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Abstract: The problem of time is studied in a toy model for quantum gravity: Barbour and Bertotti\'s timeless formulation of non-relativistic
mechanics. We quantize this timeless theory using path integrals and compare it to the path integral quantization of parameterized Newtonian
mechanics, which contains absolute time. In general, we find that the solutions to the timeless theory are energy eigenstates, as predicted by the
usual canonical quantization. Nevertheless, the path integral formalism brings new insight as it allows us to precisely determine the difference
between the theory with and without time. This difference is found to lie in the form of the constraints imposed on the gauge fixing functions by the
boundary conditions. In the stationary phase approximation, the constraints of both theories are equivalent. This suggests that a notion of time can
emerge in systems for which the stationary phase approximation is either good or exact. As there are many similarities between this model of
classical mechanics and general relativity, these results could provide insight to how time might be emergent in atheory of quantum gravity.
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Mativation /Qutline
: - The If’rnbiem of Time

The Problem of Time

In General Relativity:
Wheeler-DeWitt equation

@ [he Hamiltonian constraint implies the W
(1)

HGR W) = 0.
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Mativation /Qutline

Lo

The Problem of Time

@ [he Hamiltonian constraint implies the Wheeler-DeWitt equation

H(;R- ¥ = 0. (1)

i

@ Solutions are energy eigenstat
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Motivation /Outline

The Problem of Time

In General Relativity:

@ [he Hamiltonian constraint implies the Wheeler-DeWitt equation

Her (W) = 0. (1)

@ Solutions are energy eigenstates.

@ Hggr contains no =
@ .. |W) is frozen in time.
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Mativation /Qutline

blem of Time

The Problem of Time

@ [he Hamiltonian constraint implies the Wheeler-DeWitt equation

HQR ¥ = 0. (1)

@ Solutions are energy eigenstates.
e Hcp contains no 5.
e W) is frozen in time.

In Jacobi-Barbour-Bertotti (JBB) theory:

@ [he Hamiltonian constraint implies the time independent SE.

HJBE WY —0, (2)
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Motivation /QOutline

The Problem of Time

In General Relativity:

@ [he Hamiltonian constraint implies the Wheeler-DeWitt equation

HGR ¥ = 0. (1)

@ Solutions are energy eigenstates.

@ Hggr contains no =

- = W) Is frozen in time.

In Jacobi-Barbour-Bertotti (JBB) theory:

@ [he Hamiltonian constraint implies the time independent SE.

HJBB )y =0, (2)

@ Solutions are energy eigenstates,
_ = J
@ Hjgp contains no =
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Mativation /Outline

The Basic ldea

JBB is a toy model for quantum gravity.
Path integral brings new insight over canonical quantization.

Sketch: compare JBB (no time) to Parameterized Newtonian
Mechanics (PNM) (absolute time)
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Mativation /Qutliine

The E’rubiem of Time

The Problem of Time

@ [he Hamiltonian constraint implies the Wheeler-DeWitt equation

H(;R ) = 0. (1)

@ Solutions are energy eigenstates.
@ Hggr contains no =.
@ -. W) is frozen in time.

In Jacobi-Barbour-Bertotti (JBB) theory:

@ [he Hamiltonian constraint implies the time independent SE.

@ Solutions are energy eigenstates,

H tai %
@ Hjpgp contains no ;..
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Motivation /Qutline

The Basic ldea

JBB is a toy model for quantum gravity.
Path integral brings new insight over canonical quantization.

Sketch: compare JBB (no time) to Parameterized Newtonian
Mechanics (PNM) (absolute time)
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Maotivation /Outline

The Basic Idea

JBB is a toy model for quantum gravity.
Path integral brings new insight over canonical quantization.

Sketch: compare JBB (no time) to Parameterized Newtonian
Mechanics (PNM) (absolute time)

JBB vs PNM

Classical JBB | <= Path Integral = | Quantum JBB
| | | 2]l?
Classical 755 =777 = | ? Quantum Tgg ?
I ?]l?
Classical PNM | <= Path Integral = Quantum PNM

. .khere is a valid 7gg but only in the stationary phase
approximation.
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The Basic Idea

JBB is a toy model for quantum gravity.
Path integral brings new insight over canonical quantization.

Sketch: compare JBB (no time) to Parameterized Newtonian
Mechanics (PNM) (absolute time)

JBB vs PNM

Classical JBB | <= Path Integral = | Quantum JBB
) | 211?
Classical Tgp &= = ? Quantum 7gg ?

7]17?
Classical PNM | <= Path Integral =

Quantum PNM

. .khere is a valid 7gg but only in the stationary phase
approximation.
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Mativation /OQutline

€ Motivation 'Outline
@ [he Problem of Time
@ [he Basic ldea
@ Qutline
© Classical Treatment
@ Jacobi-Barbour-Bertotti Theory
@ Parameterized Newtonian Mechanics (PNM)
9 Path Integral Quantization
@ Preparation for Quantization
@ Parameterized Newtonian Mechanics
@ Jacobi-Barbour-Bertotti Theory
@ The Emergence of Time
@ |Implementing the Boundary Conditions
@ Difficulties
@ Emerging Time
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Motivation /Qutline

The Basic Idea

JBB is a toy model for quantum gravity.
Path integral brings new insight over canonical quantization.

Sketch: compare JBB (no time) to Parameterized Newtonian
Mechanics (PNM) (absolute time)
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JBB vs PNM

Classical JBB | < Path Integral = | Quantum JBB
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Classical Treatment

JBB

Lagrangian Formulation of JBB (timeless)

- = ([ dg
SiBB = / d\ 2/ (T(ANNE — V(9)); ' —
J Ao

(&)  ©
\

Note: Product of _'s = reparameterization invariance. Depends on image g;(\).

