferred frames

- To keep general covariance, we need to add a dynamical degree of freedom to the gravitational Lagrangian [Jacobson et al, 2000]
- This has the form of a unit time-like vector u^µ

$$\mathcal{L} = R - 2\Lambda - b_1 F_{\mu\nu} F^{\mu\nu} - b_2 (\nabla_{\mu} u^{\mu})^2 - b_3 R_{\mu\nu} u^{\mu} u^{\nu} + b_4 u^{\rho} u^{\sigma} \nabla_{\rho} u_{\mu} \nabla_{\sigma} u^{\mu} - \lambda (g_{\mu\nu} u^{\mu} u^{\nu} + 1)$$

$$F_{\mu\nu} = \nabla_{\mu} u_{\nu} - \nabla_{\nu} u_{\mu}$$

$$\nabla_{\mu} T^{\mu\nu} = 0$$

Conclusions

Preferred frames

- To keep general covariance, we need to add a dynamical degree of freedom to the gravitational Lagrangian [Jacobson et al, 2000]
- This has the form of a unit time-like vector \boldsymbol{u}^{μ}

$$\mathcal{L} = R - 2\Lambda - b_1 F_{\mu\nu} F^{\mu\nu} - b_2 (\nabla_{\mu} u^{\mu})^2 - b_3 R_{\mu\nu} u^{\mu} u^{\nu} + b_4 u^{\rho} u^{\sigma} \nabla_{\rho} u_{\mu} \nabla_{\sigma} u^{\mu} - \lambda (g_{\mu\nu} u^{\mu} u^{\nu} + 1)$$

$$F_{\mu\nu} = \nabla_{\mu} u_{\nu} - \nabla_{\nu} u_{\mu}$$

$$\nabla_{\mu} T^{\mu\nu} = 0$$

Introduction

Modified Dispersion Relations

Momentum Space Representation of G(x, x')Analogue Models

Conclusions

Lorentz-breaking MDR

- Some of the terms vanish when u^{μ} is geodesics.
- Higher derivative terms in u^{μ} are suppressed
- Can be seen as an effective theory Non linear realization of the Lorentz group
- The coefficients $b_1 ldots b_4$ are constrained by PPN analysis e.g. in solar system [Durrer et al, 2007]

Introduction

Modified Dispersion Relations

Momentum Space Representation of G(x, x')Analogue Models

Conclusions

Lorentz-breaking MDR

- Some of the terms vanish when u^{μ} is geodesics.
- Higher derivative terms in u^{μ} are suppressed
- Can be seen as an effective theory Non linear realization of the Lorentz group
- The coefficients $b_1 ldots b_4$ are constrained by PPN analysis e.g. in solar system [Durrer et al, 2007]

sa: 08040068 Page 43/114

Conclusions

Preferred frames

- To keep general covariance, we need to add a dynamical degree of freedom to the gravitational Lagrangian [Jacobson et al, 2000]
- This has the form of a unit time-like vector u^μ

$$\mathcal{L} = R - 2\Lambda - b_1 F_{\mu\nu} F^{\mu\nu} - b_2 (\nabla_{\mu} u^{\mu})^2 - b_3 R_{\mu\nu} u^{\mu} u^{\nu} + b_4 u^{\rho} u^{\sigma} \nabla_{\rho} u_{\mu} \nabla_{\sigma} u^{\mu} - \lambda (g_{\mu\nu} u^{\mu} u^{\nu} + 1)$$

$$F_{\mu\nu} = \nabla_{\mu} u_{\nu} - \nabla_{\nu} u_{\mu}$$

$$\nabla_{\mu} T^{\mu\nu} = 0$$

Conclusions

Preferred frames

- To keep general covariance, we need to add a dynamical degree of freedom to the gravitational Lagrangian [Jacobson et al, 2000]
- This has the form of a unit time-like vector \boldsymbol{u}^{μ}

$$\mathcal{L} = R - 2\Lambda - b_1 F_{\mu\nu} F^{\mu\nu} - b_2 (\nabla_{\mu} u^{\mu})^2 - b_3 R_{\mu\nu} u^{\mu} u^{\nu} + b_4 u^{\rho} u^{\sigma} \nabla_{\rho} u_{\mu} \nabla_{\sigma} u^{\mu} - \lambda (g_{\mu\nu} u^{\mu} u^{\nu} + 1)$$

$$F_{\mu\nu} = \nabla_{\mu} u_{\nu} - \nabla_{\nu} u_{\mu}$$

$$\nabla_{\mu} T^{\mu\nu} = 0$$

Introduction

Modified Dispersion Relations

Momentum Space Representation of G(x, x')Analogue Models

Conclusions

Lorentz-breaking MDR

- Some of the terms vanish when u^{μ} is geodesics.
- Higher derivative terms in u^{μ} are suppressed
- Can be seen as an effective theory Non linear realization of the Lorentz group
- The coefficients $b_1 ldots b_4$ are constrained by PPN analysis e.g. in solar system [Durrer et al, 2007]

Modified Dispersion Relations

Momentum Space Representation of G(x, x')Analogue Models

Conclusions

Lorentz-breaking MDR

Any metric can then be written as

$$ds^2 = -(u_\mu dx^\mu)^2 + q_{\mu\nu} dx^\mu dx^\nu$$
, $q^{\mu\nu} = g^{\mu\nu} + u^\mu u^\nu$

- $q^{\mu\nu}$ is the projector on the surface orthogonal to u^{μ} .
- With this, we define

$$\hat{\nabla}^2 \phi = q^{\mu\nu} \nabla_{\mu} (q_{\nu}^{\ \beta} \nabla_{\beta} \phi)$$

Modified Dispersion Relations

Momentum Space Representation of G(x, x')Analogue Models
Conclusions

Lorentz-breaking MDR

Any metric can then be written as

$$ds^2 = -(u_\mu dx^\mu)^2 + q_{\mu\nu} dx^\mu dx^\nu$$
, $q^{\mu\nu} = g^{\mu\nu} + u^\mu u^\nu$

- $q^{\mu\nu}$ is the projector on the surface orthogonal to u^{μ} .
- With this, we define

$$\hat{\nabla}^2 \phi = q^{\mu\nu} \nabla_{\mu} (q_{\nu}^{\ \beta} \nabla_{\beta} \phi)$$

Momentum Space Representation of G(x, x')Analogue Models

Conclusions

Preferred frames

MDR for a scalar field coupled to the metric arise with

$$\mathcal{L}_{\phi} = -rac{1}{2}
abla^{\mu}\phi
abla_{\mu}\phi - rac{1}{2}m^2\phi^2 + \mathcal{L}_{c}$$

where

$$\mathcal{L}_c = -\sum_{s,p} b_{sp}(\hat{
abla}^{2s}\phi)(\hat{
abla}^{2p}\phi)$$

- If applied to the inflaton, the extra term does not give inflation
- also it does not solve the horizon problem: in the superluminal case, modes travel much faster than light but they traverse a super-planckian region where semi-dassical approximation does not hold

