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Abstract: A fundamental theorem of quantum field theory states that the generating functionals of connected graphs and one-particle irreducible
graphs are related by Legendre transformation. An equivalent statement is that the tree level Feynman graphs yield the solution to the classical
equations of motion. Existing proofs of either fact are either lengthy or are short but less rigorous. Here we give a short transparent rigorous proof.
On the practical level, our methods could help make the calculation of Feynman graphs more efficient. On the conceptual level, our methods yield a
new, unifying view of the structure of perturbative quantum field theory, and they reveal the fundamental role played by the Euler characteristic of
graphs. Thisisjoint work with D.M. Jackson (UW) and A. Morales (MIT)
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Overview

Quantum Field Theary (QFT)

u QFT is generalization of QM: includes relativity and particle creation/annihilation processes.
L] Quantum Information to be generalized to QFT:  useful even for Quantum Gravity.

| Main sclution method for QFT: Feynman graphs.

New results

L Combinatorial proof of a key theorem on Feynman graphs.

| Reduction to a basic homological statement. This yields generalizations of the theorem.

New insights
[ | "Path integral of graphs” is mare robust ( thus more fundamental?) than "path integral of fields”.

= Beautiful and unifying duality of Feynman graphs and Feynman rules.
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Quantum Field Theory

5 There exit a dozen or so of species of fundamental particles in nature.

Examples:
k] Electrons, quarks, photons, neutrinos, Z particles ...
El Each has its own "wave function” &(x), g{x), A(x), ... (neglecting fermion and gauge issues)

In QFT, they are called fields.

O Interpretation, very roughly:

[ | Large fisld amplitude m=ans large probability amplitude for a particie.

{Caution: in relativistic case, antiparticles spoil that picture)
3 Fields are not normalized => one field can describe many particles.

= The norm can change => particle creation/annihilation processes.

= What is the dynamics of the fields?
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Quantum Field Theory
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Fields do not obey equations of maotion, but pursue, virtually, all evolutions.

This is the principle of 2" quantization.

| The probability amplitude for the fields to undergo a particular evolution is:
Probabilityamplitudefo,a.a § = NI @oi?- 5]

The action, S{®.q,A), is a scalar polynomial in ©.q.A.

= Normalization: N = "-elg[w'q“i' . Dg{f’D{jDA

| | Formal stationary phase analysis => evolutions near extremal action most likely.
| Thus, in limiting case:
O have approximately Schroedinger (or Dirac) evolution

O but with quantum fluctuations.
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Quantum Field Theory
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Fields do not ocbey eguations of maotion but pursue, virtually, all evolutions.

This is the principle of 2" quantization.

L ] The probability amplitude for the fields to undergo a particular evolution is:

Probabilityamplitude = N elﬂfgﬁ.q._{ ]

The action, S{®.g.A), is a scalar polynomial in ®.g.A. /’ "Path Integral”

E Normalization: N = I-elg[{ﬁ'q";" . Dng’DqDA

= Formal stationary phase analysis => evolutions near extremal action most likely.
] Thus, in imiting case:
O have approximately Schroedinger {(or Dirac) evolution

O but with quantum fluctuations.
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Quantum Field Theory

O Key predictions: correlation functions

n E.g., correlation of field amplitudes at two points x,x' in spacetime:

G (h(x).4(x')) = N ‘ é(x) §(x) e 1DgDgDA .

El Meaning (roughby}:

= Elevated field amplitudes {in wave packets) describe particles.

| | Thus, from this two-point correlation function for field amplitudes, the propagation of particles
between x and x' can be predicted.

O Mare generally:

* LX)

F )M ).gx")) = N f HMx)y KXY gt Xy VT DgDagDA.

| n-point functions describe the propagation and interaction of particles
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Aspects of quantum information

One can show (Feynman):
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n-point functions are generally nonzero almost ever

and even when the events x,x’,x"" etc are chosen to be at equal time.

Because of causality, this correlation is net due to propagation or interaction.

O This correlation is due to entanglement of the vacuum state.

More generally:
O Enlarge the n points X, x' . x".... o n finite-size regions of space.
O Consider the n regions of space as n systems (amplitudes are degrees of freedom).

O Even the ground state (vacuum) of the combined system is generally entangied.

Ramifications:
O Connection to Unruh and Hawking effects, and holography.

O Central to one of the greatest scientific ideas of past 50 vears, Cosmic inflation:

L Jrigin of all inhomogeneities is primaridal equal-time field quantum fluctuations

L] The entangimntggredicted nontrivial correlation functions are so far being confirmed by the

measursments of the cosmic microwave background.

here, even in vacuum
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Calculation of n-point functions

O
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An important special case:

Assume that the action, S, is an even polynomial in a field as, .g., in cosmic infiation.