1"

N | =
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Classical Treatment

JBB

Lagrangian Formulation of JBB (timeless)

-

B f 1 Ff =% ) d_ ! \
SJEBZ/ dA  2/(T(A))(E — V(9)): T = m(d—f] (3)

J Ao \ ;

N | =

[

Note: Product of ‘s = reparameterization invariance. Depends on image g;(A).

{

Equations of Motion

1E—V-Cf J\,E—V CIIC,T;'_ ”V_,r
T d'\( )_

(4)

T m dA o !
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Classical Treatment

JBB

Lagrangian Formulation of JBB (timeless)

e _ 1 ( da\ 2
'S,-'E'E = / dA 2*.,_- \ Ti EEJI{E — Vla]‘* F == ;m ( —qJ 13}

4 Ag

}

Note: Product of  -'s = reparameterization invariance. Depends on image g;(A).

Equations of Motion

1E—.V/Cf "\,E—V dC}'f‘ B AV
ax | =

gy (4)

JT T dA ik

"

With the definition
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Classical Treatment

JBB

Lagrangian Formulation of JBB (timeless)

-
=

M| =

.S__r'EE = / dA 2\,_- ( T i\}}{E — V[a}r T =

< Ag

Note: Product of _'s = reparameterization invariance. Depends on image g;(A).

L

Equations of Motion

 ps——— m I
. d)\

vE—V d (VE—-V dq‘r' av -
d"\( )

— B i (4)

g

\*

With the definition

| d7gp
d\ VE=V" |
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Classical Treatment

JBB

Lagrangian Formulation of JBB (timeless)

-

=N =

1 dqg’
5;{55: / dA Zx (T( U}{E_V{q]}: T:_m(—{?) ":3}
Jrg 2 \d\,

}

Note: Product of _'s = reparameterization invariance. Depends on image g;(A).

L

Equations of Motion

With the definition

dipg _ VT ‘
dA vE-V'|
we get Newton's laws
d? 8V = .
m ? _ — ._-'Ei"r, {j}
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C.]EISSI'EEi Trez'.;ment IBB

Intuition From Classical Theory

A ST
r VT
o / M\ (6)
J Ag

\':E— V

is the gauge invariant Barbour-Bertotti time.
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(.:.]HEI‘{:E‘ Trez';ment IBB

Intuition From Classical Theory

",\f-' & o
=
TBB = / - dA (6)
I

vE—V

is the gauge invariant Barbour-Bertotti time.

@ Fixed E + classical EOMs = unique 5.
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C.Iassi cal Trgz'lfment IBB

Intuition From Classical Theory

ke T
f VT
TBB = / _ dA (6)

Jr, VE—V

is the gauge invariant Barbour-Bertotti time.

@ Fixed E + classical EOMs = unigue 5.

Pirsa: 08040038 Page 25/145



Classical Treatment

JBB

Lagrangian Formulation of JBB (timeless)

-

- s 1 aq o
SJ,..E.BZP/\G d\ 2 (T(AMNE — V(q)): Tzim(IJ (3)

Note: Product of s = reparameterization invariance. Depends on im

i)

(4[]
]

L1
o

Equations of Motion

1E—VCI'I J\,E—V {J'C}'f' oV - g
= | g ey (4)
¥ d& v dl"a y f_-’qjl
With the definition
digg _ VT |
dA vVE—V' |
we get Newton's laws
rjl i :!V
Mo = =] (5)

Pirsa: 08040038 d _éB l,'_ } C:IJI Page 26/145



(.:.]ESSI‘ cal Trea'%ment BB

Intuition From Classical Theory

N T
=
TBB = / - dA (6)

J Ag \E_V

is the gauge invariant Barbour-Bertotti time.

@ Fixed E + classical EOMs = unique 5.

@ Fixed E + arbitrary history = any mg5.
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C-]assi cal TTEE‘FmEI‘It IBB

Intuition From Classical Theory

A T
-
TBB = / _ dA (6)

I X vE —V

is the gauge invariant Barbour-Bertotti time.

@ Fixed E + classical EOMs = unique 5.

@ Fixed E + arbitrary history = any mgp.
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(.:.]assi cal Traz'.;ment IBB

Intuition From Classical Theory

~Af
v T
T — d,\ 6
°° AﬂaE—v o

is the gauge invariant Barbour-Bertotti time.

@ Fixed E + classical EOMs = unique 5.
@ Fixed E + arbitrary history = any 7.

@ Path integral sums over all histories.
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C.]ass:' cal Trgz'lfnjent IBB

Intuition From Classical Theory

N T
=
TBB = / - dA (6)

J Xo vE—V

Is the gauge invariant Barbour-Bertotti time.

@ Fixed E + classical EOMs = unique 5.
@ Fixed E + arbitrary history = any 7g5.
@ Path integral sums over all histories.

@ .. the path integral will “average’ over all possible 755.
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The reparameteri

Pirsa: 08040038

ion invariance implies

ot

Hamiltonian constraint:
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Classical Treatment

Hamiltonian Formulation of JBB

straint:

The reparameterization invariance implies a Hamiltonian constra

'_II, ."..! - 1 1|. '. ,"\.I = ,E - _} (7

Hamiltonian Equations of Motion

g =1{q" . Hr! = N(A }JD‘: n? (H1.J)

m
: . . .\ OV
Pi — 1 Pi- HT g _Nl: ,\ ] P
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Classical Treatment

Hamiltonian Formulation of JBB

The reparameterization invariance implies 3 Hamiltonian constraint:

;I'i"'x':—z;—\.-{fw—E:‘} (7)
2m
Hamiltonian Equations of Motion
g =1{q.Hy} = N(A)—n* (H1.1)
m

{pi-Hr=—N(A)5

L

Notice that fixing a gauge means choosing some N(A).
Example: N(A\)=1 = N

wton's laws ( Newtonian gauge).