Modified Dispersion Relations

Momentum Space Representation of G(x, x')Analogue Models

Conclusions

Preferred frames

MDR for a scalar field coupled to the metric arise with

$$\mathcal{L}_{\phi} = -rac{1}{2}
abla^{\mu}\phi
abla_{\mu}\phi - rac{1}{2}m^2\phi^2 + \mathcal{L}_{c}$$

where

$$\mathcal{L}_c = -\sum_{s,p} b_{sp}(\hat{
abla}^{2s}\phi)(\hat{
abla}^{2p}\phi)$$

- If applied to the inflaton, the extra term does not give inflation
- also it does not solve the horizon problem: in the superluminal case, modes travel much faster than light but they traverse a super-planckian region where semi-classical

Modified Dispersion Relations

Momentum Space Representation of G(x, x')Analogue Models

Conclusions

Lorentz-breaking MDR

Any metric can then be written as

$$ds^2 = -(u_\mu dx^\mu)^2 + q_{\mu\nu} dx^\mu dx^\nu , \quad q^{\mu\nu} = g^{\mu\nu} + u^\mu u^\nu$$

- $q^{\mu\nu}$ is the projector on the surface orthogonal to u^{μ} .
- With this, we define

$$\hat{\nabla}^2 \phi = q^{\mu\nu} \nabla_{\mu} (q_{\nu}^{\ \beta} \nabla_{\beta} \phi)$$

Analogue Models

Conclusions

Preferred frames

- To keep general covariance, we need to add a dynamical degree of freedom to the gravitational Lagrangian [Jacobson et al, 2000]
- This has the form of a unit time-like vector u^µ

$$\mathcal{L} = R - 2\Lambda - b_1 F_{\mu\nu} F^{\mu\nu} - b_2 (\nabla_{\mu} u^{\mu})^2 - b_3 R_{\mu\nu} u^{\mu} u^{\nu} + b_4 u^{\rho} u^{\sigma} \nabla_{\rho} u_{\mu} \nabla_{\sigma} u^{\mu} - \lambda (g_{\mu\nu} u^{\mu} u^{\nu} + 1)$$

$$F_{\mu\nu} = \nabla_{\mu} u_{\nu} - \nabla_{\nu} u_{\mu}$$

$$\nabla_{\mu} T^{\mu\nu} = 0$$

Preferred frames

- To keep general covariance, we need to add a dynamical degree of freedom to the gravitational Lagrangian [Jacobson et al, 2000]
- This has the form of a unit time-like vector u^{μ}

$$\mathcal{L} = R - 2\Lambda - b_1 F_{\mu\nu} F^{\mu\nu} - b_2 (\nabla_{\mu} u^{\mu})^2 - b_3 R_{\mu\nu} u^{\mu} u^{\nu} + b_4 u^{\rho} u^{\sigma} \nabla_{\rho} u_{\mu} \nabla_{\sigma} u^{\mu} - \lambda (g_{\mu\nu} u^{\mu} u^{\nu} + 1)$$

$$F_{\mu\nu} = \nabla_{\mu} u_{\nu} - \nabla_{\nu} u_{\mu}$$

$$\nabla_{\mu} T^{\mu \nu} = 0$$

Modified Dispersion Relations

Momentum Space Representation of G(x, x')Analogue Models
Conclusions

Lorentz-breaking MDR

Any metric can then be written as

$$ds^2 = -(u_\mu dx^\mu)^2 + q_{\mu\nu} dx^\mu dx^\nu$$
, $q^{\mu\nu} = g^{\mu\nu} + u^\mu u^\nu$

- $q^{\mu\nu}$ is the projector on the surface orthogonal to u^{μ} .
- With this, we define

$$\hat{\nabla}^2 \phi = q^{\mu\nu} \nabla_{\mu} (q_{\nu}^{\ \beta} \nabla_{\beta} \phi)$$

Momentum Space Representation of G(x, x')Analogue Models Conclusions

Preferred frames

MDR for a scalar field coupled to the metric arise with

$$\mathcal{L}_{\phi} = -rac{1}{2}
abla^{\mu}\phi
abla_{\mu}\phi - rac{1}{2}m^2\phi^2 + \mathcal{L}_{c}$$

where

$$\mathcal{L}_c = -\sum_{s,p} b_{sp}(\hat{
abla}^{2s}\phi)(\hat{
abla}^{2p}\phi)$$

- If applied to the inflaton, the extra term does not give inflation
- also it does not solve the horizon problem: in the superluminal case, modes travel much faster than light but they traverse a super-planckian region where semi-dassical approximation does not hold

Lorentz-breaking MDR

 A Lorentz-breaking modified dispersion relation appears in momentum space as [Jacobson et al, 2000]

$$\omega^2 = m^2 + |\vec{k}|^2 + F(|\vec{k}|^2)$$

- $F(|\vec{k}|^2) = a_1|\vec{k}|^4 + a_2|\vec{k}|^6 + \dots$
- The sign of a_i determines whether the modes are super or sub
- luminal
- We assume that rotational invariance is preserved.
- In coordinate space, this corresponds to

$$\left[\Box - m^2 - \mathcal{F}(\hat{\nabla}^2)\right]\phi = 0$$

 $\hat{\nabla}^2$ contains spatial derivatives only.

Modified Dispersion Relations

Momentum Space Representation of G(x, x')Analogue Models
Conclusions

Lorentz-breaking MDR

 A Lorentz-breaking modified dispersion relation appears in momentum space as [Jacobson et al, 2000]

$$\omega^2 = m^2 + |\vec{k}|^2 + F(|\vec{k}|^2)$$

- $F(|\vec{k}|^2) = a_1|\vec{k}|^4 + a_2|\vec{k}|^6 + \dots$
- The sign of a_i determines whether the modes are super or sub
- luminal
- We assume that rotational invariance is preserved.
- In coordinate space, this corresponds to

$$\left[\Box - m^2 - \mathcal{F}(\hat{\nabla}^2)\right]\phi = 0$$

 $\hat{\nabla}^2$ contains spatial derivatives only.

Introduction
Modified Dispersion Relations

Momentum Space Representation of G(x, x')Analogue Models
Conclusions

Lorentz-breaking MDR

Any metric can then be written as

$$ds^2 = -(u_\mu dx^\mu)^2 + q_{\mu\nu} dx^\mu dx^\nu$$
, $q^{\mu\nu} = g^{\mu\nu} + u^\mu u^\nu$

- $q^{\mu\nu}$ is the projector on the surface orthogonal to u^{μ} .
- With this, we define

$$\hat{\nabla}^2 \phi = q^{\mu\nu} \nabla_{\mu} (q_{\nu}^{\ \beta} \nabla_{\beta} \phi)$$

Preferred frames

MDR for a scalar field coupled to the metric arise with

Conclusions

$$\mathcal{L}_{\phi} = -rac{1}{2}
abla^{\mu}\phi
abla_{\mu}\phi - rac{1}{2}m^2\phi^2 + \mathcal{L}_{c}$$

where

$$\mathcal{L}_c = -\sum_{s,p} b_{sp}(\hat{
abla}^{2s}\phi)(\hat{
abla}^{2p}\phi)$$

- If applied to the inflaton, the extra term does not give inflation
- also it does not solve the horizon problem: in the superluminal case, modes travel much faster than light but they traverse a super-planckian region where semi-dassical approximation does not hold

Introduction

Modified Dispersion Relations

Momentum Space Representation of G(x, x')Analogue Models

Conclusions

Preferred frames

The main question is: what happens to $\langle T_{\mu\nu}\rangle_{\rm ren}$ in the semi-classical Einstein equations?

$$R_{\mu\nu} - rac{1}{2} R g_{\mu\nu} = 8\pi \, G \langle T_{\mu
u}
angle_{
m ren}$$

Formally

$$\langle T_{\mu\nu}\rangle_{\rm ren} = T_{\mu\nu}^{\rm modes}(\Psi, \nabla\Psi, g_{\mu\nu}, \mathbf{u}^{\mu}, \nabla_{\nu}\mathbf{u}^{\mu}) - T_{\mu\nu}^{\rm div}$$

Our task is to find $T_{\mu\nu}^{\rm div}$ in the general case. Some result is already available.

