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Abstract: We give an overview of several connections between topics in quantum information theory, graph theory, and statistical mechanics. The
central concepts are mappings from statistical mechanical models defined on graphs, to entangled states of multi-party quantum systems. We present
a selection of such mappings, and illustrate how they can be used to obtain a cross-fertilization between different research areas. For example, we
show how width parameters in graph theory such as \'tree-width\' and \'rank-width\', which may be used to assess the computational hardness of
evaluating partition functions, are intimately related with the entanglement measure \'entanglement width\', which is used to asses to computational
power of resource states in quantum information. Furthermore, using our mappings we provide simple techniques to relate different statistical
mechanical models with each other via basic graph transformations. These techniques can be used to prove that that there exist models which are
\'complete\' in the sense that every other model can be viewed as a special instance of such a complete model via a polynomial reduction. Examples
of such complete models include the 2D Ising model in an external field, as well as the zero-field 3D Ising model. Joint work with W. Duer, G. de
las Cuevas, R. Huebener and H. Briegel
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What we are trying to do...

J There exist several connections between statistical mechanics and quantum
information theory

MPS, PEPS <> ground state approximation (Verstraete, Cirac,..)
Quantum algo for Potts model partition function (Arad, Aharonov)

Toric code states <> classical Ising model (Kitaev, Bravyi, Raussendorf)
Many others — just look around you in the Bob room ;-)

d These connections may (and do) provide conceptual insights

d More importantly, they sometimes allow to solve difficult problems in one
model by mapping it to easier problems in another model

J In other words, they are practically useful since they allow to interchange
techniques and tools between different areas
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What we are trying to do...

-  Could such fruitful connections also be established to study
computational power of quantum computation?

J Our (professional) hopes and dreams: finding connections between stat
mech and QIT which teach us something about:

» Classical simulation of QC, construction of simuleerbare gate sets,
simuleerbare resource states, ..

+ Construct new quantum algorithms for stat mech problems,
hopefully in simple and systematic way

« Gain insight in computational complexity of stat mech systems (=
‘from QIT to stat mech’)
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What we are going to do...

Present selection of new mappings:

Relatad to circuit model

Relatad fo teleportation-based

-

Related to oneway Q

IDEA OF S
THE
TALK

Present selection of their applications

Simulation of QC

Quantum alga’s

Complexity of classical models
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First class of mappings:

Quantum circuits

Il

Vertex models (6-vertex, 8-vertex, ...)
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First class of mappings:

Quantum circuits

Il

Vertex models (6-vertex, 8-vertex, ...)




Quantum circuits and vertex models

- Consider a poly-size quantum circuit C as a quantum cellular automaton acting on ¢-
level systems, with gates chosen from some elementary gate set S:

=

Nearest-neighbor
gat= acting on
(at most) two

systems

- We are interssied in the hardness of classically computing :::IU, ¥y,  forarbitrary
poly-size quantum circuits C (of above siructurs) built out of gates from S
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Quantum circuits and vertex models

0 {;{IC ‘ _1,-) =  contraction of large number of small tensars

J There exists a fairly standard graphical representation of tensor contractions (see e.g.,
Markov and Shi, Vidal, many others):

» Each gate becomes a verizx with 4 incident edges:

il C {I L
yrab c==
= f} l '.Ii

F="d

i B

» (Contraction of two indices = ‘'gluing together’ correspending edges

LE

W e =
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Quantum circuits and vertex models

1 For the whole circuit we then get:

¥ U U U

L]

At each edge of 2D latfice sits a classical spin which can take g values
The spins at the left/rights are fixed in boundary conditions x and y
Each configuration of 4 spins a, b, ¢, d around a vertex is given a

‘weight’ 77

* (x|C|y) is given as sum, over all spin configurations, of products of E'fage R

L]
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Quantum circuits and vertex models

Hia.br.d)

I This corresponds to a 'vertex madel’ in stat mech, with [“’ =iy

[ —

e
A

(———V—_ —jr——
Classical spin system where spins live on edges and
interactions occur in vertices (see e.g. Ba

