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Abstract: We find that the overlapping of atopological quantum color code state, representing a quantum memory, with a factorized state of qubits
can be written as the partition function of a 3-body classical 1sing model on triangular or Union Jack lattices. This mapping allows us to test that
different computational capabilities of color codes correspond to qualitatively different universality classes of their associated classical spin models.
By generalizing these statistical mechanical models for arbitrary inhomogeneous and complex couplings, it is possible to study a
measurement-based quantum computation with a color code state and we find that their classical simulatability remains an open problem. We
complement the meaurement-based computation with the construction of a cluster state that yields the topological color code and this also gives the
possibility to represent statistical models with external magnetic fields. Joint work with M.A. Martin-Delgado.
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Outline

Topological codes: From stabilizers to color

Classical 2D Ising models: 2-body and 3-body

Connection: Partition function = product state overlap

An open problem: Simulability of color codes

measurement-based quantum computation (MQC)

Graph states: How to get color codes
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Topological Stabilizer Codes
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Topological Stabilizer Codes

In tilluan’[m:n mechanics, it is frecuently useful to make emphasis on operators
rather than on states.

In the case of quantum information, we have the stabilizer formalism? where a
subspace V is described by a set of conditions given by a group S of Pauli operators,
i.e., tensor products of Pauli mairices.

i

vy ev e VseS slv) =|v)
Example: Bell states
10)[0) +[1)[1) S =(XX,ZZ); 0)|0) — |V)|]1) S =(—XX,ZZ):
0)|1) +(1)|0) S=(XX.—ZZ); |0)[1)—|1}|0) S=(-XX.—-Z2).

Stabilizer quantum error-correction codes are such subspaces. Thev are
parl{'_iifularl}-' useful because errors in states amount to violations of the stabilizer
conditions:

slw) = —[o)

The normalizer N is a subgroup of the pauli group such that
Ec N — VscS [E,s|=0

The elements of N-S, undetectable errors, are important because thev give the
distance of the code. Indeed, they are the Pauli operators for encoded qubits.
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Topological Stabilizer Codes

= For a TSC we mean a code in which:

a) the generators of the stabilizer are loecal and

b) undetectable errors have a global (topological) nature.
= Usually we consider TSCs in which

a) qubits are placed on a surface,

b) the stabilizer S is composed of boundaries and its normalizer N of cyeles, so that
undetectable errors are related to cveles which are not boundaries (homology...).

Non-detectable

errors

Generators
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Topological Stabilizer Codes

= To construct a surface code (Kitaev ‘07,
aka toric code). one starts from a 4-
valent lattice with 2-colorable faces.

= Each vertex corresponds to a qubit.

= The generators of the stabilizer are light
and dark plagquetie operators:

Zﬂ - — Zl.ZQZ;_J,Z_L

jfb L= it,{,XGXT‘Y,g

= Dark (light) string operators are
products of Z-s (X-s).

= Plaquette operators generate the
stabilizer: boundary string operators.

= (losed strings compose its normalizer.

= Crossing dark and light strings
operators anticommutie.

= Encoded X-s and Z-s can be chosen
from those closed sirings which are not
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Topological Stabilizer Codes

Color codes are obtained from trivalent S s ek s e
lattices with 3-colorable faces. Xf=X1X2X3X4X5X6
Faces are classified in red, green and blue 3

ik . ; Zf :212’923242525
Each vertex corresponds to a qubit. 3 4
The generators of the stabilizer are X and Z plaquetie operators, for all plaquettes.

As plaquettes, strings come in three colors.
Strings not only can be deformed. A new feature appears: branching points.
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Topological Stabilizer Codes

= For each colored string 1, there are a pair of string ’}"g a8
operators, X and Z prnduets of Xs or Zs along 1.

= Two siring Dperators anticommute when they have ®mm
different color and type and cross an odd %

number of times. { Y

= As in surface codes, encoded X and Z operators can be chosen from closed string
operators which are not boundaries.

= The number of encoded qubitis is twice as in a surface code:
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Topological Stabilizer Codes

Color codes can be generalized to higher
spatial dimensions D.

First we have to generalize our 2D lattice.
Note that edges can be colored in
accordance with faces, so that at each
vertex there are 3 links meeting, one of
each color.