Modified Dispersion Relations

Momentum Space Representation of G(x, x')

Analogue Models Conclusions

Preferred frames

The main question is: what happens to $\langle T_{\mu\nu}\rangle_{\rm ren}$ in the semi-classical Einstein equations?

$$R_{\mu\nu} - rac{1}{2} R g_{\mu\nu} = 8\pi \, G \langle T_{\mu\nu} \rangle_{
m ren}$$

Formally

$$\langle T_{\mu\nu}\rangle_{\rm ren} = T_{\mu\nu}^{\rm modes}(\Psi, \nabla\Psi, g_{\mu\nu}, \mathbf{u}^{\mu}, \nabla_{\nu}\mathbf{u}^{\mu}) - T_{\mu\nu}^{\rm div}$$

Our task is to find $T_{\mu\nu}^{\text{div}}$ in the general case. Some result is already available.

Flat Space

Consider the 2-point function in 2-D flat space [Rinaldi, 2007]

$$\Box \phi(x,t) - \epsilon^2 \partial_x^4 \phi(x,t) = 0 , \quad \epsilon^2 > 0$$

In momentum space, the massless propagator reads

$$G(p) = \frac{1}{p_{\mu}p^{\mu} + \epsilon^{2}p^{4}} = \frac{1}{\omega_{p}^{2} - p_{0}^{2}}$$

The Wightman functions are given by

$$G^{\pm}(x^{\mu},x'^{\mu}) = \frac{1}{2\pi} \int_{\Lambda}^{+\infty} \frac{\cos(p\Delta x)}{\sqrt{p^2 + \epsilon^2 p^4}} e^{\left(\mp i\Delta t \sqrt{p^2 + \epsilon^2 p^4}\right)} dp$$

Modified Dispersion Relations

Momentum Space Representation of G(x, x')Analogue Models
Conclusions

Flat Space

Consider the 2-point function in 2-D flat space [Rinaldi, 2007]

$$\Box \phi(x,t) - \epsilon^2 \partial_x^4 \phi(x,t) = 0 , \quad \epsilon^2 > 0$$

In momentum space, the massless propagator reads

$$G(p) = \frac{1}{p_{\mu}p^{\mu} + \epsilon^{2}p^{4}} = \frac{1}{\omega_{p}^{2} - p_{0}^{2}}$$

The Wightman functions are given by

$$G^{\pm}(x^{\mu}, x'^{\mu}) = \frac{1}{2\pi} \int_{\Lambda}^{+\infty} \frac{\cos(p\Delta x)}{\sqrt{p^2 + \epsilon^2 p^4}} e^{\left(\mp i\Delta t \sqrt{p^2 + \epsilon^2 p^4}\right)} dp$$

Modified Dispersion Relations

Momentum Space Representation of G(x, x')Analogue Models
Conclusions

Flat Space

- ullet For small p the IR behavior is the same as the relativistic propagator
- For large p we find

$$\langle \phi^{2}(x^{\mu}, x'^{\mu}) \rangle = G^{+} + G^{-} =$$

$$- \sqrt{\frac{\Delta t}{2\epsilon\pi}} \left[\cos\left(\frac{\Delta x^{2}}{4\epsilon\Delta t}\right) - \sin\left(\frac{\Delta x^{2}}{4\epsilon\Delta t}\right) \right] +$$

$$- \frac{\Delta x}{2\epsilon} \left[C\left(\frac{\Delta x}{\sqrt{2\pi\epsilon\Delta t}}\right) + S\left(\frac{\Delta x}{\sqrt{2\pi\epsilon\Delta t}}\right) \right]$$

where S and C are Fresnel integrals.

Modified Dispersion Relations

Momentum Space Representation of G(x, x')Analogue Models

Conclusions

Flat Space

- ullet For small p the IR behavior is the same as the relativistic propagator
- For large p we find

$$\langle \phi^2(x^{\mu}, x'^{\mu}) \rangle = G^+ + G^- =$$

$$- \sqrt{\frac{\Delta t}{2\epsilon\pi}} \left[\cos\left(\frac{\Delta x^2}{4\epsilon\Delta t}\right) - \sin\left(\frac{\Delta x^2}{4\epsilon\Delta t}\right) \right] +$$

$$- \frac{\Delta x}{2\epsilon} \left[C\left(\frac{\Delta x}{\sqrt{2\pi\epsilon\Delta t}}\right) + S\left(\frac{\Delta x}{\sqrt{2\pi\epsilon\Delta t}}\right) \right]$$

where S and C are Fresnel integrals.

Introduction

Modified Dispersion Relations

Momentum Space Representation of G(x, x')Analogue Models

Conclusions

Flat Space

• In the coincidence limit $\Delta t = 0$, $\Delta x = 0$ this function is finite, unlike in the Lorentz-invariant case:

$$\langle \phi^2(x^\mu,x'^\mu) \rangle^{\mathrm{LI}} \sim -\frac{1}{2} \ln |\Delta x^2 - \Delta t^2|$$

- The stress tensor $\langle T_{\mu\nu} \rangle$ is still divergent as it depends on derivatives of $\langle \phi^2(x^{\mu}, x'^{\mu}) \rangle$.
- What happens in curved space?

Modified Dispersion Relations

Momentum Space Representation of G(x, x')Analogue Models
Conclusions

Flat Space

• In the coincidence limit $\Delta t = 0$, $\Delta x = 0$ this function is finite, unlike in the Lorentz-invariant case:

$$\langle \phi^2(x^\mu,x'^\mu) \rangle^{\mathrm{LI}} \sim -\frac{1}{2} \ln |\Delta x^2 - \Delta t^2|$$

- The stress tensor $\langle T_{\mu\nu} \rangle$ is still divergent as it depends on derivatives of $\langle \phi^2(x^{\mu}, x'^{\mu}) \rangle$.
- What happens in curved space?

Introduction Modified Dispersion Relations

Momentum Space Representation of G(x, x')Analogue Models
Conclusions

Cosmology

- In Cosmology, we identify u^{μ} with the velocity of the comoving observer.
- The gravity action simplifies to

$$\mathcal{L} = R - 2\Lambda - \frac{b_2}{(\nabla_{\mu}u^{\mu})^2} - \frac{b_3}{b_3}R_{\mu\nu}u^{\mu}u^{\nu} - \lambda(g_{\mu\nu}u^{\mu}u^{\nu} + 1)$$

- We expect that to renormalize we need to re-define b_2 and b_3 , together with Λ and G_N .
- It depends on the symmetry of spacetime.