(x|C|2} coincides with partition function of vertex model
on (tilted) 2D square lattice with left and right boundary conditions
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Quantum circuits and vertex models

.
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Quantum circuits and vertex models

L —
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Quantum circuits and vertex models

<_T I C

3
V)
=3 il

At each edge of 2D latfice sits a classical spin which can take q values
The spins at the left/rights are fixed in boundary conditions x and y
Each configuration of 4 spins a, b, c, d around a vertex is given a

‘weight' 7%

o (x|C 1 is given as sum, over all spin configurations, of products of E*fage 3




Quantum circuits and vertex models

s B m E
} Z T2 )

- This corresponds to a 'vertex model’ in stat mech, with [ “*’ ==V

—

o
>

(———V—_ _-T. i
Classical spin system where spins live on edges and
interactions occur in vertices (see e.g. Ba

(x|C|>) coincides with partition function of vertex model
on (tilted) 2D square lattice with left and right boundary conditions
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Two standard vertex models

J 2-state spins on a 2D square lattice
3 Write Boltzmann weights J7"% = ¢™#%'“*“%)  as a 4x4 matrix

- Eight-vertex model:

] () 0 @,

£ ) W, @, ()

L e | O o o 0
e ML T

J Six-vertex model: @, =0=a,
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Two immediate conclusions

» [1] exactly solved vertex models = simulable gate sets

* [2] quantum algorithms to approximate partition functions in certain
(complex) parameter regimes
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Simuleerbare gate sets from solvable models

3 Via mapping: evaluation of (x|C y) corresponds to evaluation of partition

function of vertex model

J If corresponding vertex model is ‘solved’ (i.e., it is possible to compute
partition function efficiently) then corresponding matrix elements can be
computed efficiently = simuleerbare gate sets from solvable models

- However, watch out for
» Translation invariance
» Complex couplings
» Finite lattice size
» Boundary conditions

- Nevertheless, certain solvable models can immediately be translated into
w0z Simulable gate sets Page 27/65




Simuleerbare gate sets from solvable models

J For example, the eight-vertex model

is known to be solvable for finite dimensions, complex non-translation-
invariant couplings, whenever the condition

is fuffilled. The solution is given by mapping to free fermions.

1 This recovers simulability of Valiant’s Matchgates (+ connection to free
" fermions by Terhal and Divincenzo, see also Bravyi, and Jozsa and Miyake)

Page 28/65
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Simuleerbare gate sets from solvable models

J Beyond Valiant: consider 32-vertex model on triangular lattice
- Also solved for certain parameters (again: mapping to free fermions)

i . AVAYA
7= 1=

el

=l
o

|

] j
g * * §F *90 p3
b *¥*p *0o0*
gl D @ 0 )
%o 15 0 * *p*00?*
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Quantum algorithms for vertex models

J Immediate quantum algorithm for Z ={x \1 whenever Bolzmann
weights are chosen such that C is unitary CII‘CUIt Just do Hadamard test

1 This yields "Additive approximation”: algo returns number ¢ such that (with
all but exponentially small probability) one has

I
~ polv(NV)

xl h
r -I
WXy

-

- Easy to get BQP-complete problems: just take vertex model corresponding
to universal gate set

J For example: (inhomogeneous) six-vertex model on 2D square lattice is
BQP-complete

_ ' - use encoded universality of
i = A 9 : exchange interaction
' e, (Kempe, Divincenzo et al)
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Pros and cons of these quantum algorithms:

d PRO:

« Very simple, general, systematic mapping from classical model to
quantum algo

» BQP-complete algo’s may teach us something about computational
complexity of classical models

- CON:

 Quantum algo only provides (additive) approximation

o It seems difficult to get algo’s in 'physical regime”: complex couplings
naturally pop up due to unitarity. This problem also occurs in related
work, so might be a tough one to circumvent..
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2nd class of mappings:

Teleportation-based QC

I

Edge models (Ising, Potts ...)




