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Abstract: Measurement-based quantum computation is unusual among guantum computational models in that it does not have an obvious classical
analogue. In this talk, | shall describe some new results which shed some new light on this. In the one-way model [1], computation proceeds by
adaptive single-qubit measurements on a multi-qubit entangled \'cluster state\'. The adaptive measurements require a classica computer, which
processes the previous measurement outcomes to determine the correct bases for the following measurement. We shall describe a generalisation of
the model where this classical \'side-computation\' plays a more central role. We shall show that this classical computer need not be classically
universal, and can instead by performed by alimited power 'CNOT computer\' - a reversible classical computer whose generating gate set consists
of CNOT and NOT. The CNOT computer is not universal for classical computation and is believed to be less powerful. Most notably in the context
of quantum computation, it is the class of computer sufficient for the efficient simulation of Clifford group circuits [2] - a closely related result. This
motivates the question of what resource states would be universal for classical computation, if the control computer isin the CNOT class. We shall
answer this question with several examples. Leading from these examples, a natural question is thus, is \'classically universal measurement based
computation\' possible with solely classical physics? By considering different settings, we shall answer this question both in the negative and
positive, and draw some striking connections with some well-known techniques from models of generalised no-signalling theories. [1] R.
Raussendorf and H.J. Briegel, Phys Rev Lett (2001) 86 5188 [2] S. Aaronson and D. Gottesman, Phys Rev A (2004) 70 052328 This is joint work
with Janet Anders. We would like to acknowledge inspiring and fruitful discussions with Hans Briegel, Akimasa Miyake, Robin Blume Kohout and
Debbie Leung.
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Measurement-Based Classical
Computation:

Classifying the computational power of
entangled states

Dan Browne
University College London
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Joint work with Janet Anders

E




Measurement-Based Quantum

Computation
Entanglement as a computational resource.

-
Resource state: Single-qubit |

Cluster State (f;ra h measurements Desired state or
State etc ' P (with classical processing, computational output
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One-way Quantum Computation

Prepare entangled Measure a sub-setof
resource state qubits

e.g. cluster state

| Process measurement
results

Choose bases for
next subset of
measurements

Computational Output

uoose  Raussendorf and Briegel, PRL 2001 Pege 471



Cluster States

e Square lattice of qubits 0000 OO
09000000
90000 0O
0000 0O0C
000000

e Each qubit prepared in state
10) + |1).
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Cluster States

e Square lattice of qubits ::I::m

e Each qubit prepared in state

| | 000000
|0) + |1). |
e A controlled Z gate is applied m
between all neighbouring pairs.
Controlled-Z
(CZ, CPHASE):
( 1 O 0 O
B E O @
0 1 ¢
\0 @ 0 1
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Cluster States

e Square lattice of qubits .—.—?—.—.—‘—.

o0 00000
e EFach qubit nranarad in ctata I 1 b
10) + The graphical state description |
2
e A cont o _ _ i
betwe . Node = Qubit — prepared in |[+) = |0) + |1) P
Controlle
(CZ. CPH / Edge - APPI'IE Eﬁ Of CZ gﬂte | | Z
connected qubits

(1

0 |
0 I 0 9
0 0 1 oJ
\0 0 0 —1
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Measurement Patterns

® The computation implemented is defined by the
measurement pattern.

I 238587

control X n.o
M:

® Any quantum circuit can ()
ager XX XEXXO

be efficiently achieved S WINIZIS 1015
given surtable CNOT-gate
measurements. (b)

2 34 5 L 234 3

:.X BEE0 XxEx0

t‘_‘_._.’_“ general rotation z-rotation
‘——H (d) (e)
P 2 3 4 3 1 2 3 4

o ||V |® XXIHD

Hadamard-gate w/2-phase gate
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Measurement Patterns

® The computation implemented is defined by the
measurement pattern.

® For each qubit

® One of two bases: 2 - -

\ 2O 1\ 4 o—tP|1\
0) £e[1) or 0) £e (1) general rotation

® Angle predetermined

® Sign a function of previous measurement outcomes

® Adaptivity ensures deterministic computation
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FIG. 1:
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"I Graph states corresponding to (a) hexagonal, (b)
thangular and (c) Kagome lattices are universal for MQC.