Conclusions

Cosmology

- In Cosmology, we identify u^{μ} with the velocity of the comoving observer.
- The gravity action simplifies to

$$\mathcal{L} = R - 2\Lambda - \frac{b_2}{(\nabla_{\mu}u^{\mu})^2} - \frac{b_3}{B_{\mu\nu}}u^{\mu}u^{\nu} - \lambda(g_{\mu\nu}u^{\mu}u^{\nu} + 1)$$

- We expect that to renormalize we need to re-define b_2 and b_3 , together with Λ and G_N .
- It depends on the symmetry of spacetime.

Introduction

Modified Dispersion Relations

Momentum Space Representation of G(x, x')Analogue Models

Conclusions

Flat Space

• In the coincidence limit $\Delta t = 0$, $\Delta x = 0$ this function is finite, unlike in the Lorentz-invariant case:

$$\langle \phi^2(x^\mu,x'^\mu) \rangle^{\mathrm{LI}} \sim -\frac{1}{2} \ln |\Delta x^2 - \Delta t^2|$$

- The stress tensor $\langle T_{\mu\nu} \rangle$ is still divergent as it depends on derivatives of $\langle \phi^2(x^{\mu}, x'^{\mu}) \rangle$.
- What happens in curved space?

Modified Dispersion Relations

Momentum Space Representation of G(x, x')Analogue Models
Conclusions

Flat Space

• In the coincidence limit $\Delta t = 0$, $\Delta x = 0$ this function is finite, unlike in the Lorentz-invariant case:

$$\langle \phi^2(x^\mu,x'^\mu) \rangle^{\mathrm{LI}} \sim -\frac{1}{2} \ln |\Delta x^2 - \Delta t^2|$$

- The stress tensor $\langle T_{\mu\nu} \rangle$ is still divergent as it depends on derivatives of $\langle \phi^2(x^{\mu}, x'^{\mu}) \rangle$.
- What happens in curved space?

Page 71/114

Introduction
Modified Dispersion Relations

Momentum Space Representation of G(x, x')Analogue Models

Conclusions

Flat Space

- ullet For small p the IR behavior is the same as the relativistic propagator
- For large p we find

$$\langle \phi^2(x^{\mu}, x'^{\mu}) \rangle = G^+ + G^- =$$

$$- \sqrt{\frac{\Delta t}{2\epsilon \pi}} \left[\cos \left(\frac{\Delta x^2}{4\epsilon \Delta t} \right) - \sin \left(\frac{\Delta x^2}{4\epsilon \Delta t} \right) \right] +$$

$$- \frac{\Delta x}{2\epsilon} \left[C \left(\frac{\Delta x}{\sqrt{2\pi\epsilon \Delta t}} \right) + S \left(\frac{\Delta x}{\sqrt{2\pi\epsilon \Delta t}} \right) \right]$$

where S and C are Fresnel integrals.

Flat Space

Consider the 2-point function in 2-D flat space [Rinaldi, 2007]

$$\Box \phi(x,t) - \epsilon^2 \partial_x^4 \phi(x,t) = 0 , \quad \epsilon^2 > 0$$

In momentum space, the massless propagator reads

$$G(p) = \frac{1}{p_{\mu}p^{\mu} + \epsilon^{2}p^{4}} = \frac{1}{\omega_{p}^{2} - p_{0}^{2}}$$

The Wightman functions are given by

$$G^{\pm}(x^{\mu}, x'^{\mu}) = \frac{1}{2\pi} \int_{\Lambda}^{+\infty} \frac{\cos(p\Delta x)}{\sqrt{p^2 + \epsilon^2 p^4}} e^{\left(\mp i\Delta t \sqrt{p^2 + \epsilon^2 p^4}\right)} dp$$

Introduction

Modified Dispersion Relations

Momentum Space Representation of G(x, x')Analogue Models

Conclusions

Flat Space

Consider the 2-point function in 2-D flat space [Rinaldi, 2007]

$$\Box \phi(x,t) - \epsilon^2 \partial_x^4 \phi(x,t) = 0 , \quad \epsilon^2 > 0$$

In momentum space, the massless propagator reads

$$G(p) = \frac{1}{p_{\mu}p^{\mu} + \epsilon^{2}p^{4}} = \frac{1}{\omega_{p}^{2} - p_{0}^{2}}$$

The Wightman functions are given by

$$G^{\pm}(x^{\mu}, x'^{\mu}) = \frac{1}{2\pi} \int_{\Lambda}^{+\infty} \frac{\cos(p\Delta x)}{\sqrt{p^2 + \epsilon^2 p^4}} e^{\left(\mp i\Delta t \sqrt{p^2 + \epsilon^2 p^4}\right)} dp$$

Flat Space

- ullet For small p the IR behavior is the same as the relativistic propagator
- For large p we find

$$\langle \phi^{2}(x^{\mu}, x'^{\mu}) \rangle = G^{+} + G^{-} =$$

$$- \sqrt{\frac{\Delta t}{2\epsilon\pi}} \left[\cos\left(\frac{\Delta x^{2}}{4\epsilon\Delta t}\right) - \sin\left(\frac{\Delta x^{2}}{4\epsilon\Delta t}\right) \right] +$$

$$- \frac{\Delta x}{2\epsilon} \left[C\left(\frac{\Delta x}{\sqrt{2\pi\epsilon\Delta t}}\right) + S\left(\frac{\Delta x}{\sqrt{2\pi\epsilon\Delta t}}\right) \right]$$

where S and C are Fresnel integrals.

Flat Space

• In the coincidence limit $\Delta t = 0$, $\Delta x = 0$ this function is finite, unlike in the Lorentz-invariant case:

$$\langle \phi^2(x^\mu,x'^\mu)
angle^{\mathrm{LI}} \sim -\frac{1}{2} \ln |\Delta x^2 - \Delta t^2|$$

- The stress tensor $\langle T_{\mu\nu} \rangle$ is still divergent as it depends on derivatives of $\langle \phi^2(x^{\mu}, x'^{\mu}) \rangle$.
- What happens in curved space?

Cosmology

- In Cosmology, we identify u^{μ} with the velocity of the comoving observer.
- The gravity action simplifies to

$$\mathcal{L} = R - 2\Lambda - \frac{b_2}{(\nabla_{\mu}u^{\mu})^2} - \frac{b_3}{B_{\mu\nu}}u^{\mu}u^{\nu} - \lambda(g_{\mu\nu}u^{\mu}u^{\nu} + 1)$$

- We expect that to renormalize we need to re-define b_2 and b_3 , together with Λ and G_N .
- It depends on the symmetry of spacetime.

Conclusions

Cosmology

- In Cosmology, we identify u^{μ} with the velocity of the comoving observer.
- The gravity action simplifies to

$$\mathcal{L} = R - 2\Lambda - \frac{b_2}{(\nabla_{\mu}u^{\mu})^2} - \frac{b_3}{b_3}R_{\mu\nu}u^{\mu}u^{\nu} - \lambda(g_{\mu\nu}u^{\mu}u^{\nu} + 1)$$

- We expect that to renormalize we need to re-define b_2 and b_3 , together with Λ and G_N .
- It depends on the symmetry of spacetime.

