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Motivation

@ Inflation: very successful scenario in
search of a theory.

@ String theory: mathematical theory that
needs experimental tests.

@ Can string theory provide a fundamental
origin for the inflaton field?
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Warped CY
compactification (+ fluxes)
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DBI scenario

* Consider the dynamics of a probe D3-
brane moving along radial direction in a
warped geometry with F5 flux: AdSs x S5
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DBI scenario

» Consider the dynamics of a probe D3-
brane moving along radial direction in a
warped geometry with F5 flux: AdSs x S5
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DBI scenario

® Consider the dynamics of a probe D3-
brane moving along radial direction in a
warped geometry with F5 flux: AdSs x S5
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h : V1 — hv?

.2
— YGpppP )

* Brane trajectories described by equation of motion:

g°? [E(h E + 2)]
(h E + 1)




Brane trajectories (g=1, branes)

* Conserved energy
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* Brane trajectories described by equation of motion:

g°? |E(h E + 2)]
(h E + 1)2

Simple trajectories: brane moves from infinity fowards
the horizon at
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Type IIB solution with F3, H3F5 internal fluxes
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Type IIB solution with F3, H3F5 internal fluxes
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D-Brane Dynamics

Brane motion described by (DBI action)
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Cosmological Perturbations
and angular motion

* Main contribution of spinning occurs at start of inflation. But,
perturbation in the spinflaton may have important cosmological
consequences.

* In single field DBI, non-Gaussian contributions become
non-negligible [Alishahiha-Silverstein-Tong].

* When angular momentum is turned on => multifield inflation with
non-standard kinetic terms: non-Adiabatic fluctuations can be
generated.
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Perturbations in Spinflation

As with standard 2-field models, we can redefine our field
coordinates to align with the inflationary trajectory.
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As with standard 2-field models, we can redefine our field
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coordinates to align with the inflationary trajectory.

& ‘ flo) g
— 10— p——
v2X V2X

COS (¥ =

do = cos a do + \/gee SIn cx dbf
77— x.“";‘j;m cosaxdf —sinado

2.

. - L ~ )
where 2X = ¢ + ggg 6°




Perturbations in Spinflation

As with standard 2-field models, we can redefine our field
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Perturbations in Spinflation

General features

* Since the brane moves along different directions, various
fields can contribute to the evolution of the perturt

* One can extract some general features, without explicitly
solving the equations:

v The entropy perturbation evolves independently of the curvature
perturbation at large scales. Yet (at large scales &~ /a” < 1)
entropy perturbation seeds curvature one.
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General features

* Since the brane moves along different directions, various
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* One can extract some general features, without explicitly
solving the equations:

v The entropy perturbation evolves independently of the curvature
perturbation at large scales. Yet (at large scales £~ /a~ 1)
entropy perturbation seeds curvature one.
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Curvature perturbations move with a speed cs =7~ < 1
Entropy perturbations move at speed of light.
Dif ferent perturbations cross the horizon at different times.
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Summary

* D3 probe to spin in a warped flux SUGRA background
(KS): DBI cosmology in multifield case.

* Inflationary solutions when angular momentum is
turned on give rise to Spinflation. Angular momentum
sources accelerated expansion, providing a handful of
e-folds at beginning of inflation.

* Expanding universes with short kicks of acceleration.

* DBI inflation is in tension with consistency bounds.
Spinflation could help at beginning of inflation.
Series of bounces could also help with this tension
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Perturbations in Spinflation
General features

* Since the brane moves along different directions, various
fields can contribute to the evolution of the pe

* One can extract some general features, without explicitly
solving the equations:

v The entropy perturbation evolves independently of the curvature
perturbation at large scales. Yet (at large scales k< /a® < 1)
entropy perturbation seeds curvature one.
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Curvature perturbations move with a speed ¢s =7~ < 1.
Entropy perturbations move at speed of light.

Different perturbations cross the horizon at different times.
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Perturbations in Spinflation
General features

* Since the brane moves along different directions, various
fields can contribute to the evolution of the perturbations

* One can extract some general features, without explicitly
solving the equations:

v The entropy perturbation evolves independently of the curvature
perturbation at large scales. Yet (at large scales k< /a” < 1)
enfropy perturbation seeds curvature one.
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* One can extract some general features, without explicitly
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v Curvature and enfropy perturbations evolve at different speeds
Curvature perturbations move with a speed cs =7 "< 1.
Entropy perturbations move at speed of light.

Different perturbations cross the horizon at different times.
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Curvature perturbations move with a speed cc =7 " < 1
Entropy perturbations move at speed of light.
Dif ferent perturbations cross the horizon at different times.
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* D3 probe to spin in a warped flux SUGRA background
(KS): DBI cosmology in multifield case.

* Inflationary solutions when angular momentum is
turned on give rise to Spinflation. Angular momentum
sources accelerated expansion, providing a handful of
e-folds at beginning of inflation.

* Expanding universes with short kicks of acceleration.

* DBI inflation is in tension with consistency bounds.
Spinflation could help at beginning of inflation.
Series of bounces could also help with this tension
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* Concrete calculation of reheating mechanism

% DBI inflation could provide interesting predictions
for cosmology...
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Perturbations in Spinflation
General features

* Since the brane moves along different directions, various
fields can contribute to the evolution of the pert

* One can extract some general features, without explicitly
solving the equations:

v The entropy perturbation evolves independently of the curvature
perturbation at large scales. Yet (at large scales £~ /a” < 1)
enfropy perturbation seeds curvature one.
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Curvature perturbations move with a speed cc =7 " < 1
Entropy perturbations move at speed of light.
Different perturbations cross the horizon at different times.
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