(T

This implies the gauge fixing functions:

o i . mp-q . PO
G(AN)=flg.pi.\) ——— =0. (8)
e Page 33/145
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Classical Treatment

dg; dag; d\

at dA g’

We define the affine parameter \ and replace
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dg; dqg; d\
at s

We define the affine parameter \ and replace
This extends the configuration space {g;} — {Gi.q; |-
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Classical Treatment
= ' PNM

Lagrangian Formulation of PNM (absolute Time)

We define the affine parameter \ and replace
This extends the configuration space {g;} — {Gi.q; |-
The Newtonian action becomes:

s A T()\ e ,.
Senm(q’.q°) = 1 dA {..{J).—amvwm) (9)

Pirsa: 08040038
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We define the affine parameter A and replace ZF — 752

I —

This extends the configuration space {g;} — {Gi.q; |-

The Newtonian action becomes:

sonm(a’ @) = [ dA {T{‘” —POVE )| (9
= PV
] AR ,
-1q.:,.5 =0 = ffg = \ E_V (10)
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We define the affine parameter A\ and replace
This extends the configuration space {g;} — {Gi.q; |-

The Newtonian action becomes:

, g T() . .
Senm(q'.¢") = [ A H \).—a“(f\)vwm)} (9)

Equations of Motion

0pS=0 = &=\~ (10)

< 1 d (1 ,- aVv .
0 _.S = =3 - ( md' ) =S — ”n’j_ (}.l)
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Setting ty = g° gives Newton's laws.




Classical Treatment

PNM vs JBB

T 1 d {1 & oV .

Similarities:

@ Def ns of time are mathematically identical.

irsa: 08040038 Page 39/145



dq;

We define the affine parameter \ and replace =~ 5 dc-
This extends the configuration space {g;} — {G;.q; |-
The Newtonian action becomes:

= = "Af T(\ | o
Senm(a’.q%) = [ da H ). —qﬁ‘*(z\)V(qu))J (9)
" ,\!] q (‘\)
3
- L . i]. . ’
-1q-:5 0 = g = \ E_ Vv (10)
; 1L d (L .. B oV ..
0S=0 = Y ( g mq ) = 99 7. (11)

0

Setting tny = g~ gives Newton's laws.






Classical Treatment

PNM vs JBB

T 1 d 41 3 aVv -
P =/ — T8g); 7 )=—""nf (12

Similarities:

@ Def ns of time are mathematically identical.
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Classical Treatment

PNM vs JBB

[ T | I S G | . aVvV -

Similarities:

@ Def ns of time are mathematically identical.
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: _ i § 1 d 1 -,r'. oV T
g = \ (= 788B):; ( mq ) ==ri)® 1\

E—V g% dA \ §°
Similarities:
@ Def ns of time are mathematically identical.

@ Combining the EOM's for PNM gives the EOM's for JBB.
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s T 1d (1 .\ 8V,
qU = \ (: *'_BB): ( mq ) = — > .jr"r-" (12)

E—V g% dA \ §°
Similarities:
@ Def ns of time are mathematically identical.

@ Combining the EOM's for PNM gives the EOM's for JBB.

@ Routhian procedure connects them.
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. [T L@ Y _.; vV .
qﬂ:\; (= 78B): ( mq):—,; -’ (12)

E—V g% dA \ §°
Similarities:
@ Def ns of time are mathematically identical.

@ Combining the EOM's for PNM gives the EOM's for JBB.

@ Routhian procedure connects them.

Differences:

o In PNM, ¢° is derived from EOM'’s but in JBB 75 is a def'n.
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. [T 1 d 1 .5 vV .
C,IO: \ (= 78B); ( WQ):—_:_ -n? (12)

E—V g% dA \ §°
Similarities:
@ Def ns of time are mathematically identical.

@ Combining the EOM's for PNM gives the EOM's for JBB.

@ Routhian procedure connects them.

Differences:

o In PNM, ¢° is derived from EOM'’s but in JBB 75 is a def'n.
@ PNM: t is a free parameter. E is determined by the EOM's.

irsa: 08040038

@ IBB: E is a free parameter. 7gpg is determined by a def'n.

Page 47/145



The reparameterization invariance implies a Hamiltonian constraint:

(-
(W]

(A = PU + V(\)+pg =0
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The reparameterization invariance implies a Hamiltonian constraint:

HA) = 4+ Vi \) + po = ) {13)

Hamiltonian Equations of Motion

g ={q'.Hy! = N(\) i n’ (HL.PNM)
m

q” ==3 L?I:J. Hr !l = N(A)

pi = 1pi-Hr} = —N(A) r_'rdq" (H2Z.PNM)

o = |po- Hr} =0.

The pg eg'n implies conservation of energy.

Pirsa: 08040038
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The reparameterization invariance implies a Hamiltonian constraint:

Hamiitonian Equations of Motion

g =1q.Hr} = N\ 2y (H1.PNM)

_ m
g =1{q .Hr! = N()\)
_-_-J‘ '||,I'§

-

po =1{po. Hr} =0.

The pg eg'n implies conservation of energy.

Fixing a gauge means choosing some N(A). This is like picking a time
Zauge.

This implies the gauge Tixing functions:
= = =

U(A)=F(q.pi.A)— g (A)=0. (14)
Pirsa: 08040038
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Preparation for Quantization
Path Integral Quantization PNM

JBB as a (0 + 1) Field Theory

H acting on a Configuration Space point returns a physically
distinguishable point.

i(Ag) = e=MHO0) gi(\g)eMH(Ro). (15)

This is sometimes discussed in the context of canonical
quantization in GR. [Kuchar, '92]
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) ) Preparation for Quantization
Path Integral Quantization PMNM

Why the Phase Space Path Integral?

@ We could write a non-gauge theory with a CS path integral.
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Preparation for Quantization
Path Integral Quantization PMNM

Why the Phase Space Path Integral?

@ We could write a non-gauge theory with a CS path integral.

@ CS path integral = unknown measure 717

Pirsa: 08040038 Page 53/145



Preparation for Quantization
Path Integral Quantization =Y

—_

Why the Phase Space Path Integral?