Cosmology

In FLRW cosmology, the scalar field depends on time only. If one uses the conformal metric

$$ds^2 = C(\tau)[-d\tau^2 + \delta_{ij}dx^idx^j]$$

the modes equation for the scaled field $\chi(\tau) = \sqrt{C}\phi$ reads

$$\partial_{\tau}^{2}\chi + [(\xi - \xi_{n})RC + \omega_{k}^{2}]\chi = 0$$

with
$$\omega_k^2 = k^2 + C[m^2 + \epsilon^2 F(C^{-1/2}|\vec{k}|^2)].$$

• The modes equation is still a second order differential equation: adiabatic WKB regularization still works.

Conclusions

Cosmology

In FLRW cosmology, the scalar field depends on time only. If one uses the conformal metric

$$ds^2 = C(\tau)[-d\tau^2 + \delta_{ij}dx^idx^j]$$

the modes equation for the scaled field $\chi(\tau) = \sqrt{C}\phi$ reads

$$\partial_{\tau}^{2}\chi + [(\xi - \xi_{n})RC + \omega_{k}^{2}]\chi = 0$$

with
$$\omega_k^2 = k^2 + C[m^2 + \epsilon^2 F(C^{-1/2}|\vec{k}|^2)].$$

• The modes equation is still a second order differential equation: adiabatic WKB regularization still works.

Cosmology

• For flat FLRW metrics, we can renormalize in the usual way, by absorbing divergences in the bare G_N and Λ :

$$\langle T_{\mu\nu}\rangle^{(\text{ren})} = \langle T_{\mu\nu}\rangle - \langle T_{\mu\nu}\rangle^{(0)} - \langle T_{\mu\nu}\rangle^{(2)} - \langle T_{\mu\nu}\rangle^{(4)}$$

- The last term is finite but necessary to recover the trace anomaly in the relativistic limit $\langle T^{\mu}{}_{\mu}\rangle = -1/240\pi^2\alpha^4$
- No terms like $R_{\mu\nu}u^{\mu}u^{\nu}$ appears. The reason is the high degree of symmetry.
- Renormalization is achieved in the usual way by redefining the cosmological constant and Newton's constant [Mazzitelli et al, 2007]
- What happens for less symmetric cases?

Cosmology

Consider a Bianchi I metric

$$ds^2 = -C(\eta)d\eta^2 + \sum_{i=1}^3 C_i(\eta)dx_i^2, \qquad C = C_1C_2C_3$$

Then, the second adiabatic order correction to the 2-point function is

$$\langle \phi^2 \rangle^{(2)} \sim \frac{\alpha}{6} R + \beta (K^2 + 2K_{\mu\nu}K^{\mu\nu}) \qquad K_{\mu\nu} = \nabla_{\mu} u_{\nu}$$

- These new terms are related to the extrinsic curvature of the hypersurface orthogonal to u^{μ} . $\langle T_{\mu\nu} \rangle^{(\text{ren})}$ has similar structure.
- To renormalize, we need to redefine also b_2 and b_3 , together with the cosmological constant and Newton's constant.

Conclusions

Stationary Backgrounds

- For stationary backgrounds (e.g. black holes) we have
- $\phi = \phi(x^j)$. Consider the simplest case: $F(|\vec{k}|^2) = |\vec{k}|^4$.
- The Green's functions G satisfy the equation

$$(\Box - m^2 - \epsilon^2 \hat{\nabla}^4) \mathcal{G}(x, x') = -g^{-1/2} \delta(x - x')$$

- The differential equation is now of fourth order. WKB methods do not apply. deWitt-Schwinger expansion does not work!
- The conjecture is that the counter-terms must contain all possible combinations of $R_{\mu\nu}$, $g_{\mu\nu}$, and u^{μ} [Mazzitelli et al, 2007]

Momentum Space Representation of Green's Functions

Riemann coordinates expansion

- Complicated Green's functions can be simplified in momentum space: Bunch & Parker expansion.
- We need a local orthonormal frame.
- Given two close points, we can always create a local orthonormal coordinate system: Riemann Normal Coordinates (RNC).
- In RNC, the metric can be locally written as

$$g_{\mu\nu} = \eta_{\mu\nu} - \frac{1}{3}R_{\mu\alpha\nu\beta}y^{\alpha}y^{\beta} + \dots$$

The Fourier transform makes sense locally

$$G(x,x')=\int rac{d^N k}{(2\pi)^N}\,e^{ig_{\mu
u}k^\mu y^
u}\, ilde{G}(k^\mu)$$

Riemann coordinates expansion

- One expand the

 operator in RNC and Fourier transform.
- The equation can be solved iteratively. For example, the B&P expansion to second order of the Green's functions is

$$\tilde{G} = \tilde{G}_0 + \frac{1}{6}R\tilde{G}_0^2$$

where $\tilde{G}_0 = (k^{\mu}k_{\mu} + m^2)^{-1}$ is the flat-space propagator.

• Can we do the same when there is a preferred direction and MDR? Yes.... but it is horribly complicated!

rsa: 08040068 Page 86/114

Ultra-static metric case

• We have tried for ultra-static metrics and for a $\hat{\nabla}^4$ dispersion:

$$ds^2 = -d\tau^2 + q_{ij}(x^l)dx^idx^j$$
, $(\Box + m^2 - \epsilon^2\hat{\nabla}^4)\phi = 0$

- Dimensional reduction $G(x,x')=\int \frac{d\omega}{2\pi} e^{i\omega(\tau-\tau')} G(x^j,x'^j,\omega)$
- At fourth order, we find via B&P:

$$\begin{split} \tilde{G} &= \tilde{G}_0 - \frac{1}{6}\hat{R}D\tilde{G}_0 - \frac{i}{12}\hat{R}_{ij}\tilde{\partial}^iD\tilde{G}_0 + \left(\frac{1}{72}\hat{R}^2 - \frac{1}{3}\hat{H}\right)D^2\tilde{G}_0 + \\ &- \frac{1}{3}\hat{H}_{ij}\tilde{\partial}^i\tilde{\partial}^jD\tilde{G}_0 \quad D = \partial/\partial(k^ik_i) \end{split}$$

$$\hat{R}_{ij} = -rac{1}{30}\hat{R}^{p}_{~i}\hat{R}_{pj} + rac{1}{60}\hat{R}^{p}_{~i}{}^{q}_{j}\hat{R}_{pq} + rac{1}{60}\hat{R}^{pql}_{~i}\hat{R}_{pqlj} + rac{3}{40}\hat{R}_{;ij} + rac{1}{40}\hat{R}_{ij;p}^{p}_{pqlj}$$

*ロ * 4 個 * * 意 * 4 意 * 意 * り Q ()

Ultra-static deWitt-Schwinger expansion

In coordinate space we have

$$\mathcal{G}(x^{\mu},x'^{\mu}) = \int rac{d^{n+1}k}{(2\pi)^{n+1}} \, e^{ik^{\mu}y_{\mu}} \left[1 - f_1D + f_2D^2
ight] \, ilde{G}_0$$