Universal Resource States

M Van den Nest, A Miyake, W Dur,
H Briegel, quant-ph/0604010

4 bl

) |
it
s

4 - - 1 T
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Percolation models above threshold

Kieling, Rudolph, Eisert, PRL 07;
Browne, Elliot, Flammia, Miyake,
Short, NJP 08 Page 10171



Universal Resource States

* Computational Tensor Network states (CTN states)

D. Gross and J. Eisert, PRL 2007

o —@; T ¢ : & 3 o e D. Gross et al, PRA 07.
N
K W I See talks by Jens Eisert
¢ & ¢ 6 6 ¢ :
"k s s 5 and Katerina Mora
¢e—6— 66— 66— 6—6¢

* Built upon Matrix Product State formalism

* Not (necessarily) graph states
e Different strategies to compensate for randomness

Robert’'s question:
What is the essential quantum mechanical property that makes
risa csoloid@SEe States universal resources? Can it be quantified? Page 11/71



Universal Resource States

* Computational Tensor Network states (CTN states)

D. Gross and J. Eisert, PRL 2007
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* Built upon Matrix Product State formalism

* Not (necessarily) graph states
e Different strategies to compensate for randomness
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EPR and Bell’s theorem

MAY 13, 1933 FRAYSICAL REVIEW VOLUME a7

Can Quantum-Mechanical Description of Physical Reality Be Considered Compilete ?

A Exsrmme, B. Ponovsxy axn N. Rosew, [mstituis for Adsanied Dudy Princeion. New Jersey
{Recwrved March 15 1915)

v “spooky action
at a distance”

-

i_

B e
& X {2_ R '
PN

System B
System A

P 00; —111)
e EPR state W(ry,z5) = / P Pdp — W) = . B =
S —0 L'

(Bohm).
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EPR and Bell’s theorem

® CHSH correlation

C = |Ego + E10 + Eo1 — E11| S
g, Expectation of the product of 1 ¥ LR R
ab measurement outcomes + 1. Y A 2 ~T
. . System B
System A
® | ocal hidden variable model: C <9

® Violated by quantum mechanics up to
Tsirolsen's bound:

irsa: 08040054 Page 14/71



GHZ “paradox”

Quantum mysteries revisited

N. Dand Mermin
Laboratory of Atomic and Solid State Physics. Cornell University, Ithaca, New York [4853-250]

( Received 30 March 1990; accepted for publication 28 Apnil 1990)

) = |001) + |110)

(uniquely) satisfies:

XX QX|Y) = |v)

XY QY ||¥) = |v)

YRXQYW) = |v)
which also imply:

YRY Q@ X|¢) = —|9)

~=fr0 classical assignment of X, Y can satisfy these:=



This talk

® Motivation

® Better understand the necessary
properties of entangled states which lead
to computational resource power.

® Understand the physics behind this.
¢ Jool

® Focus on computational power of the
classical computer controlling the adaptive
measurements...



The classical computer in charge....

control computer

A Ak

——g——
q}—‘
-

-
-
-

pes
&

measurement sites _.

1 AL

resource state

® records measurement outcomes

® calculates the dependancy function for each qubit
in turn

® s the only active computational element in the
Pirsa: 08040054 mo d el 3
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The control computer

® Just by exchanging messages with the
measurement sites, its power is promoted

P Power of a (polynomial) universal classical
computer

Exchange of bits with measurement
devices on cluster state

Power of a (polynomial) universal quantum
[ BQP ] computer

® |nterpretation: intrinsic computational
-=ux power of the cluster state.



Pirsa: 08040054

The classical computer in charge....

control computer

r A

s o
S
-

-
-
<

o=
4

.\_.f |
/ / -——_1

resource state

measurement sites _.

® records measurement outcomes

® calculates the dependancy function for each qubit
in turn

® s the only active computational element in the
model.
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The control computer

® |ust by exchanging messages with the
measurement sites, its power is promoted

P Power of a (polynomial) universal classical
computer

Exchange of bits with measurement
devices on cluster state

Power of a (polynomial) universal quantum
[ BQP ] computer

® |nterpretation: intrinsic computational
==z power of the cluster state.



Role of the control computer

Hmwmﬁl Device

B P 1 : 0) + €'?[1)
| bit i .