Edge models and teleportation

- Consider a 2D network of two-qubit states

ok Ve TUR e where every &—=8 isan
arbitrary two-qubit state:

W=y, -_:-{h";.:—.r__;;:__ 0L+, 103 +y,, (11 |

state may be different at each edge

- Suppose a GHZ measurement is performed on every site of the lattice

GHZ measurementon | | lﬁ)':* +l 1)'34 |
40047 . - — = . Page 35/65
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Edge models and teleportation

- We now consider those unitary operations which can be implemented via
these GHZ measurements on the states lw)

» For which ]w} are these operations classically simuleerbaar?

J ...Enters the link with statistical mechanics: Ising and Potis-type models

¥ : 4 L 4 ' 4 L
-- consider spin system (edge model)
TR TR i SR — on every site lives 2-state spin 5. =0.1
| ] | “a | — over every edge there is interaction
[ -- Boltzmann weights given by
3 - a7 N 5 !//ﬁ - t’_ BH(s1) e “* l




Edge models and teleportation

J Consider a 2D network of two-qubit states

ke o8 TORK O where every &—48 isan

3 S —? 3 arbitrary two-qubit state:

Y Y

L ] k]

“ .:' .‘. ':.

— S — "

) dhothe Jebcll IR S state may be different at each edge
%"

- Suppose a GHZ measurement is performed on every site of the latfice

GHZ measurement on _Iln)” .|_m3“‘ %
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Edge models and teleportation

- We now consider those unitary operations which can be implemented via
these GHZ measurements on the states |t;r>

+ For which I lp’} are these operations classically simuleerbaar?

J ..Enters the link with statistical mechanics: Ising and Potis-type models

¥ T ¥ ¥ ®

-- consider spin system (edge model)
Y AR R R -~ on every site lives 2-state spin s_=0.1
| ] | | 5 | — over every edge there is interaction

-- Boltzmann weights given by
o ) W, = g ) sit=01
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Edge models and teleportation

- Consider a 2D network of two-qubit states

¥ N * % *L® .
e b TUR AR where every &——48 isan
s S kS arbitrary two-qubit state:
® » 'T ® T
5 ® 2 s wh=w,, |00)+w,, 0L+, 103+, ID
‘. !.l i.i l‘i : :
a0 ] ;

I state may be different at each edge

L ] » L ] &

- Suppose a GHZ measurement is performed on every site of the lattice

E- GHZ mE#il;thent Cf] -“[l)']ill)ﬂ. } b




Edge models and teleportation

J We now consider those unitary operations which can be implemented via
these GHZ measurements on the states |l;f>

+ For which ]!;/} are these operations classically simuleerbaar?

] ..Enters the link with statistical mechanics: Ising and Potis-type models

-- consider spin system (edge model)

T AR A 35 -~ on every site lives 2-state spin s_=0.1
- over every edge there is interaction

-- Boltzmann weights given by

—BH{(s1)

B FER (2 TR W, =e s.t=0.1
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Edge models and teleportation

J We can then write the partition function of this model as

E‘:ne branch of) GH:% Es_hf two-qubit aizteﬂ

- First Observation (roughly):
* suppose we choose the |i,!f> 's to correspond to a solvable model.
E.g. 2D Ising model without external field: v, =¥, and y, =i

 Take a unitary operation U which can be implemented via GHZ
measurements on such [ :;/)‘5. Then

f

7| @ /el @)« o

rr

l})
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Edge models and teleportation

J Consider a 2D network of two-qubit states

TR s TUR A where every &—=8 isan
arbitrary two-qubit state:

state may be different at each edge

- Suppose a GHZ measurement is performed on every site of the lattice

GHZ measurement on -I|0>':4i][}':4. %
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Edge models and teleportation

- We now consider those unitary operations which can be implemented via
these GHZ measurements on the states |1,u>

» For which I!;/} are these operations classically simuleerbaar?