• Define
$$\tilde{G}_0 = i \int_0^\infty ds \ e^{-is(k^2 + \epsilon^2 k^4 + m^2 - \omega^2)}$$

Find

$$G(y) = i \int_0^\infty ds \, e^{-is(m^2 - \omega^2)} \Big[1 + (is)(1 - 2\epsilon^2 \partial^2) f_1 + 2(is)^2 \epsilon^2 f_2 + (is)^2 (1 - 2\epsilon^2 \partial^2)^2 f_2 \Big] \, I_{\epsilon}(y, s)$$

Where

$$I_{\epsilon}(y,s) = rac{e^{rac{iy^2}{4s}}}{(4is\pi)^{n/2}} \sum_{\lambda=0}^{\infty} rac{1}{\lambda!} \left(rac{i\epsilon^2}{16s}
ight)^{\lambda} \mathcal{H}_{[4\lambda]} \left(rac{ec{y}}{\sqrt{4is}}
ight) \quad ext{[Rinaldi, 2007]}$$

Ultra-static metric case

• We have tried for ultra-static metrics and for a $\hat{\nabla}^4$ dispersion:

$$ds^2 = -d\tau^2 + q_{ij}(x^l)dx^idx^j$$
, $(\Box + m^2 - \epsilon^2\hat{\nabla}^4)\phi = 0$

- Dimensional reduction $G(x,x')=\int \frac{d\omega}{2\pi} e^{i\omega(\tau-\tau')} G(x^j,x'^j,\omega)$
- At fourth order, we find via B&P:

$$\begin{split} \tilde{G} &= \tilde{G}_0 - \frac{1}{6}\hat{R}D\tilde{G}_0 - \frac{i}{12}\hat{R}_{ij}\tilde{\partial}^jD\tilde{G}_0 + \left(\frac{1}{72}\hat{R}^2 - \frac{1}{3}\hat{H}\right)D^2\tilde{G}_0 + \\ &- \frac{1}{3}\hat{H}_{ij}\tilde{\partial}^i\tilde{\partial}^jD\tilde{G}_0 \quad D = \partial/\partial(k^ik_i) \end{split}$$

$$\hat{H}_{ij} = -rac{1}{30} \hat{R}^{p}_{\ i} \hat{R}_{pj} + rac{1}{60} \hat{R}^{p\ q}_{\ i\ j} \hat{R}_{pq} + rac{1}{60} \hat{R}^{pql}_{\ i} \hat{R}_{pqlj} + rac{3}{40} \hat{R}_{;ij} + rac{1}{40} \hat{R}_{ij;p}^{\ p}_{\ page 89/14}$$

*ロト *個ト * 意ト * 意 * 可 Q C

Ultra-static deWitt-Schwinger expansion

In coordinate space we have

$$\mathcal{G}(x^{\mu},x'^{\mu}) = \int rac{d^{n+1}k}{(2\pi)^{n+1}} \ e^{ik^{\mu}y_{\mu}} \left[1 - f_1D + f_2D^2\right] ilde{G}_0$$

- Define $\tilde{G}_0 = i \int_0^\infty ds \ e^{-is(k^2 + \epsilon^2 k^4 + m^2 \omega^2)}$
- Find

$$G(y) = i \int_0^\infty ds \, e^{-is(m^2 - \omega^2)} \Big[1 + (is)(1 - 2\epsilon^2 \partial^2) f_1 + 2(is)^2 \epsilon^2 f_2 + (is)^2 (1 - 2\epsilon^2 \partial^2)^2 f_2 \Big] \, I_{\epsilon}(y, s)$$

Where

$$I_{\epsilon}(y,s) = rac{e^{rac{iy^2}{4s}}}{(4is\pi)^{n/2}} \sum_{\lambda=0}^{\infty} rac{1}{\lambda!} \left(rac{i\epsilon^2}{16s}
ight)^{\lambda} \mathcal{H}_{[4\lambda]} \left(rac{ec{y}}{\sqrt{4is}}
ight) \quad ext{[Rinaldi, 2007]}$$

Fermi coordinates expansion

- Can we compute these terms for a general metric?
- When there is a preferred direction, it is better to use the Fermi Normal Coordinates (FNC):

$$ds^2 = g_{00}dt^2 + 2g_{0i}dtdx^i + g_{ij}dx^i dx^j$$

where

$$g_{00} = -1 - R_{0c0d}(t)x^cx^d$$
 $g_{ab} = \delta_{ab} - \frac{1}{3}R_{acbd}(t)x^cx^d$ $g_{0a} = -\frac{2}{3}R_{0cad}(t)x^cx^d$ $u^A = \delta_0^A - \frac{1}{2}R_{ij0}^A x^i x^j$

the Riemann tensor components are calculated on the integral curve of u^{μ} .

Fermi coordinates expansion

a: 08040068

Fermi coordinates expansion

- Can we compute these terms for a general metric?
- When there is a preferred direction, it is better to use the Fermi Normal Coordinates (FNC):

$$ds^2 = g_{00}dt^2 + 2g_{0i}dtdx^i + g_{ij}dx^i dx^j$$

where

$$g_{00} = -1 - R_{0c0d}(t)x^cx^d$$
 $g_{ab} = \delta_{ab} - \frac{1}{3}R_{acbd}(t)x^cx^d$ $g_{0a} = -\frac{2}{3}R_{0cad}(t)x^cx^d$ $u^A = \delta_0^A - \frac{1}{2}R_{ij0}^A x^i x^j$

the Riemann tensor components are calculated on the integral curve of u^{μ} .

Fermi coordinates expansion

The modified Klein-Gordon equation is

$$(\Box - m^2)\phi + F\left[\hat{\nabla}^2\right]\phi = 0$$

with $\hat{\nabla}^2 \phi = q^{\alpha}{}_{\mu} \nabla_{\alpha} (q^{\mu}{}_{\beta} \nabla^{\beta} \phi)$. But:

$$\Box \phi = \hat{\nabla}^2 \phi - u^{\alpha} u^{\beta} \nabla_{\alpha} \nabla_{\beta} \phi - K u^{\alpha} \partial_{\alpha} \phi$$

where $K = q^{\mu\nu}\nabla_{\mu}u_{\nu}$ is the trace of the extrinsic curvature. If, in flat space, the Fourier transform of the operator F is an analytic function of k^2 , we have

$$\sum_{n=1}^{\infty} \alpha_{2n} \hat{\nabla}^{2n} \phi - u^{\alpha} u^{\beta} \nabla_{\alpha} \nabla_{\beta} \phi - K u^{\alpha} \partial_{\alpha} \phi - m^{2} \phi = 0$$

Fermi coordinates expansion

- For Lorentz-invariant dispersions, n=1 and $\alpha_2=1$.
- The shifted Green's functions must satisfy

$$g^{1/4} \sum_{n=1}^{\infty} \alpha_{2n} \hat{\nabla}^{2n} (g^{-1/4} \bar{G}) - g^{1/4} u^A u^B \nabla_A \nabla_B (g^{-1/4} \bar{G}) +$$
$$-g^{1/4} K u^A \partial_A (g^{-1/4} \bar{G}) - m^2 \bar{G} = -\delta(x^a) \delta(\tau)$$

where

$$G(x, x') = g(x)^{-1/4} \bar{G}(x, x') g(x')^{-1/4}$$

Fermi coordinates expansion

- Expand the equation in FNC up to second order
- Fourier transform

$$ar{G}(x,x') = \int rac{d^N k}{(2\pi)^N} \, e^{ig_{AB}k^A x^B} \, ilde{G}(k_0^2,k^2)$$

Impose rotational invariance and solve perturbatively to find...