Control Computer ——— Q :

e

0Y £ e 1)

® Before each qubit is measured it must
e (alculate sign of measurement basis

® This is a function of previous measurement outcomes

Measurement Device

| bit :
Control Computer | <—— r' :

® The control computer receives measurement
outcome and stores it in memory.
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Easy as parity

® What do these dependency functions look
like?

® [he control computer has to keep track of
all the measurement outcomes, and

choose a sign for the measurement basis
accordingly.

® |n cluster state MBQC, these functions

reduce to calculating the parity of subsets
of measured bits. X*X° = X*®°

® Parity calculations do not require a
universal classical computer.

Pirsa: 08040054
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Parity computer

® Consider a classical computer which can implements
circuits of gates from {NOT, CNOT}.

(1 (1
a 4l>07 a b1
h a®b

L/

® [his is not a universal set.

® This is still a valid computational model and has an
associated polynomial-time complexity class - “Parity L.
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Power of the CNOT computer

==y

® Believed to be weaker than a universal ol
classical computer (class P).

>

® There are problems which a CNOT
computer can efficiently solve:

® Parity of an n-bit string.

® Simulating deterministic Clifford group
circuits (CNOT, H, Pi/4 gates).

® Matrix inversion over GF(2).

Pirsa: 08040054



Power of the CNOT computer

==

® Believed to be weaker than a universal ol
classical computer (class P).

>

® There are problems which a CNOT
computer can efficiently solve:

® Parity of an n-bit string.

® Simulating deterministic Clifford group
crcuits (CNOIT, H, Pi/4 gates).

® Matrix inversion over GF(2).
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Power of the CNOT computer

~

® Believed to be weaker than a universal ol
classical computer (class P).

-

® There are problems which a CNOT
computer can efficiently solve:

® Parity of an n-bit string.

® Simulating deterministic Clifford group
circuits (CNOT, H, Pi/4 gates).

® Control of adaptive measurements in
measurement-based quantum computing.
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Computational Resource Classes

(o) = (7] = [

CNOT Universal Classical Universal Quantum

® The computational power of the cluster state
is thus greater than previously described.

(o) foer
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Computational Resource Classes

(o) = (7] = (s

CNOT Universal Classical Universal Quantum

® Three classes of computational resource

(o ————(oer

o —(r)  [eer




Wednesday

Fast-forward to Fﬁelay

Novel Schemes for Measurement-Based Quantum Computation ;
D. Gross and J. Eisernt l

Blacken Laboraory, Imperial College London, Prince Consort Road. Lomdon SW7 2BW, Unied Kingdom |
Insttwie for Mathematical Scrences. lmperial College London. Evhubstion Rd [ ondon SWT 2BW. United Kmgdom

iRecewved 1 November 06 revised manuscrypt recerved 19 January 2007 pubhshed 31 Mav J007) I

® |n this paper, a new approach for MBQC is introduced
with new states (CTN states).

® [nstead of parity, the control computer in their model
requires counting Mod(n).

® This requires a full universal classical computer.

P -| BQP
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Computational Resource Classes

(o) = (7] = (s

CNOT Universal Classical Universal Quantum

® Three classes of computational resource

(o foer

o () (ser




Wednesday

Fast-forward to Friday

PHYSICAL REVIEW LETTERS

PRL 98, 220503 « 2007) I JLNE_UII .I

Novel Schemes for Measurement-Based Quantum Computation |
D. Gross and J. Eisent l

Blacken Laboratory, Imperval College London, Pronce Consort Road. London SWT 2BW, Uniwed Kingdom
Insttwie for Mathematical Sciences. lmperial College London, £ vhibstion Rd. [ ondon SWT 2BW. United Kmgpdom

iRecerved 2 November 2006: revised manuscrspt recerved 29 January 2007 publshed 51 Mav 2007 F

® In this paper, a new approach for MBQC is introduced
with new states (CTN states).

® |Instead of parity, the control computer in their model
requires counting Mod(n).

® This requires a full universal classical computer.

P - BQP

irsa: 08040054 Page 31/71




Measurement-Based Classical Computation

e A

CNOT Universal Classical

® This is measurement-based classical
computation.

® Universal classical computation i1s achieved by a
non-universal machine with access to a
resource state.