In fact, the whole structure of the
lattice is contained in its colored
graph: faces can be reconstructed from
edge coloring.

Examples:
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Topological Stabilizer Codes

= In dimension D, we consider graphs with D+1 edges meeting at each vertex, of D+1
different colors.

= Such graphs, with certain additional properties, give rise to D-manifolds. We call the
resulting colored lattices D-colexes (for color complex).

= Of particular interest is the case D=3:

The neigborhood of a
vertex.

The simplest 3-colex in
projective space.

= [t is remarkable that the whole topological structure of a D-manifold can be
encoded in a colored graph. For example, the orientability of the surface maps to
the bicolorability of the graph and connected sum maps to a very simple graph
Pren¥¥fipulation. In addition, a D-colex can alwayvs be obtained from an arbitraryisttice.



Topological Stabilizer Codes

= To build 3D color codes, put one qubit per vertex and choose as stabilizers:

= Sirings are consiructed as in 2-D, but now come in four colors.

= The new feature are membranes. Thev come in six color combinations and, as
strings, have branching properties.

ES <>:
L ] - /
,_,_,_,-»-"
X = Q)X L
*' o
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Topological Stabilizer Codes

= The reason to introduce color codes is that they have transversality properties not
present in surface codes.

= Transversal gates have great importance in fault tolerant quantum computation.
Theyv can be visualized as follows in terms of quantum circuits:
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Topological Stabilizer Codes

= The transversality properties of color codes depend on the properties of the
lattice. In particular, only if all faces have 4n vertices can the whole Clifford group
of operations be implemented transversally.

= This group is enough for a number of important quantum information tasks, such
as quanium teleportation or entanglement distillation.

The honeycomb
lattice is not
suitable...

...but the 4-8
lattice is OK

= Suitable 3-colexes give rise to 3D color codes that allow the transversal
implementation of the same gates as quantum Reed-Muller codes, which is enough
for universal quantum computation.
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Topological Stabilizer Codes

= A physical system showing topological quantum order can be related to everv TSC:

= — Z O S’ = Set of local generators of S

Stabilizer ——— Hamiltonian

Code Ground state

Errors —» Excitations

= There exists a ground state degeneracy with a topological origin.

= Both for surface codes and 2D color codes, the excitations are abelian anvons,
because monodromy operations can give global phases.

Sc
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Classical Ising Models
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Classical Ising Models

Given any 2D lattice, place a classical spin
variable o = =1 at each vertex. The 2-body
Ising model is given by the Hamiltonian

H—=— Z Jg_jO',—g,O'j

<i.j>

This Hamiltonian has a Z, symmeiry, namely
O; — —0j

The thermal equilibrium is described by the partition function

Z(3. J_) = Z_e_-SH = Z H ePJiiTio;

- gl Page 19/40
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Classical Istng Models

= The high temperature expansion of the partition function is

Z(3.3) =2V [ cosh(8J;;) > u(y)

Cho] > v|8+=0

where vy runs over closed 1-chains
of the lattice (collections of loops) and

<2,] >&N
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Classical Ising Models

= To construct a 3-body Ising model,
we place a classical spin at each vertex
of a lattice with 3-colorable vertices and
triangular faces. The Hamiltonian is

H=— E | Jijkgigjo-k

= This Hamiltonian has a Z_xZ, symmeiry. If we label
sites with their color c=r,g.b

0; —+o; g ——0%
crf I 3 —af ol - —o3

b b
JE’ i —Jf a. —> 0

= For uniform J, there is no frustration. The ground state
rigsobprfold degenerate.

g
+
J >0 —
- +
- -
J < —Ft =
Bage|21/46




Classical Istng Models

= Before we can write down a high temperature expansion, we need to describe the
chains of triangles that appear on it. These are formal sums of triangles

0 = Z OiielNiik: Ok — 0,1
<i.j.k>

= We can introduce a linear boundary operator from o-chains to triangle chains and
then back to 0-chains. Let A (v) be the set of triangles incident at a vertex v. We set

oV = E Ngcipe DNy —; -5 -

= With this choice, we have

02

g —4
so that we can define a triangle homology group, which is related to the 1-chain
homology group by

H]*:H1><H1
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Classical Ising Models

= The high temperature expansion of the partition function is

23,3 =Y [[ e =25 I cosh(375) 3 u(),

o <ij.k> <ij.k> 5|86=0

where o runs over closed triangle
chains and

u(0) = H tanh(3J;;%).