@ We could write a non-gauge theory with a CS path integral.
@ CS path integral = unknown measure ?!7

@ Infinitesimal kernel ~ canonical quantization.

@ /s make CS difficult to evaluate.

\
@ Measure turns out to be non-trivial.
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Preparation for Quantization
Path Integral Quantization =Y

Why the Phase Space Path Integral?

@ We could write a non-gauge theory with a CS path integral.
@ CS path integral = unknown measure 717

@ Infinitesimal kernel ~ canonical quantization.

/s make C5 difficult to evaluate.

Measure turns out to be non-trivial.

@ PS path integral allows a comparison between JBB and

PNM!!
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The Phase Space path integral for gauge theories is defined as:
[Faddeev-Popov, '67-'69]

' ety | oy ey, e TYAD 10 + 1
KDpM | g . g == / L'q LD~ L7C LW L{ s
s . | T % ', = T F T YT i Wl 1 - % i % o
<exp | i [ dXN (pad@” — Holg - pa) = N(MH(G . pa) — E(N)G(q .px))| . (16)
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Path Integral Quantization e

i,

Phase Space Path Integral for PNM

The Phase Space path integral for gauge theories is defined as:
[Faddeev-Popov, '67-'69]

- N w i T ) U | - - t —
. . I YTARL Y, | \ " 1 .
2 p : I" g\ -'.'T'-'- i — L .-1 G . ."::-_-l. — ¥ ) ;r_:.- \ J - ,’r-:ll_'l | LL ATl Al j - .l-:ln_'l ] |} - \ 10

Recall for PNM:

Kk PR B - | -
HC =S+ pf +VH =0 Gk = fu(gi- p[) — 4k = 0. (17)
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Path Integral Quantization PMM -

Phase Space Path Integral for PNM

The Phase Space path integral for gauge theories is defined as:
|[Faddeev-Popov, '67-'69]

Faddeev-Popov Determinant (Cross Terms)

[FPlpnm = {fM(Qi.{-P;{)- Pi + VN} - (18)

2m

“PRis is easiest to work out explicitly in specific gauges. Page soies
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Path Integral Quantization

Newtonian Gauge in PNM

Fix fx to some constants on phase space. Then [FP]pym = 1.
Call these constants the \ derivative of some function t: fx = tx.

Then the kernel vou obtain is:

Kernel for PNM in Newtonian gauge

< dp® d35y AdodNo s+ dpX d3Bk AAkdNKk o 5. .
kpnm = / ,)p_ﬂ ,);_j{} - I ;_G ,E - ——dqy d7Gx 5(q) — ty)
R 270 T 2 Jk I{{:l il 2 il il

N—1 2 \
’ exp{{z&/\; {quj — N, (i;pévjﬂ} (19)
J=0 N /-

This agrees with a result from Hartle and Kuchat ('34).
"*TE°s just standard non-relativistic quantum mechanics!
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Path Integral Quantization

Newtonian Gauge in PNM

Fix fx to some constants on phase space. Then [FP]pym = 1.
Call these constants the \ derivative of some function t: fx = tx.

Then the kernel you obtain is:

Kernel for PNM in Newtonian gauge

> dp @By AdodNo v dpl B ANkdNk . 0 53— -, o
e :/ R ﬁ e 3w 2n Y9k Gk (@ —b)
w —'_‘\_ -":l

N—1 - > -
; exp{{z&/\; {quj — N, (f—;—pd - VJ)‘ } (19)
J=0 N :

This agrees with a result from Hartle and Kuchar ('34).
"PTE°s just standard non-relativistic quantum mechanics!
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Path Integral Quantization F’N-f;lg ==

Phase Space Path Integral for PNM

The Phase Space path integral for gauge theories is defined as:
[Faddeev-Popov, '67-'69]

kpymlg —.g 7)) = / Dqg™ DPp, DPEDN |{H.G}
e : ¥ R a i F ~pp N \ TR T 1 16
< exp | i [ d\ (Pag@ — Helg .pa) —N(AYH(G .pa) — EANG(g .pa))| - (16

Recall for PNM:

| 5% B | | -
H = K 4 pf +VF =0; Gk =fi(qk-p*) — Gk = 0. (17)

[FPlenm = '{fM(Qi{'PF{)' Pu + VN} - (18)

Pirsa
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Path Integral Quantization

Newtonian Gauge in PNM

Fix fx to some constants on phase space. Then [FP]pym = 1.
Call these constants the \ derivative of some function t: fx = tx.

Then the kernel you obtain is:

Kernel for PNM in Newtonian gauge

" 0 B35y AdodNo x dpf 3Bk AAkdNk o 4. .-
e :/ 5 I o5 g dak d ik i(d) — t)
J—oc K=1

N—1 = \
< exp {f > AN {piaf —N; (% +pg + V’ )l } - (19)

J=0

This agrees with a result from Hartle and Kuchar ('34).
TS just standard non-relativistic quantum mechanics!
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Path Integral Quantization PNM

Phase Space Path Integral for PNM

The Phase Space path integral for gauge theories is defined as:
[Faddeev-Popov, '67-'69]

| . k. B} | | -
HN =K +pf +VE =0, Gk =fxl(gk.pP[')— gk =0. (17)

Faddeev-Popov Determinant (Cross Terms)

[FPlenm = '{fM(Qif~P;{)- % + VN} - (18)

*PRis is easiest to work out explicitly in specific gauges. Page ST
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Path Integral Quantization

Newtonian Gauge in PNM

Fix fx to some constants on phase space. Then [FP]pyy = 1.
Call these constants the \ derivative of some function t: fx = tx.