® What examples can we find of such a resource
(which does not also enable universal quantum
computation)?
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Enabling universal classical computation

® (Classical) Universal Gate Sets AND

NAND

{NOT, CNOT} + OR

control computer

v

|

A ~

Hil

||V

resource state

-

Pirsa: 08040054

TOFFOLI
etc.

* [he ability to repeatedly efficiently
simulate any one of these gates
will enable universal classical

computation.



A simple example

® For universal quantum computation cluster
states of unbounded size must be available.
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Lot |—L* ]

® Consider a supply of cluster states

® big enough to support the measurement
pattern of a universal classical gate

® but no larger (not quantum universal)

® This will be a resource of class

[ ol J { P ] E.g. AToffolli gate

t nu 1
but not « CHESSENSDE 8O ¢

¢ u] ok
. [ ®L J [BQ P] Raussendorf, Browne, Briegel, PRA 2003
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Computational Resources from
First Principles

The bounded-size clusters are an example of a
®L—P resource, but what do they teach us?

Is there a “simpler” resource which enables
measurement based classical computation?

Will this illuminate the necessary features of
such a resource’

Let’s take a first principles approach...



® We demand following properties
of one-way model retained. I

The model

control computer

h i) A

Only Ibit sent and|bit ﬁ
recelived at each site. ‘

resource state

No signalling between sites.

® Site may share entanglement, private correlations

® QOther than this, we make no restrictions on the
properties of the sites.

® [he above restrictions avoid “‘trivial’”’ solutions, i.e.

Pirsa: 08(}%)

054

iding a NAND gate in a measurement site.
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Enabling universal classical computation

e Recall, to promote the power of our parity
computer to full classical universality:

* We add a gate to the gate set

AND
NAND
{NOT, CNOT} + OR
TOFFOLI
etc.

* The ability to repeatedly efficiently simulate any one
of these gates will enable universal classical
esoss COMPULation.



Pirsa:

AND from first principles
® AND: 2 bit inputs (a,b) — | bit output

® Restrictions of our framework lead to:

(1

i
|

— —

Input _ | output
b — I’ S
® Want f(mi,m2) =a AND b

® such that f(m1,m2) can be evaluated by
the parity computer

0054



AND from first principles
® AND: 2 bit inputs (a,b) — | bit output

® Restrictions of our framework lead to:

a 1

— b

Input _ ’ output
b— ™
® Want f(my.m2) =a AND b

® such that f(mi.m2) can be evaluated by
the parity computer

= @ No signalling implies m, © m> =a AND b



AND from first principles

® TJo find our computational resource, need to
find a state which delivers the correlations:

(1 Iy

mi; S mo =a AND b

mo
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AND from first principles

® TJo find our computational resource, need to
find a state which delivers the correlations:

} mi

o — i Mo

|
S |

a

mi & mo = a AND b

® Sanity check: CHSH inequality
C = |Egp + E10o+ Eo1 — E11| =4

Pirsa: 08040054 Page
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AND from first principles

® TJo find our computational resource, need to
find a state which delivers the correlations:

(1 i

mi; S mo =a AND b

I

-

® Sanity check: CHSH inequality
C = |Eopo+ E1o+ Epn — E1n| =4
® T[sirolsen’s bound is violated...

=@ This is a Popescu-Rohrlich non-local box! ™"
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Smallest AND resource?

® Know that:

® J[offoll gate achievable with large-ish

bounded size clusters : o ol
O g O Qc

a
O c

® )-bit resource forbidden (violates
Tsirolsen’s bound) C > 22

® What is smallest (fewest site) resource
which enables AND?



GHZ correlations revisited

XXXy =|v)
XQY QYY) = |v)
Y ® X QY ) = |v)

YRY ® X|¢) = —|v)

® &

® |abel the measurements M, =X M;=Y
® and rewrite equations in compact form
M, ® My ® M gp|t)) = (—1)* P2 °|9) Va,b € {0,1}

® |f we associate measured eigenvalues * |
with bit-values {0, |} we can write this.....
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AND from first principles

® TJo find our computational resource, need to
find a state which delivers the correlations:

(1 Iy

mi; & mo =a AND b

| —

mo

® Sanity check: CHSH inequality
C =|Egp+ Ew+ En —En|=4
® T[sirolsen’s bound is violated...