Then, all odd n-partite vacuum sntanglement vanishes, e.g.:

(PX). PPN =N §(x) P(x") P(x) g4 1DgDgDd . = 0

i3}
7

MNote:

This prediction of "gaussian fluctuations” of cosmic inflation is currently under very close scrutiny
{also: recent confersnce at PI)

In gen=aral, howsever, the path integral is analytically ill defined!

Crucial trick (Schwinger, Feynman et al):
O Suitably pull fiald products in front of the path integral.
O Remaining path integral cancels normalization factor path integral, M.

O Price to pay: Evaluation of n-point function raquires Fevynman graphs.
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Calculation of n-point functions
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An important special case:

Assume that the action, S, is an even polynomial in a field as, .g., in cosmic infiation.
Then, all odd n-partite vacuum sntanglement vanishes, =.g.:

{3}
Er

(P(x).o(X' }-qb{x”_}}z_\"'lj- Hx) (X)) XY 11 DgDgDA . = 0

Note:
This prediction of "gaussian fluctuations” of cosmic inflation is currently under very close scrutiny
{also: recent confersnce at PI)

In general, however, the path integral is analytically ill defined!

— :H[-'.'.'.:[..L. 1 :
Crucial trick (Schwinger, Feynman et al): N = fE Dﬂ)qul

0 Suitably pull field products in front of the path integral.

O Remaining path integral cancels normalization factor path integral, M.

O Price to pay: Evaluation of n-paint function raquires Fevnman graphs .
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Towards Feynman graphs

O Example:

A single field action for an M-dimensional function space (i.e., use UV and IR cutoff):

- ==
:’JI[{..}] — : f___):.;i & ,_.}_ e

T =
l &y D
i o

a.be Tk e

a Following Schwinger, introduce an auxiliary field, and define Z[1]:

» . M
Z[-]] = ‘EF.S['_-']'FFE?_.‘.J: 1—_[1“745;”

R".‘
O Metice: This path integral is formally a Fourier transform !

= Defina: ”r[.]] = —{ ng{ Z[-JT] )

O The n-point functions are then:
{".".?? -5
+i 7 = T F - T
G a,.....a) =ZfOF () — — 2R s — ) — W], o
aJ_ ..aJ_ o, ..eJ,

Pirsa: 08040046 Page 11/30



Towards Feynman graphs

O Now we can pull the fields in front of the path integral.

3| -

e — _ |
Z[J] = ¥ T1dg,  with  S[gl=—0, b¢ + 1., 046

=1 : - - 3 4

|
i

R‘i
becomes:

I

:I —F *3 [;_‘, = r:u-_-; r: Jr,_’,- r:-'r.-_,- 2‘:?: = r"-'-r:' n_’ + i 'l'j";-" I
Z[J] = &? j e’ T1dé

i

O Complete squares, carry out "gaussian” integration =>

I p e = T = e
— =¥  F .5 Or B0 C —F Jf._f. e ;
L o B I I

ZrE — ' " e " xconsi

In the calculation of n-point functions, the constant drops out, as desired.

Pirsa: 08040046 Page 12/30



Towards Feynman graphs

O Now we can pull the fields in front of the path integral.
= . ,g[,.,l_._,u; -‘.f ; l = 1 :
ZIJ] = | 11dg,,  with  S[Pl=-0 ¢ ¢ + —1.,.0.44
- =1 ] Tt ; A 1! oL LO,C z o =
R” - =
becomes:
%I_F r:['J_‘,'.:r:.'_.;r:_f.'.r-_.._l"._’. _1“:_}; ':"}; i i ".']..v'r.. -
7l = &° S fer dg,
O Complete squares, carry out gaussian integration =>
%* = 3 F ks E'..'a f-:..’,. =43 _% 1}-1-'}?_.!.: "fi 7,
ZLI] =¢” " e - xconst

In the calculation of n-point functions, the constant drops out, as desired.
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Feynman graphs
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- -

i : S E
——#) P,y .07 €;6; —

O3 LT

I
ZIJ} = e* T et xconst.

Thus, defining these Feynman rules

L | edge = Il';_)f_l
i

ab.c

j | 3=-vertex

| | I-vertex

FJ_: {also called end-vertex)

we have: Z[]1]

generating functional of all Feynman graphs.
Therafare, from Z[1] = -i exp(W[]1]),

we have W[J] = generating functional of all connected Feynman graphs.
L This |s combinatorially sasy fo see.

] This general role of the logarithm is well known in combinatorics.
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Towards Feynman graphs

O Now we can pull the fields in front of the path integral.

|

ZLI) = [T [ldg ~ with SWl=~0, 44 +l,;

=1

R‘i
becomes:

I

_'—l —T [ e r:.-._; r: g r'_' ..'r\._- : :__:.-'; .r .'.'.l-__ + I {‘.'I‘_n.'r_ :
ZIJ] = & j e’ [1d¢

r i
i

O  Complete squares, carry out gaussian integration =>

i = = = r ==
—1 ,|'I:II v e B L ——f’l.l'r F

ZEE —e®* " eZ ™  ccond

D0 8.