Then the kernel you obtain is:

Kernel for PNM in Newtonian gauge

"l 3By AdodNo x~ dpf d3Bx ANk dNk .
o = | RSP 200 [T A P SO g 0 G () — 1)
2= K=1

N—1 - 2 L=
y exp{{z&/h {quj — N, (mp,jvj)‘} (19)

2m
=0

This agrees with a result from Hartle and Kuchat ('34).
"PTE°s just standard non-relativistic quantum mechanics!
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Path Integral Quantization

Energy Eigenstates in PNM

Rewrite the action by:
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Path Integral Quantization

Energy Eigenstates in PNM

Rewrite the action by:

@ integrating over the Dqg° and the Dpq,
- = P
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Path Integral Quantization

Newtonian Gauge in PNM

Fix fx to some constants on phase space. Then [FP]lpym = 1.
Call these constants the \ derivative of some function t: fx = tx.

Then the kernel you obtain is:

Kernel for PNM in Newtonian gauge

" 0 BBy AdodNo x dpf 3Bk AAkdNk o 4. .
ko = [ PP 2020 TT 0 & P 2O da i 2(ad — 1)
J—ac K=1

N—1 2 1
, exp{{z&/\; {qu_; == (mpdV“f)‘}, (19)

2m
J=0

This agrees with a result from Hartle and Kuchat ('34).
"PTE°s just standard non-relativistic quantum mechanics!

Page 71/145



Path Integral Quantization PNM

- -

—_

Energy Eigenstates in PNM

Rewrite the action by:

@ integrating over the Dg® and the Dpq,
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Path Integral Quantization

Newtonian Gauge in PNM

Fix fx to some constants on phase space. Then [FP]lpym = 1.
Call these constants the \ derivative of some function t: fx = tx.

Then the kernel you obtain is:

Kernel for PNM in Newtonian gauge

" 0 BBy AdodNo x dpf 3Bk AAkdNk o 4. .-
Kpnm = / ;} zfﬁ 2“_ H ;j 2’2 = dcff{ dﬂi?f{ "'(qg —t3)
J—ac K=1

N—1
< exp {;Z A

J=0 L

Frsna pr J i
pPad; — Ny (%—P{} +V )” (19)

This agrees with a result from Hartle and Kuchat ('34).
"*TE°S just standard non-relativistic quantum mechanics!
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Path Integral Quantization P hvul'l

—

Energy Eigenstates in PNM

Rewrite the action by:

© integrating over the Dg° and the Dpq,
@ calling p; = —E, and
© applying the boundary conditions.
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Path Integral Quantization P l;'l

—

Energy Eigenstates in PNM

ewrite the action by:

© integrating over the Dg” and the Dpg,
@ calling p; = —E, and

© applying the boundary conditions.
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Path Integral Quantization

Energy Eigenstates in PNM

Rewrite the action by:

@ integrating over the Dg° and the Dpq,
@ calling py = —E, and
© applying the boundary conditions.

|r|'1-l

kenm (9. 4"*) = kenm(G”-G'.7) = | — e kpnm(G”-

where kpym (the kernel for energy eigenstates!!) is
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Path Integral Quantization P ';‘

—

Energy Eigenstates in PNM

Rewrite the action by:
© integrating over the Dg” and the Dpy,
@ calling p; = —E, and

© applying the boundary conditions.

" dE

¥ e —JF —7 I-'E-_-— 3 r—+JF —F
kenm(q .7 ) =kenm(q -G .7)= [ 5—e kenm(q -G -.E)
| (20)
where kpyy (the kernel for energy eigenstates!!) is
o (@77 E) = ||"_ f ._‘-L'-.._:-“f'r_. ﬁ" :::- ._*.::‘“.'— im -:":'_ (FPlonn
;_-L! i_f}-' F? q; —N f.j—_—c—lr — £ 'fJ_*“'J_] 1
L =0 L \ = 1)
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Path Integral Quantization

Newtonian Gauge in PNM

Fix fx to some constants on phase space. Then [FP]pym = 1.
Call these constants the \ derivative of some function t: fx = tx.

Then the kernel you obtain is:

Kernel for PNM in Newtonian gauge

> dpd d3By AdodNo 1+ dpt d3Bx AdkdNKk . o 5. -
e :/ 2T 250 — 11 2,::2 2£ 29k 4Gk d(a) — t)
B K=1

=

N—1
< exp {;Z A

J=0 -

s pr J X
Poq; — NJ (%—pq +V )‘} (19)

This agrees with a result from Hartle and Kuchat ('84).
"*TE°s just standard non-relativistic quantum mechanics!
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Path Integral Quantization = l;d

e

Energy Eigenstates in PNM

Rewrite the action by:

@ integrating over the Dg® and the Dpq,
@ calling p; = —E, and
© applying the boundary conditions.

o —F

kenm(9".q") = kenm(q”. G . 7) = [ —— ™" kenm(G"

where kpyp (the kernel for energy eigenstates!!) is
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Path Integral Quantization

Newtonian Gauge in PNM

Fix fx to some constants on phase space. Then [FP]pym = 1.
Call these constants the \ derivative of some function t: fx = tx.

Then the kernel you obtain is:

Kernel for PNM in Newtonian gauge

2 dpd d®py AdodNo Y+ dpE d3Bx AdkdNk , o 3. - _
e :/ 2T zf} — 11 2;::; zi 7 daK Tk 3(d) — )
S —c K=1

-

N—1 —~D \
, exp{{z&/\; ijq_; — N, (f—;—pd - V‘xﬂ } (19)

J=0 -

This agrees with a result from Hartle and Kuchar ('34).
"*TE°s just standard non-relativistic quantum mechanics!
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Path Integral Quantization

Energy Eigenstates in PNM

Rewrite the action by:

© integrating over the Dg° and the Dpy,
@ calling p; = —E, and
© applying the boundary conditions.

o — I

kenm(q . g ) =kenm(g".¢'.7) = | — eE™ kpnm(§”. G’ E)

where kpym (the kernel for energy eigenstates!!) is
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Path Integral Quantization = f;l

Energy Eigenstates in PNM

Rewrite the action by:
© integrating over the Dg” and the Dpyg,

@ calling ,D — —E, and
© applying the boundary conditions.