=@ This is a Popescu-Rohrlich non-local box! ™"
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Smallest AND resource?

® Know that:

® [offoll gate achievable with large-ish

bounded size clusters : o o
O g O Qc

(]
a Oc

® )-bit resource forbidden (violates
Tsirolsen’s bound) €22

® What is smallest (fewest site) resource
which enables AND?



GHZ correlations revisited

XX RQRX|Y) =|v)
XQ@Y YY) = |v)
YRX QYY) = |v¥)

e £

YQY @ X|v) = —|¥)

® | abel the measurements M, =X M,=Y

® and rewrite equations in compact form

M, ® My ® M,gp|v)) = (—1)2 NP8y Va,b € {0,1}

® |[f we associate measured eigenvalues * |
with bit-values {0, |} we can write this.....
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GHZ correlations revisited

a O I
b L © - Mo mi1 Emo Emz =a AND b
aPb— @ ms

* The correlations of Mermin-GHZ allow the
parity computer to achieve the AND gate!

e |t is the fewest site correlation which achieves
~mws this (within quantum physics).



GHZ correlations revisited

a E) mq
b 1 © mao mi1 S mo E&ms =a AND b
adb—— O ms

* The correlations of Mermin-GHZ allow the
parity computer to achieve the AND gate!

e |t is the fewest site correlation which achieves
s this (Within quantum physics).



GHZ correlations revisited

® The GH.Z correlations are the fewest site
resource for implementing AND.

® Why does nature allow three-qubit deterministic
resource states but not two bit?

® NB:bi-partite entanglement is all that's required.

® @0 — @000

® Can bi-partite entanglement be directly exploited?

Pirsa: 08040054



Summary of results so far

® We have seen how the computational
power of resource states for MBQC can be
classified.

Cluster states
(unbounded size)

(ot J~[ocr

o

Gross and Eisert -
“Novel schemes for MBQC"

(supply of) GHZ states

(supply of) non-physical
non-local boxes

(supply of) bounded-size
clusters (n>2)
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Non-Deterministic Gates

® We have shown GHZ entanglement is the
smallest entanglement resource for
deterministic classically universal gate.

® What if non-deterministic gates are
allowed?

® Can bi-partite entanglement be useful?

v “spooky action

B at a distance” )
ol
q Q System B

SY Stem A Page 53/71
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Non-Deterministic Gates

® Re-write the CHSH quantity:
C = Eopo + E10 + Eor — En

using: E,, = [p(m1 @ ma =0) — p(m; ©@ma =1)|a

> o0 P(m1 & ma =a AND b)

= —4
=8 2

To give bounds on the mean success
probability p of the AND gate.

Classical (LHV) Quantum (Tsirolsen)

. 2+ /2
Pirsa: 08040054 p § 0 - 75 I_j <_: 4 \/ — () 4 8 5 Page 54/71
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Non-Deterministic Gates

® (Can the extra success probability available in
the quantum case be computationally useful

N our model?

® Can the CNOT computer error correct and
lever this probability arbitranily close to one?

. “spooky action
- at a distance” )
A= =

g
x* 2 '2_ e

. System B
System A

® This is an open question.

-
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Separable states and classical

randomness

® Can separable states be computationally
useful?

® Perhaps, but not much, no more than
classical channels and randomness
sources.....

® Signalling requirement means:

— f(a, )

\ :shared classical data



Parallelizing power of generalised
no-signalling theories?

® Write down correlations for any Boolean
function

@ i = e b.e....)
—
This is still a no-signalling resource.

® [he computational depth of the parity
calculation i1s logarithmic.

® Thus (ignoring preparation complexity - this
might be cheating)

® All n-bit functions can be evaluated in log
n depth.
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Aside: Interactive Proof systems

Interactive Proof
System

Limited
computational
power

Measurement-Based
Computation

Limited
computational
power

Pirsa: 08040054

| - bk

ComimuUumncaIDon

Verifier Provers
—" :
‘ | Uncunstrzruned
. computational
> power
-—
|
| . No inter-prover
| pa— signalling
Lirmicad
Commumcation
Control Measurement sites
| .
[ Unconstrained
computational
power
-
. No inter-site
- | signalling
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Discussion

® We have classified the computational
power of resource states for MBQC.