In the calculation of n-point functions, the constant drops out, as desired.
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Feynman graphs
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I p g B e
— =)y P, . €r C;6; —

O ET,

I
Z = e e 2 xconst

Thus, defining these Feynman rules

L | edge = I Qr_L

I
L
—
L]

| | I=-vertex

| | I-vertex

3 .
- {also called end-vertex)

we have: Z[]1]

generating functional of all Feynman graphs.
Therafare, from Z[1] = -i exp(W[]1]),

we have W[J] = generating functional of all connected Feynman graphs.
L This Is combinatorially sasy to see.

[ ] This general role of the logarithm is well known in combinatorics.
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Feynman graphs:
iINn quantum and in classical theory

O Setup of quantum theory:

| ] Definition;

Problem S{®] —Fourier transform—> Quantum solution W{[J]

3 Theoram 1:
W[J] can be calculated through:
W[3] = Z (all connected raphs)

= Setup of classical theory:

L Definition:
Problem S[®] —Legendre transform—> Classical solution T[J]
= Thecram 2:

T[]] can be calculated through:

T[I] = = (all tree graphs)
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Feynman graphs:
iINn quantum and in classical theory

O Setup of quantum theory:

| ] Definition;

Problem S{®] —Fourier transform—> Quantum solution W{J]

] Theoram 1: (we just showed that)
W[J] can be calculated through

W[1] = Z(all connected raphs)

= Setup of classical theory:
E] Definition:

Problem S[®] ——Legendre transform-—-> Classical solution T[J]

= Theoram 2:
T[J] can be calculated through

T[J] = Z(all tree graphs)
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Feynman graphs:
IN quantum and in classical theory

= Setup of gquantum theory:

= Definition;

Problem S[{®] —Fourier transform—> Quantum solution W{[J]

- Theorsm 1:
W[J] can be calculated through

W[1] = Z(all connected raphs)

= Setup of classical theory:
Legendre T[] := S[®] - <],&> with dS/d® =
] Definition: It follows: & =-dT/d}, which is the classical aDHtljn

Problem S[®] -—Legendre transform-—-> Classical solution T[J]

= Theoram 2:
T[J] can be calculated through

T[J] = Z(all tree graphs)
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Feynman graphs:

IN quantum and in classical theory

= Setup of gquantum theory:

= Definition;

Problem S[®] —Fourier transform—> Quantum solution W{J]

L Theorsm 1:
W[J] can be calculated through

W[1] = Z(all connected raphs)

= Setup of classical theory:
k] Definition:

Problem S[®] —Legendre transform-—-> Classical solution T[J]

a Theorem 2: nontrivial — we'll revisit it here
T[]] can be calculated through

T[J] = = (all tree graphs)
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Significance of Theorem 2

O Define a new generating functional, I':

W[1] <---Legendre transform---> [[¢]

O Then, I'[¢] is a quantum effective action:

3 Solve problem given by Tclassically => obtain full gquantum solution W[J]
] Concrately:

O Read off new Feynman rules from I'. Then:

O W3] = E (all connected graphs of old F. rules} = Z (all trees of new F. rules)

] Important in QFT, =.g., for:
O Regularization and rencormalization

O Spontanecus symmetry breaking
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The effective action, concretely
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Recall:
WI[1] = = (all connected graphs of old F. rules} = I iall treses of new F. rules)
L Definition:
é&%aemcte irreducible graphs (1Pl graphs) = graphs that cannot be disconnected by cutting one

k] Observation:

Any connected graph is, uniguely, a tree whose vertices are maximal 1PI graphs.

L Conclusion:
O The new Feynman rules of I have 1PI graphs with n ends as n-vertices
O [ is the sum (i.e.. generating functional) of all 1PI graphs

= Practical significance:

O The 1PI graphs are building blocks for connected graphs.

O Once the 1PI are renormalized (hard in QFT), the connected graph is put back together without
further loops, i.e. without further renormalization.
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The effective action, concretely
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Recall:
W([1] = = (all connected graphs of old F. rules}) = Ziall tress of new F. rules)
L Definition:

é&particte irreducible graphs (1Pl graphs) = graphs that cannot be disconnected by cutting one
ge.

L Observation:

Any connected graph is, uniguely, a tree whose vertices are maximal 1PI graphs.

= Conclusion:
O The new Feynman rules of [ have 1PI graphs with n ends as n-vertices
O [ is the sum (i.e.. generating functional) of all 1PI graphs

] Practical significance:

= The 1 PI graphs are building blocks for connected graphs.