I fim —2ff  —s 7 i . dE -'E-— =y o FF  —af
kenm(q .7 ) =kenm(q -G .7)= [ 5—€e kenm(q -G -E)
| (20)
where kpyp (the kernel for energy eigenstates!!) is
kopm(3”. 3. E) = JI"_ ) f “\‘_d“ ﬁ :_ = 1:”'# dax 'J:-_. [FPlpnm
_L! i_,l F_ gy — Ny ;—E—u — T'J—?‘-I_I_]I, 21
|\ J=o L b 5 Page 82/145
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Path Integral Quantization

Boundary Conditions for PNM

The BC's impose a constraint on the functions k.
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Path Integral Quantization

Boundary Conditions for PNM

The BC's impose a constraint on the functions k.

Recall that:
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Path Integral Quantization

Boundary Conditions for PNM

The BC's impose a constraint on the functions k.

Recall that:
Gk = fx(ak-pP) — gk = 0. (22)
But the BC's require,
N—1
> =g g =7 (23)
K=0
N—1
i =m (24)

J=0
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Path Integral Quantization

Boundary Conditions for PNM

The BC's impose a constraint on the functions k.

Recall that:
Gk = fx(ak-pi') — ax = 0. (22)
But the BC's require,
N—1
> =gy = (23)
K=0

N—1
Y Bew (24)
J=0

This constraint allows for an integration over dg® and d&°.
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Path Integral Quantization

Boundary Conditions for PNM

The BC's impose a constraint on the functions k.

Recall that:
Gk = fx(ak-pi') — ax = 0. (22)
But the BC's require,
N—1
Y P=q"-q¢°=~ (23)
K=0

N—1
¥ Be=w (24)
J=0

This constraint allows for an integration over dg® and d&°.

T he analogous constraint in JBB theory is at the heart of issue

Pirsa: 08040038 Page 87/145

with timel



Path Integral Quantization

The Kernel for JBB
Recall for PNM:

A Dy 24 - - ¥ i K !
H = X _E+ Vv* =0; Uk =Tk(gk-pi ) — 5
2m Pk
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Path Integral Quantization

The Kernel for JBB
Recall for PNM:

Pk

HK = 2K _FLvK =0 G =f(gk.pf) - ——==0. (25)
2m Pi
Faddeev-Popov Determinant
. e B
| mppm - qM Py |
[FPliee = i M — . L+ VN (26)
P 2m !
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Path Integral Quantization

The Kernel for JBB
Recall for PNM:

.f,_[,ﬂ» _ f_g _Eu V.'*_" b - ::;.;;{G;;q;- p:'.-._ e :’T?Pg;ﬁ. gK & {25)
2m Pi
Faddeev-Popov Determinant
| mpm - Gum B |
' N | N \ | '
[FP]ig = ‘ Fag — : + V7 3. (26)

pif 2m

Then

g a gy [T 4B AdedNo N1 B35, Ak dNk 3 dEK
<iBelg -q - }—-/ S R 1 o i P

o — N0 -

5 [FPliBB

K=1

N—1 [ — \ e e T
: = ] m " :
cexpd i S AN By g - Ny (2L —E+ v*') - w) L (@7)
Pirsa: 08040038 =a L 2m ; : |J] il Page 90/145




Compare kjgg(E) to EPNM(E)

kige(E) kenm (E)
£l term fr — m?;-—c” fJ — NJ
J
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Path Integral Quantization

The Connection Between kjgg and keyu

Compare kjgg(E) to ppmm(E)

kige(E) kenm (E)

£/ term f; — m?hf_q"’ f; — Ny
2 n J|I _-_ [
AR AN

With the special gauge choices:

PNM: fx = TPk 9k - BB: fx(qic. pI) = Nk

Pk
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Compare kjgg(E) to EPNM(E)

kige(E) kenm (E)
£ _term f; — m?ﬁ" f; — Ny
¥

2

P | [{fu - mmeae B v |{ (a1 25+ VY )

With the special gauge choices:
PNM:  fx = P59, JBB:
we find that i

mBL9L P
P '
are the same for both!

irsa: 08040038
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kJBB(E) ;PNM(E)

£/ _term f; — mp) -Gy f;— Ny

PP | [{fu -z 2w (gl o). 25 + VNV

With the special gauge choices:
PNM:  fix = PB3¢;  JBB:  fi(q-pf) = Nk
we find that i

Edterm: N, — —mféw i H“;T V"‘“’}
¥ HAd

are the same for both!

irsa: 08040038 Page 95/145



Path Integral Quantization

Boundary Conditions in JBB

Like PNM. the BC's enforce constraints on the fx.

auge

Here it's more complicated: it's not as easy to separate g&
from qphysicai!

Po-q
Po

Constraint on fi's

m(¢l —ql) & . (Bs  Po
oo (B-B) o]0 o

Po % g P; Po

If we define: g'l = then the constraint is:

(Comparing this to: \_"J ¥ ' f; = T gives us a hint for finding 7 in
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Path Integral Quantization

Boundary Conditions in JBB

Like PNM, the BC's enforce constraints on the fk.

Here it's more complicated: it's not as easy to separate g%3"&*
from qphysicai[

Po-9

If we define: g'! = then the constraint is:

8

Constraint on fk's

/|

| N—1 _ o o
G~ —97) . N A, {maj(‘aip?,)@]o. (28)
Po 6 P; Po

(Comparing this to: ET;DI f; = 7 gives us a hint for finding 7 in
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Path Integral Quantization

Boundary Conditions in JBB

Like PNM. the BC's enforce constraints on the fx.

gauge
galuge

Here it's more complicated: it's not as easy to separate g
from qphysicai!