J ..Enters the link with statistical mechanics: Ising and Potis-type models

-- consider spin system (edge model)

Froe e s e oy — on every site lives 2-state spin s, =0.1
— over every edge there is interaction

-- Boltzmann weights given by

E e = __ —pPBH{s1) o
1 [ W, =e s.t=0.1
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Edge models and teleportation

J We can then write the partition function of this model as

2= @ (ol © Iv)]

\ all sates J \ all edees

E.:rie branch of) GH:% E;bf two-qubit Statg

- First Observation (roughly):

* suppose we choose the |{/)'s to correspond to a solvable model.
E.g. 2D Ising model without external field: v, =¥, and y, =y

» Take a unitary operation U which can be implemented via GHZ
measurements on such | y;)‘s. Then

®arz | @l <{

y,

rT

l_l)
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Simulable gate sets from solvable models

1 Example: 2D Ising model without external field: v, =v,. and v, =y,
J With these ’;/;} 's, the following (possibly non-unitary) gates can be
implemented:
al +bX and al @I+bZ&® 7 (n.n.qubits)

- Since partition function of 2D Ising can be efficiently evaluated, we can
conclude that

LY

: —

@zl || @lw) | (o]0

o

can be computed efficiently for any circuit U built out of the above gates

- Thus, as for the case of vertex models: solvable models lead to simulable
gates
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J Example: 2D Ising model without external field: v/, =y, and v, =¥y,

- With these \;/;} 's, the following (possibly non-unitary) gates can be
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al +bX and al @I+bZ&®Z (n.n.qubits)

J Since partition function of 2D Ising can be efficiently evaluated, we can
conclude that

2<{ @ (cuz] || @) | ol
can be computed efficiently for any circuit U built out of the above gates
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Quantum algorithms

- Second observation (also roughly):

\ ¢/

=0

f N\ J

\ s (l)'ﬂl)}

 Using Hadamard test, we can efficiently provide additive approximation
of matrix element of unitary circuit

» Recall againthat 7 =‘# E(GHZ]

« This yields quantum algo to approximate partition function of edge
models in those couplings where the corresponding circuit is unitary

 Again: BQP-complete algorithms are obtained by producing universal
gate sefs. Example: Ising-type spin glass on 2D square lattice (with
complex temperature)

wor ] All pros and cons of quantum algo’s for vertex models are also present  rage s
here




3rd class of mappings:

One-way QC

I

Edge models (Ising, Potts...)




Mapping spin models to graph states

J Start with a graph G o 1+ o+
- Edge-qubits ®

—o
- Vertex-qubits * E

—

3

|

E

—9




Mapping spin models to graph states

< Start with a graph G ?
X

- Edge-qubits ® 5
- YV X
- Vertex-qubits ® » X
> 04

< 1 stabilizer operator per vertex:
’ 1
Vo= X@ [ x© E o
e.ace

3 3
—




Mapping edge models to graph states

< Start with a graph G l 4
- Edge-qubits ®
> X
- Vertex-qubits ® 3
—
< 1 stabilizer operator per vertex:
3
1:1:_1'(5!) H X(E) o
e.ace
3 , k)
- 1 stabilizer operator per edge:
—9

Ey= 7(a) 7{(ab) »(b)
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The mapping

J Ising model with external fields

U |a,) = ejJib’O} — E_j'“’rﬁ'f\l} Also: |ag) =€ ha0) 4 ¢ Fhal1)

3 Then: Zg x {9

\ | A
@ Qap) ® 1Cq)
i1

ab

- Partition function = overlap between [;;G} and product state

[nteraction Interaction

PATTERN STRENGTH
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Mapping edge models to graph states

.T.O...

- Start with a graph G

5
X 3
- Edge-qubits ® b k] }
- Vertex-qubits ® o 5 o
1 stabilizer operator per vertex:
3 D
Va — xfal H x(e) et e
e.ace
- 1 stabilizer operator per edge: » g
5 . A .

= 7(a) 7(ab) 7(b)
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The mapping

J Ising model with external fields

T . foy s o pOIC . 3h.. 2
0 |ay) =eMb|0) + e ab|1)  Also:  |ag) = e”M2|0) + e Oha|1)

-1 Then: Zg x (¢@

\ (A [~ )
® Qap/ ® 1)

ab a

- Partition function = overlap between |'1.:;ijr and product state

[nteraction Interaction
PATTERN STRENGTH
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Mapping edge models to graph states

1 Start with a graph G I G
X
- Edge-qubits ® i
- Y X X -»
- Vertex-qubits ® » X »
049
- 1 stabilizer operator per vertex:
b9
Vo= X [ x© bl d
e.ace
- 1 stabilizer operator per edge: ' ,
—9 9
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The mapping

J Ising model with external fields

T : 87T, 5 " \ 4 ~ — 1 |
d |e ‘:ei"ﬂ‘\O}—i—E 7ab|1)  Alse:  |ag) = a0y 4 ¢ Fha|q)

Tfj‘f.