O Once the 1PI are renormalized (hard in QFT), the connected graph is put back together without
further loops, i.e without further renormatization.
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New results
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Recall theorem 2:

T[J] := L=gendre transform({S[®]) = = (all tres graphs)

We proved theorem 2, again. Why?

u Existing proofs un-necessarily use the Dyson Schwinger equations of motion, require tedious induction

{Jona Lasigno) or employ not quite rigorous limit taking (Weinberg).

Advantages of our proof:

| | Pursly combinatorial
L ] Mo analytic assumptions: S, T elements in ring of power series
a Short, transparent

Proof strategy:

| | Reduce Theorem 2 to the basic homological statement about the connectivity of tree graphs:
T = S-<Id> {Legendre transform)
I = VW-—-E { Euler characteristic)

L] To this end, we use this key observation:
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Ramifications

O Can now generalize theorem 2 for general Euler characteristic:

2-2g = V-E+F

= generalize decomposition of graphs into n-particle irreducible subgraphs
| of interest far practical calculations
O Can now generalize Legendre and Fourier transform for realistic S, T,Z W
= We showed that Theorem 2 holds even when Sand T, or I and W ars non-convergent power series

{as is generally the case, except perhaps S)

| Mew definition of the Legendre transform, without analytic assumptions:
O Consider power series R as an action, read off the Feynman rules.
a Define L (= |=sgendr={f} as the sum {genarsting functional ) of the == graphs.
O Motice: we also proved the involution property combinatorially.

| Similarly, define (exponentiated) Fourier transform through graphs:
(= Define F := Fourier{R) as the sum (generating functional) of all connected graphs.
O Conjecture: Feynman graph theorstcally defined Fourler tansform is also involutive
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Ramifications

O These algebraic Fourier and Legendre transforms (and sxponentiation) can raplacs the usual analytic
definitions.,
O In particular, there is a well-defined alternative to the ill-defined usual path integral:

e iSEok+i | o &

Z[J] =[e D¢

[ | It is merely the analytically-defined Fourier transform
| For realistic actions, it is ill defined in any case.
] But:

The path integral represents the principle that classical evolution is of extremal action while quantum
motion explares all evolutions.

O Does this principle have an alternative representation too? Yes.

[ | Evolution is given by the sum over all graphs:

| Classical: shortest path ([ which is always a tree)
O Quantum: all paths (including loops)

] A unified picture emerges for 1 and 27 quantization:

O The edge, i.=., the propagator is a sum of paths of 17 quantization.
O Thus, evelution is sum over all paths, including graphs.
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Outlook

O Recall:

] Legendre transform is involutive. Thus, duality:
O Problem S ---Legendre transform---> Solution T
O “Problem” T -——Legendre transform-—> “Solution” S

] In terms of graphs:
O T = IZ {all trees of F. rules of S)
O S =T (all trees of F. rules of T)
O Thus: sum of trees of trees = sum of Feynman rules !

a Conjecturs: Similar duality should sxist for Fourier transform.

{not shown algebraically yet):

B Sum of all connected Feynman graphs from sum of all Feynman graphs = sum of Feynman rules
= Questions:
L ] How general is this duality phenomenon in graph theory, beyvond Feynman graphs?

] Does this duality of "Problem” versus "Solution” possess a physical interpretation?
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New results
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Recall theorem 2:

T[J] := L=gendre transform(S[®]) = I (all tres graphs)

We proved theorem 2, again. Why?

= Existing proofs un-necessarily use the Dyson Schwinger equations of motion, require tedious induction

{Jona Lasigno) or employ not quite rigorous limit taking (Weinberg).

Advantages of our proof:

| | Purely combinatorial
] Mo analytic assumptions: S, T elements in ring of power series
[ ] Short, transparent

Proof strategy:

| Reduce Theorem 2 to the basic homological statement about the connectivity of tree graphs:
T = 5-<]d> {Legendre transform)
1 = V-E { Euler characteristic)

| To this end, we use this key observation:
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Ramifications

O Can now generalize theorem 2 for general Euler characteristic:

2-2g = V-E+F

a generalize decomposition of graphs into n-particle irreducible subgraphs
L ] of interest far practical calculations
O Can now generalize Legendre and Fourier transform for realistic S,T,Z WI
= We showed that Theorem 2 holds even when Sand T, or I and W ars non-convergent power series

{as is generally the case, except perhaps S)

[ | Mew definition of the Legendre transform, without analytic assumptions:
O Consider power series R as an action, read off the Feynman rules.
3 Define L (= |l=gendr=i{R} as the sum {genarating functional ) of the == graphs.
O Hotice: we also proved the Involuton property combinatorially.

| | Similarly, define (exponentiated) Fourier transform through graphs:
(= Define F := Fourier{R) as the sum (generating functional) of all connected graphs.
O Conjecture: Feynman graph theorstically defined Fourler ransform is also involutive
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