<ij.k>€é
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Connection
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Connection

= There exists a connection between classical 2-body Ising models and surface
codes!. We can relate the high-temperature expansion and the surface code:

<i,j >
~ =N |ﬁ,:“| — ® -ﬂr”
kg
Py i
‘LIJSC‘ s E 1Y)
¥|8v=0

= Then the partition function is equal to the overlap of the surface code with a suitable
product state:

®) := (X) [cosh(3J)|0) +sinh(3J;,)|1)].  Z(3.3) =2 (V.| ®)
<ij>
! S. Bravyi and R. Raussendorf, o7
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Connection

= Similarly, we can relate elassical 3-body Ising models with color codes. Triangle
chains can be mapped to suitable states:

0 —0)= @) [3ix)

<ij.k>

|Wee) = Z 0)

0|84=0

A

4’4?4’%-0—0 O— ¢ -~

= Again, the partition function is equal to the overlap of the color code with a suitable
state:

®) = X) [cosh(BJ;1)[0) +sinh(8T;2)[1)],  Z(3.T) = 2% (V| D)
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Connection

We can compare the results for surface and color codes:

Interaction: For surface codes we are led to a 2-body Ising model, but for color codes
to a 3-bodyv Ising model, which is qualitatively different.
Svimmmetry: The svmmetrv of the classical model is the same as the gauge svmmetry

of the quantum model, Z, for surface codes and Z.xZ, for color codes. Indeed, the
domain wall types of the classical systems map to the string tvpes of the quantum ones.

Self-duality: Regarding the duality between the high-T and low-T expansions, for
uniform J, the 2-body model in the square lattice and the 3-bodv model in the
triangular and Union-Jack lattices are self-dual, with critical temperature:

snh2RK,. —1. K.=0.J0.—0A%
Universality classes: For uniform J, the 3-body models on the triangular and Union
Jack latfice are solvable under certain circumstances. This allows to check their
criticalitv properties. It turns out that their universality classes are different. At the

same time, the honevcomb and 4-8 lattices have different g-computational
capabilities.
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MQC & Color Codes

In a measurement based quantum computer (MQC), processing is carried out via a
sequence of single-qubit measurements on an initialized entangled quantum state.

It turns out! that MQC with surface codes can be classically simulated as long as at
every step of the computation the sets of measured and unmeasured qubits are simply
connected.

This resulis relies on the fact that the probability of obtaining a given result on a series
of single qubit measurements can be written as a partition function with complex
non-uniform couplings of a classical 2-body Ising model. Such partition functions
can be calculated because there exists a mapping to a dimer covering problem,
which in turn can be solved efficiently through the Pfaffian method in polvnomial time.

What about color codes? In this case we find out that it is not possible to derive a
conclussive answer on the classical simulabilityv of MQC on color codes from the
connection with 3-bodyv Ising models. It remains an open problem.

The reason is that the dimer problem technique does not applyv for them. Instead, there
exists a mapping to a site coloring coloring problem. Unfortunately, this can only
be solved under verv restrictive conditions. In addition, this is done using the Bethe
ansatz, which poses its own problems.

Pirsa: 08040059
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Color Codes & Graph States

Given a bipartite graph with a qubit at each vertex, a graph state is defined as a
stabilizer state. Color the vertices in black and white, so that we have two sets V, and
V... If N(v) is the set containing both v and its neighbors, the stabilizer group is

S = ({ ZN(P) ‘fU e Vi } U {XN('U) ‘ v € Vy })

Given a 2-colex, we can construct a suitable bipartite graph such that from its graph
state the color code can be recovered by measuring its black vertices in the Z
basis. If the result at vertex v is x,, the unnormalized final state is

= Indeed, the graph state can be written

k) = _ (=) ® [v()))
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Color Codes & Graph States

= Such graph states can be related to suitable 3-bodyv Ising models. In particular, we
have to add a magnetic field

Z Jii kOO0 — Zh T;.