If we define: gl = ? then the constraint is:
m(¢l —ql) & - TR
g AN {mc_f; ( 5 — ?>f-_;] ==1). (28)
Po =0 Py Pg
(Comparing this to: Ei}:ol f; = 7 gives us a hint for finding 7 In
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I_m!:!lernerrting the BC's

The Emergence of Time Emerging Tir

Implementing the Boundary Conditions

If we solve for f° and rearrange, but don't integrate over d&° we

get:

s —) - d
kie(§"-q . E) = /

of =240

[/ DqDp(.. J] exp(i€°7(q'. p;))
(29)
where,
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I_mE_lemaTu'ng the BC's

The Emergence nF-Time %-_:.,_, '

Implementing the Boundary Conditions

If we solve for f* and rearrange, but don't integrate over d&° we
get:

s ff —af - d
kig(q' .qu):/

o — N

[/ DqDp(.. J] exp(i€°7(q'. p;))
(29)
where,
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I_mEhmerrting the BC's

The Emergence of Time Emerging

Implementing the Boundary Conditions

If we solve for f° and rearrange, but don't integrate over d&° we

"
get:

es(a” 3 6) = [ { [ PaDa(. »] xp(i€7(q'. pr))

(29)
where,

g, ) = oty —4) ;- (p_{’_ %) | =0)

.k his is what we expected from requiring both constraints!
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kenm(§”.G'.7) = | —— €= kenm(g”.q’. E) (31)

To bring kjgp into this form we need:
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I_mElemaTting the BC's

The Emergence of Time Emerging

Implementing the Boundary Conditions

= T )
If we solve for f° and rearrange, but don't integrate over d&° we
get:

s fF —) - d
kige(q' -Q'?E):/

of —2XC

[/ DqDp(.. J] exp(i€°7(q'. p;))
(29)
where,

rlq'.p) = T ch;u (——@). (30

iiiii Page 104/145



| ‘ dE iET 7T sy —)
kenm(§”.G'.7) = | === kenm(g”.q’. E) (31)

To bring kjgp into this form we need:
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I_mE_hrnerrting the BC's

The Emergence of Time Emerging Time

Implementing the Boundary Conditions

Pirsa:

If we solve for f° and rearrange, but don't integrate over d&° we

e
get:

3 st = d":ﬂ[:} ‘_ ; ; — .l" .
k.nse(q"-qu):/ . [/ qu‘p(m)] exp(i€°7(q'. pi))

o (29)
where,
/i 71| N—1 e e o
re.p) =TT o mg, (BB (@)
Po J=0 P; -

.k his is what we expected from requiring both constraints! -



kenm(§”.G'.7) = | ~—— €& kenm(g”.G'. E) (31)

To bring kjgp into this form we need:

Pirsa: 08040038 Page 107/145



g : dE E— 7 —= It

kenm(G”.G'.7) = | — e kenm(G". G'. E) (31)

To bring kjgp into this form we need:

@ 7(q'. p;) must be able to move through [ DgDp(...).
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o "dE . - o,
kenm(§”.G'.7) = | ~——e* kenm(g”.q’. E) (31)

To bring kjgp into this form we need:
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kenm(G”.G'.7) = | =— e kenm(G".G'. E) (31)

To bring kjgp into this form we need:

Q@ 7(q'. p;) must be able to move through [ DgDp(...).
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kenm(§”.G'.7) = | —— €& kenm(g”. G- E) (31)

To bring kjgp into this form we need:
@ 7(q'. p;) must be able to move through [ DgDp(...).
@ The BC's must be separately imposed on [ DgDp(...).
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Implementing the BC's

The Emergence of Time E.-“%.—; n ._-*_

Implementing the Boundary Conditions

If we solve for f* and rearrange, but don't integrate over d&" we

e
get:

_ F o
kige(q' -qu}:/ [/ DqDp(.. -)] exp(i€°7(q". p;))

i (29)
where,
| "|| N-1 > P
(q.p) = = mis- (5-5). @)
=0 Py Po

I his is what we expected from requiring both constraints! N

iiiii



kenm(§”.G'.7) = | === kenm(g”. G- E) (31)

To bring kjgp into this form we need:

@ ~(q'. p;) must be able to move through [ DgDp(...).
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— =/ 3 ‘ dE iET T = =
kenm(§”.G'.7) = | —— €& kenm(g”. g’ E) (31)

To bring kjgp into this form we need:
@ 7(q'. p;) must be able to move through [ DgDp(...).
@ The BC's must be separately imposed on [ DgDp(...).
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I_mEiemem:ing the BC's

The Emergence of Time Emerging Time

Implementing the Boundary Conditions

If we solve for f° and rearrange, but don't integrate over d&° we

get:
s —= - d 'C"D .l" .
kige(G". g .E}:/ /qu‘p( )| exp(i€°7(q'. pi))
| (29)
where.
| m( 1| f:- N—-1 =3 ,50
7(q'. pi) = mg ( 2 ) ‘ (30)
1—6 J' JDU'

I his Is what we expected from requiring both constraints!
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kenm(§”.G'.7) = | ~—— €& kenm(g". G- E) (31)

To bring kjgp into this form we need:

© 7(qg'. p;) must be able to move through [ DqDp(...).
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The En‘érgence nF_TEme

Difficulties

Recall the theory with time...

e« [dE -
kenm(qg .q'.7) = ?—_EE' kenm(g - g . E) (31)

To bring kjgp into this form we need:
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oy —af i dE E— 7 —= It

kenm(3"”.G@'.7) = [ —— " kenm(3". G’ E) (31)

To bring kjgg into this form we need:
@ 7(q'. p;) must be able to move through [DgDp(...).
@ The BC's must be separately imposed on [ DgDp(...).
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— I dE E— T —

kenm(§”.G'.7) = | =—— €& kenm(g”. G- E) (31)

To bring kjgp into this form we need:
© 7(q'. p;) must be able to move through [ DgDp(...).
@ The BC's must be separately imposed on [ DgDp(...).