- Then: Zc

> (9@

\ 5 \
® aﬂt’f ® Eaﬂf
i

ab

3 Partition function = overlap between  |¢z)  and product state

[nteraction [nteraction
PATTERN STRENGTH
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d 1D Ising model with open BCs - No field: product state

With field: 1D cluster state
—hr—r—r—

J 1D Ising model with periodic BCs === No field: GHZ state

With field: 1D ring cluster state

No field: toric code state
40047 j ZD ISII'I[_Z] II'IOdEI S— Page 57/65
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The mapping

J Ising model with external fields

\ | \ A . : | 2 A A I
U o) = P 10) +-e 'JJG':‘IJ Also:  |ag) = e7M|0) + ¢ OMa|1)

- Then: Zo x (¢

I|II (] 5\
X laqs) @) lea)
ab a

- Partition function = overlap between |;G: and product state

[nteraction Interaction
PATTERN STRENGTH

Page 58/65




J 1D Ising model with open BCs - No field: product state

With field: 1D cluster state
—hr—r—r—

J 1D Ising model with periodic BCs === No field: GHZ state

With field: 1D ring cluster state

No field: toric code state
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Simulable resources from solved models

- Mappings connect computational power of resource state with solvability of
corresponding spin model

- Solvable model (1D, 2D without field) gives rise to simulatable resource state:
e.g. planar code state, see Bravyi and Raussendorf,

- Intractable model probably/possibly gives rise to powerful resource state (e.g.
2D with field)
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Simulable resources from solved models

- Mappings connect computational power of resource state with solvability of
corresponding spin model

- Solvable model (1D, 2D without field) gives rise to simulatable resource state:
e.g. planar code state, see Bravyi and Raussendorf,

- Intractable model probably/possibly gives rise to powerful resource state (e.q.

2D with field)
Ising model Resource state
Without field: solvable 1D product state: simulatable (trivial)
With field: solvable 1D cluster state: simulatable
Without field: solvable D Planar code state: simulatable

With field: NP-hard 2D cluster state: UNIVERSAL
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The mapping

J Ising model with external fields

LE le) = ej‘fﬂ‘\O} + e b

!

- Then: Zc

X { 2a

\ | b
® Qap) ® |G )
i

ab

- Partition function = overlap between [;G: and product state

[nteraction I[nteraction
PATTERN STRENGTH

1) Also: faq)zejh*OH-e_ﬁh’l 1)
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d 1D Ising model with open BCs = No field: product state

With field: 1D cluster state
— r—r—r—

J 1D Ising model with periodic BCs === No field: GHZ state

/l/‘\\ With field: 1D ring cluster state

No field: toric code state
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Simulable resources from solved models

- Mappings connect computational power of resource state with solvability of
corresponding spin model

- Solvable model (1D, 2D without field) gives rise to simulatable resource state:
e.g. planar code state, see Bravyi and Raussendorf,

- Intractable model probably/possibly gives rise to powerful resource state (e.g.

2D with field)
Ising model Resource state
Without field: solvable 1D product state: simulatable (trivial)
With field: solvable 1D cluster state: simulatable
Without field: solvable ' Planar code state: simulatable

2D |
With field: NP-hard 2D cluster state: UNIVERSAL
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Conclusions and outlook

- Natural mappings between quantum computation (circuits, teleportation,
MQC) and classical statistical mechanics

1 Mappings are general but simple
J Solvable models lead to simulable quantum computers
- Easy way to get quantum algorithms

J Main challenges:
» Yang-Baxter equation
» Quantum algorithms in physical parameter regime
» Relation to existing quantum algo’s (Jones, Potis)

» Make up our minds whether it is "simulable”, “simulatable” or
something else....

40047 Page 65/65