Fermi coordinates expansion

$$\tilde{G}_{2} = -\frac{1}{2} \delta^{ab} H_{ab} D \tilde{G}_{0} + Q^{0}{}_{b} k_{0} k^{b} D (D - 3D_{0}) \tilde{G}_{0}
+ Q^{a}{}_{a} \left[(D + D_{0}) \tilde{G}_{0} - k_{0}^{2} D D_{0} \tilde{G}_{0} \right] +
+ Q_{ab} k^{a} k^{b} \left[D (D + D_{0}) \tilde{G}_{0} - 4 k_{0}^{2} \tilde{G}_{0} D^{2} \tilde{G}_{0} \right]$$

$$\tilde{G}_0 = \left(m^2 - S - k_0^2\right)^{-1}$$

$$S = \sum_{n=1}^{\infty} \alpha_{2n} (-1)^n k^{2n} , \quad D_0 S = \frac{\partial S}{\partial k_0^2} , \quad DS = \frac{\partial S}{\partial k^2}$$

1 D + 1 P + 1 B + 1 B + 1 B + 1 D +

Fermi coordinates expansion

The geometrical coefficients are

$$Q^0{}_b = -rac{1}{6} R^0{}_b \; , \quad Q^a{}_b = R^{0a}{}_{0b} \; , \quad H_{cd} = R^0{}_{c0d} + rac{1}{3} R^a{}_{cad}$$

- In the ultra-static case, we recover the previous results.
- The coefficients $Q^{A}{}_{b}$ and H_{ab} are the same ones found in Bianchi I cosmology via adiabatic regularization.
- They can be written as $R_{\mu\nu}u^{\mu}u^{\nu}$, using

$$R_{abcd} = R_{\alpha\beta\gamma\delta} e^{\alpha}{}_{a} e^{\beta}{}_{b} e^{\gamma}{}_{c} e^{\delta}{}_{d}$$

Conjecture verified [Rinaldi, 2008]

+ C > + 67 > + E > + E > E + OQ(

Fermi coordinates expansion

$$\tilde{G}_{2} = -\frac{1}{2} \delta^{ab} H_{ab} D \tilde{G}_{0} + Q^{0}{}_{b} k_{0} k^{b} D (D - 3D_{0}) \tilde{G}_{0}
+ Q^{a}{}_{a} \left[(D + D_{0}) \tilde{G}_{0} - k_{0}^{2} D D_{0} \tilde{G}_{0} \right] +
+ Q_{ab} k^{a} k^{b} \left[D (D + D_{0}) \tilde{G}_{0} - 4 k_{0}^{2} \tilde{G}_{0} D^{2} \tilde{G}_{0} \right]$$

$$\tilde{G}_0 = \left(m^2 - S - k_0^2\right)^{-1}$$

$$S = \sum_{n=1}^{\infty} \alpha_{2n} (-1)^n k^{2n} , \quad D_0 S = \frac{\partial S}{\partial k_0^2} , \quad DS = \frac{\partial S}{\partial k^2}$$

+ C + + F + F + F + F + OQC

Fermi coordinates expansion

The geometrical coefficients are

$$Q^0{}_b = -rac{1}{6} R^0{}_b \; , \quad Q^a{}_b = R^{0a}{}_{0b} \; , \quad H_{cd} = R^0{}_{c0d} + rac{1}{3} R^a{}_{cad}$$

- In the ultra-static case, we recover the previous results.
- The coefficients $Q^{A}{}_{b}$ and H_{ab} are the same ones found in Bianchi I cosmology via adiabatic regularization.
- They can be written as $R_{\mu\nu}u^{\mu}u^{\nu}$, using

$$R_{abcd} = R_{\alpha\beta\gamma\delta} e^{\alpha}{}_{a} e^{\beta}{}_{b} e^{\gamma}{}_{c} e^{\delta}{}_{d}$$

Conjecture verified [Rinaldi, 2008]

Fermi coordinates expansion

In the Lorentz-invariant case

$$S=-k^2$$
, $D\tilde{G}_0=-D_0\tilde{G}_0=-\tilde{G}_0^2$, $\tilde{G}_0=(k^2-k_0^2+m^2)^{-1}$

$$\tilde{G}_{2}^{(\mathrm{rel})} = \frac{1}{2} H \, \tilde{G}_{0}^{2} + 2 Q^{a}_{a} \, k_{0}^{2} \, \tilde{G}_{0}^{3} + 8 \, Q_{0b} \, k^{0} k^{b} \, \tilde{G}_{0}^{3} - 8 \, Q_{ab} \, k^{a} p^{b} k_{0}^{2} \, \tilde{G}_{0}^{4}$$

different from the usual Bunch and Parker expansion!

$$ilde{G}_2^{(\mathrm{rel})} = rac{1}{6} R ilde{G}_0^2$$

- The reason is that in FNC we expand around a flat metric and along a geodesics curve, not a point as in RNC!
- However, the divergent parts are the same.

Page 101/114

Analogue Models

sa: 08040068 Page 102/114

Analogue models

Let us consider a fluid which is

- Irrotational: $\vec{v} = \vec{\nabla} \psi$
- Homentropic: the pressure is a function of the density ρ only
- No external forces

$$S = -\int d^4x \left[
ho \partial_t \psi + rac{1}{2}
ho (\vec{
abla} \psi)^2 + u(
ho)
ight]$$

where the energy density is given by $\mu = du/d\rho$ and t is the Newtonian (i.e. laboratory) time.

Analogue models

We now look at fluctuations

$$\rho = \rho_0 + \rho_1, \qquad \psi = \psi_0 + \psi_1$$

- Then $S = S_0 + S_2$ as linear terms drop out (they describe mean fluctuations).
- The dynamics of the perturbations ρ_1 and ψ_1 is then described by

$$S_2 = -\int d^4x \left[\frac{1}{2} \rho_0 (\vec{\nabla} \psi_1)^2 - \frac{\rho_0}{2c^2} (\dot{\psi}_1 + \vec{v} \cdot \vec{\nabla} \psi_1)^2 \right]$$

$$c = \rho \frac{d\mu}{d\rho} \Big|_{\rho_0} = \text{speed of sound}$$

Analogue models

• Variation of S_2 w.r.t. ψ_1 (eq. for ρ_1 inserted) gives

$$- \partial_t \left[\frac{\rho_0}{2c^2} (\dot{\psi}_1 + \vec{v}_0 \cdot \vec{\nabla} \psi_1) \right] +$$

$$+ \vec{\nabla} \cdot \left\{ \vec{v}_0 \left[-\frac{\rho_0}{c^2} (\dot{\psi}_1 + \vec{v}_0 \cdot \vec{\nabla} \psi_1) \right] + \rho_0 \vec{\nabla} \psi_1 \right\} = 0$$