® New classes of resource states for MB
classical C.

® Surprising connections between computer
science, quantum computation and the

study of quantum non-locality.

® A new (and unified) way of formulating
GHZ, and CHSH “paradoxes”.

® New language, meaning for “pseudo-
telepathy games™
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Aside: Interactive Proof systems

Interactive Proof
System

Limited
computational
power

Measurement-Based
Computation

Limited
computational
power

irsa: 08040054

Control

|
!
|
|

Provers
] .
_ Uncunstr:‘u ned
computational
SEE power
- -
> No inter-prover
p— signalling
Lirmizad
Commumcaton

Measurement sites

| Unconstrained
computational

power

f———

" No inter-site

B signalling

| - bt
COMIMUMICInON
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Discussion

® We have classified the computational
power of resource states for MBQC.

® New classes of resource states for MB
classical C.

® Surprising connections between computer
science, quantum computation and the

study of quantum non-locality.

® A new (and unified) way of formulating
GHZ, and CHSH “paradoxes”.

® New language, meaning for “pseudo-
telepathy games™
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Qutlook

® |n what new ways can these connections be
exploited?

Quantum “non-
_ locality ', non-
Computation Measurement- signalling theories

Based

Quantum

Computation

Graph Theory
hiding in here!

Complexity
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Qutlook

® |n what new ways can these connections be
exploited?

Quantum “non-
_ locality ', non-
Computation Measurement- signalling theories

Quantum

Based
Computation

"

GHZ, and CHSH ‘;;:;aradoxes".

® New language, meaning for “pseudo-
telepathy games”
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Non-Deterministic Gates

® Re-write the CHSH quantity:
C = Eoo + E10 + Eor — En

using: E., = [p(m1 @ ma =0) — p(m; @ma =1)|a

> upP(my & mo =a AND b)

= =5
C==8 2

To give bounds on the mean success
probability p of the AND gate.

Classical (LHV) Quantum (Tsirolsen)

: 2+ /2
s P S 070 p < 4‘/ ~ (.85
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Non-Deterministic Gates

® (Can the extra success probability available in
the quantum case be computationally useful

IN our model?

® Can the CNOT computer error correct and
lever this probability arbitranly close to one?

v “spooky action
. at a distance” )
b= =

SRR
x% - E xZ

. System B
System A

® This is an open question.

-—
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Non-Deterministic Gates

® Re-write the CHSH quantity:
C = Eoo + E1o + Eor — En

using: E., = [p(m1 @ ma =0) —p(m; ©@ma =1)|a

> upP(my ©mo =a AND b)

— ¢ — 4
C=38 2

To give bounds on the mean success
probability p of the AND gate.

Classical (LHV) Quantum (Tsirolsen)

L h 2 + /2
s P < 0.7 p < 4‘/ ~ (.85
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Non-Deterministic Gates

® (Can the extra success probability available in
the quantum case be computationally useful

N our model?

® Can the CNOT computer error correct and
lever this probability arbitrarily close to one?

. “spooky action
2 at a distance” )
b= =

oGRS
x” - ’2_ 2

. System B
System A

® This is an open question.
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Non-Deterministic Gates

® We have shown GHZ entanglement is the
smallest entanglement resource for
deterministic classically universal gate.

® What if non-deterministic gates are
allowed?

® Can bi-partite entanglement be useful?

v “spooky action

’ D at a distance” )
i
q ‘ System B
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Enabling universal classical computation

e Recall, to promote the power of our parity
computer to full classical universality:

* We add a gate to the gate set

AND
NAND
{NOT, CNOT} + OR
TOFFOLI
etc.

* The ability to repeatedly efficiently simulate any one
of these gates will enable universal classical
esoss COMPULation.



® We demand following properties
of one-way model retained. i

® Site may share entanglement, private correlations

The model

control computer

Vi

A
¥

A
v

Only Ibit sent and| bit D’J
received at each site. ‘

'
f'\_-"

p 4

F

—
o

resource state

No signalling between sites.

® Other than this, we make no restrictions on the
properties of the sites.

® [he above restrictions avoid “‘trivial’”’ solutions, i.e.

Pirsa: 08(}4-(;

054

iding a NAND gate in a measurement site.
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