T he stationary phase approximation accomplishes both of these!
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kenm(G”.G'.7) = | —— €™ kenm(§". G- E) (31)

To bring kjgp into this form we need:
@ 7(q'. p;) must be able to move through [ DgDp(...).
@ The BC's must be separately imposed on [ DgDp(...).
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kenm(§”.G'.7) = | —— €T kenm(g”. G- E) (31)

To bring kjgp into this form we need:
@ 7(q'. p;) must be able to move through [ DgDp(...).
@ The BC's must be separately imposed on [ DgDp(...).

T he stationary phase approximation accomplishes both of these!
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kenm(§”.G'.7) = | === kenm(g”.G’. E) (31)

To bring kjgp into this form we need:
Q@ 7(q'. p;) must be able to move through [DgDp(...).
@ The BC's must be separately imposed on [ DgDp(...).
T he stationary phase approximation accomplishes both of these!

Q@ (¢'.pi) — (q.,. pf) so there is no integration!

irsa: 08040038 Page 122/145



The Emergence nf-TEme

Difficulties

Recall the theory with time...

kenm(§”.G'.7) = | === kenm(g”. G- E) (31)

To bring kjgp Into this form we need:
Q@ 7(q'. p;) must be able to move through [DgDp(...).
@ The BC's must be separately imposed on [ DgDp(...).
T he stationary phase approximation accomplishes both of these!
Q@ (¢'.pi) — (d',. pf) so there is no integration!
@ The BC's are guaranteed by imposing the classical path.
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The En;rergence CIF-TEI'I'!E

Emerging Time

. In the stationary phase approximation, a notion of time emerges.
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kenm(§”.G'.7) = | =——e* kenm(g”. G- E) (31)

To bring kjgp into this form we need:
© 7(q'. p;) must be able to move through [ DgDp(...).
@ The BC's must be separately imposed on [ DgDp(...).
T he stationary phase approximation accomplishes both of these!
Q@ (¢'.pi) — (g, pf) so there is no integration!
@ The BC's are guaranteed by imposing the classical path.

irsa: 08040038 Page 125/145



= — - - 3

The Emergence af-Time émergmg Time

Emerging Time

. In the stationary phase approximation, a notion of time emerges.
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kenm(G”.G'.7) = | === kenm(g”. G- E) (31)

To bring kjgp into this form we need:
Q@ 7(q'. p;) must be able to move through [ DgDp(...).
@ The BC's must be separately imposed on [ DgDp(...).
T he stationary phase approximation accomplishes both of these!
Q@ (¢'.pi) — (q.,. pf) so there is no integration!
@ The BC's are guaranteed by imposing the classical path.
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The En‘ér_gence cn':-Time

Emerging Time

. In the stationary phase approximation, a notion of time emerges.
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The Emergencs m"'-Tima

Emerging Time

. In the stationary phase approximation, a notion of time emerges.

What time? Inserting q:;f and p;"" into 7(q'. p;) gives
r(ql-pf') = TBB- (32)

We recover Barbour and Bertotti's ephemeris time!!
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The Erﬁargence DI'F-TEH'IE émergmg Time

Emerging Time

. In the stationary phase approximation, a notion of time emerges.

What time? Inserting q; and p;‘f into 7(q'. p;) gives
m(qy-pf') = T8B- (32)

We recover Barbour and Bertotti's ephemeris time!!

This agrees with our classical intuition.
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The Erﬁargance nF-Tirna

Emerging Time

. In the stationary phase approximation, a notion of time emerges.

What time? Inserting qi_f and p}:*" into 7(q'. p;) gives
r(qy-pf') = TBB- (32)

We recover Barbour and Bertotti's ephemeris time!!

This agrees with our classical intuition.

Warning! (Roles of 7 and E)

{kenm(q™". q“r-:~ E( "_J'}.,E'srar phase — 'E.'{‘:JEB{QIH- q!f- T\ E]EH’&T&T phase (33)
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-Du:iank Summary

Outlook /Summary

@ [ he path integral quantization of Barbour and Bertotti's
timeless mechanics gives the kernel for energy eigenstates.
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The Emergence of -Time émerg;mg'ﬁm

Emerging Time

. In the stationary phase approximation, a notion of time emerges.

What time? Inserting qi_f and p;’?*{' into 7(q'. p;) gives
(g pF) = 8. (32)

We recover Barbour and Bertotti's ephemeris time!!

This agrees with our classical intuition.

Warning! (Roles of 7 and E)

Iri ri . rri

{ Ko@) s g = {Kip (@™ 8" TAE), E) s ki (33)
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Qutiook /Summary

Outlook /Summary

@ [ he path integral quantization of Barbour and Bertotti's
timeless mechanics gives the kernel for energy eigenstates.

@ [he path integral gives more insight then the canonical
quantization.
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Qutiook /Summary

Outlook /Summary

@ [ he path integral quantization of Barbour and Bertotti's
timeless mechanics gives the kernel for energy eigenstates.

@ [ he path integral gives more insight then the canonical
quantization.

@ A notion of time emerges in the stationary phase
approximation.
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Qutlook /Summary

Outlook /Summary

@ [ he path integral quantization of Barbour and Bertotti's
timeless mechanics gives the kernel for energy eigenstates.

@ [ he path integral gives more insight then the canonical
quantization.

@ A notion of time emerges in the stationary phase
approximation.

@ Can we define "quantum clocks™ as isolated “heavy’
subsystems? Heavy = stationary phase approx. is good or
exact.
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Qutiook /Summary

Outlook /Summary

@ [ he path integral quantization of Barbour and Bertotti's
timeless mechanics gives the kernel for energy eigenstates.

@ [he path integral gives more insight then the canonical
quantization.

@ A notion of time emerges in the stationary phase
approximation.

@ Can we define "quantum clocks™ as isolated “heavy’
subsystems? Heavy = stationary phase approx. is good or
exact.

@ Can we define a Schrodinger evolution of “light” subsystems
In terms of these quantum clocks?
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A special thanks to Hans Westman, Rafael Sorkin, Julian Barbour,
and Lee Smolin for stimulating discussions and guidance.

T hanks for you attention!
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