This equation can be written as

$$\partial_{\mu}(f^{\mu\nu}\partial_{\nu}\psi_1)=0$$

with

$$f^{\mu
u} = rac{
ho_0}{c^2} \left(egin{array}{ccc} -1 & -v_0^i \ -v_0^i & c^2 \delta_{ij} - v_0^i v_0^j \end{array}
ight)$$

Analogue models

• By defining the matrix $g^{\mu\nu}$ such that $f^{\mu\nu} = \sqrt{-g}g^{\mu\nu}$, the equation becomes

$$\square \psi_1 = 0$$

- i.e. the fluctuations ψ_1 propagates as a massless scalar field on a curved backround!
- The curvature is locally given by the background fluid velocity v_0 and the local speed of sound c.
- Also the action can be re-written as

$$S_2 = -\int d^4x \sqrt{-g} g^{\mu
u} \partial_\mu \psi_1 \partial_
u \psi_1$$

Analogue models

• Inverting $g^{\mu\nu}$ one can write the acoustic metric

$$ds^2 = rac{
ho_0}{c} \left[-(c^2 - \vec{v}_0^2) dt^2 - 2\delta_{ij} v_0^i dx^j dt + \delta_{ij} dx^i dx^j \right]$$

which is the Painlevé form! One can actually construct also an acoustic black hole in two dimensions with a simple nozzle

Analogue models

• By defining the matrix $g^{\mu\nu}$ such that $f^{\mu\nu} = \sqrt{-g}g^{\mu\nu}$, the equation becomes

$$\square \psi_1 = 0$$

i.e. the fluctuations ψ_1 propagates as a massless scalar field on a curved backround!

- The curvature is locally given by the background fluid velocity v_0 and the local speed of sound c.
- Also the action can be re-written as

$$S_2 = -\int d^4x \sqrt{-g} g^{\mu
u} \partial_\mu \psi_1 \partial_
u \psi_1$$

Analogue models

• Inverting $g^{\mu\nu}$ one can write the acoustic metric

$$ds^2 = rac{
ho_0}{c} \left[-(c^2 - \vec{v}_0^2) dt^2 - 2\delta_{ij} v_0^i dx^j dt + \delta_{ij} dx^i dx^j \right]$$

which is the Painlevé form! One can actually construct also an acoustic black hole in two dimensions with a simple nozzle

Analogue models

- Such devices can be built in a lab using Bose-Einstein condensates.
- Gross-Pitaevskii equation

$$i\hbar\partial_t \hat{\Psi} = \left(-rac{\hbar^2}{2m}
abla^2 + V_{
m ext} + k(a)\hat{\Psi}^\dagger\hat{\Psi}
ight)\hat{\Psi}$$

- Madelung representation: $\hat{\Psi} = \sqrt{\hat{n}} \; e^{i\hat{\theta}/\hbar}$ with $\vec{v} = \vec{\nabla}\theta/m$
- Fluctuation: $\hat{n} = n + \hat{n}_1$ and $\hat{\theta} = \theta + \hat{\theta}_1$
- We find: $\Box \hat{\theta}_1 = 0$
- With $ds^2 = \frac{n}{mc} \left[-c^2 dt^2 + (d\vec{x} \vec{v}dt)^2 \right]$
- This result holds for long wavelength: $\omega = k$
- More accurate calculations for short wavelength: $\omega \sim k^2$

Page 110/114

Conclusions

The work done so far is necessary to find the renormalized energy-momentum tensor $\langle T_{\mu\nu}\rangle_{\rm ren}$ with the point-splitting technique:

$$\langle T_{\mu\nu}\rangle_{\rm ren} \sim \lim_{y\to 0} \int \frac{d^N k}{(2\pi)^N} \, e^{ik^\mu y_\mu} \left[\tilde{T}_{\mu\nu}^{({
m modes})} - \tilde{T}_{\mu\nu}^{({
m MDR})} \right]$$

With this expression, we can test many predictions in semi-classical gravity and analogue models.

10 + 10 + 12 + 13 + 3 OQO

Bibliography

- M. Rinaldi, "A momentum-space representation of Green's functions with modified dispersion relations on general backgrounds," arXiv:0803.3684 [gr-qc].
- M. Rinaldi, "Superluminal dispersion relations and the Unruh effect," arXiv:0802.0618 [gr-qc].
- M. Rinaldi, "A momentum-space representation of Green's functions with modified dispersion on ultra-static space-time," Phys. Rev. D76 (2007) 104027.
- D. Nacir and F. Mazzitelli, "New counter-terms induced by trans-planckian physics in semiclassical gravity," arXiv: 0711.4554.
- R. Balbinot, A. Fabbri, S. Fagnocchi and R. Parentani,
 "Hawking radiation from acoustic black holes, short distance
 back-reaction effects," Riv. Nuovo Cim. 28 (2005) 1.

Fermi coordinates expansion

$$\tilde{G}_{2} = -\frac{1}{2} \delta^{ab} H_{ab} D \tilde{G}_{0} + Q^{0}{}_{b} k_{0} k^{b} D (D - 3D_{0}) \tilde{G}_{0}
+ Q^{a}{}_{a} \left[(D + D_{0}) \tilde{G}_{0} - k_{0}^{2} D D_{0} \tilde{G}_{0} \right] +
+ Q_{ab} k^{a} k^{b} \left[D (D + D_{0}) \tilde{G}_{0} - 4 k_{0}^{2} \tilde{G}_{0} D^{2} \tilde{G}_{0} \right]$$

$$\tilde{G}_0 = \left(m^2 - S - k_0^2\right)^{-1}$$

$$S = \sum_{n=1}^{\infty} \alpha_{2n} (-1)^n k^{2n} , \quad D_0 S = \frac{\partial S}{\partial k_0^2} , \quad DS = \frac{\partial S}{\partial k^2}$$

4 D > 4 B > 4 B > 4 B > 3 O O O

Fermi coordinates expansion

$$\tilde{G}_{2} = -\frac{1}{2} \delta^{ab} H_{ab} D \tilde{G}_{0} + Q^{0}{}_{b} k_{0} k^{b} D (D - 3D_{0}) \tilde{G}_{0}
+ Q^{a}{}_{a} \left[(D + D_{0}) \tilde{G}_{0} - k_{0}^{2} D D_{0} \tilde{G}_{0} \right] +
+ Q_{ab} k^{a} k^{b} \left[D (D + D_{0}) \tilde{G}_{0} - 4 k_{0}^{2} \tilde{G}_{0} D^{2} \tilde{G}_{0} \right]$$

$$\tilde{G}_0 = \left(m^2 - S - k_0^2\right)^{-1}$$

$$S = \sum_{n=1}^{\infty} \alpha_{2n} (-1)^n k^{2n} , \quad D_0 S = \frac{\partial S}{\partial k_0^2} , \quad DS = \frac{\partial S}{\partial k^2}$$

4 D > 4 B > 4 B > 4 B > 3 O O O