<. 9.5>

= The partition function for the new Hamiltonian is equal to the overlap of the graph
state with a suitable product state:

Z(3,3,h) = 2% (k|®)

®) = ®[msh; 3h;)|0) + sinh(3h;)|1)] ® [cosh(3J;;1)|0) + sinh(3J;;)|1)]

<z 7. E>
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Conclusions

Color codes are constructed from D-colexes.

They offer transversality properties not present in surface codes.
A 2D color code is directly related to the hight-T expansion of the
partition function of a classical 3-body Ising model.

The question of the simulability of MQC with color codes remains
open.

Color codes can be obtained from suitable graph states.

Simulable, simulatable... simulative? (courtesy of Phys. Rev. staff)
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Topological Stabilizer Codes

= A physical system showing topological quantum order can be related to everv TSC:

= — Z O S’ = Set of local generators of S

Stabilizer ———— Hamiltonian

Code Ground state

Errors — » Excitations

= There exists a ground state degeneracy with a topological origin.

= Both for surface codes and 2D color codes, the excitations are abelian anvons,
because monodromy operations can give global phases.
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Classical Ising Models

Classical Ising Models
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Topological Stabilizer Codes

= The transversalitv properties of color codes depend on the properties of the
lattice. In particular, only if all faces have 4n vertices can the whole Clifford group
of operations be implemented transversally.

= This group is enough for a number of important quantum information tasks, such
as quantum teleportation or entanglement distillation.

The honeycomb
lattice is not
suitable...

...but the 4-8
lattice is OK

= Suitable 3-colexes give rise to 3D color codes that allow the transversal
implementation of the same gates as quantum Reed-Muller codes, which is enough
for universal quantum computation.
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Connection

We can compare the results for surface and color codes:

Interaction: For surface codes we are led to a 2-body Ising model, but for color codes
to a 3-bodyv Ising model, which is qualitatively different.
Svimmetry: The svmmetrv of the classical model is the same as the gauge svmmetry

of the quantum model, Z, for surface codes and ZxZ, for color codes. Indeed, the
domain wall tvpes of the classical systems map to the string tvpes of the quantum ones.

Self-duality: Regarding the duality between the high-T and low-T expansions, for
uniform J, the 2-body model in the square lattice and the 3-bodv model in the
triangular and Union-Jack lattices are self-dual, with critical temperature:

anbh2K.—1. K.—3.J. —041%
Universality classes: For uniform J, the 3-bodyv models on the triangular and Union
Jack lattice are solvable under certain circumstances. This allows to check their
criticalitv properties. It turns out that their universality classes are different. At the

same time, the honevcomb and 4-8 lattices have different g-computational
capabilities.

Pirsa: 08044




Connection

= There exists a connection between classical 2-body Ising models and surface
codes!. We can relate the high-temperature expansion and the surface code:

<ij>

T2 = ® Vi
<ij>

W) = Z v)
‘|3‘*:U

= Then the partition function is equal to the overlap of the surface code with a suitable
product state:

®) := (X [cosh(3J;;)|0) +sinh(3];)|1)].  Z(3.3) =2% (U.[®)
<i,j>

! S. Bravyi and R. Raussendorf, o7
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Topological Stabilizer Codes

= To build 3D color codes, put one qubit per vertex and choose as stabilizers:

= Sirings are constructed as in 2-D, but now come in four colors.

= The new feature are membranes. Theyv come in six color combinations and, as
strings, have branching properties.

.
<> string
Xu=Qx; ¥ E
..H'r_{ T —
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Topological Stabilizer Codes

= In dimension D, we consider graphs with D+1 edges meeting at each vertex, of D+1
different colors.

= Such graphs, with certain additional properties, give rise to D-manifolds. We call the
resulting colored lattices D-colexes (for color complex).
= Of particular interest is the case D=3:

The neigborhood of a
vertex.

The simplest 3-colex in
projective space.

= [t is remarkable that the whole topological structure of a D-manifold can be
encoded in a colored graph. For example, the orientability of the surface maps to
the bicolorability of the graph and connected sum maps to a very simple graph
Prsn¥¥fipulation. In addition, a D-colex can alwayvs be obtained from an arbitraryisttice.



Topological Stabilizer Codes
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