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Abstract: Hawking\'s black hole information paradox is one of the great thought experiments in physics. It points to a breakdown of some central
principle of physics, though which one breaks down is still in dispute. It has led to the discovery of ideas that seem to be key to unifying quantum

mechanics and gravity, namely the holographic principle and gauge/gravity duality. | review this subject, and discuss ongoing work and future
directions.
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Planck's challenge:

Planck’'s constant 7, the speed of light ¢, and Newton’s
constant G define a natural system of units:

Planck length, I, = VAG/c® =1.6x10 cm

The first calculation in quantum gravity!
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M. Planck, On Irreversible Radiation Processes (1899).
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Planck’s challenge:

Planck’s constant 71, the speed of light ¢, and Newton'’s
constant G define a natural system of units:

Planck length, I, = VAG/c® =1.6x 10 cm

The first calculation in quantum gravity!

M. Planck, On Irreversible Radiation Processes (1899).

Also, G. Stoney (1874), with ¢/c instead of 7.

“These necessarily retain their meaning for all times and
for all civilizations, even extraterrestrial and non-human
ones, and can therefore be designated as natural units.”
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I, =VhG/c® =1.6x10" cm

This is apparently the scale at which quantum
mechanics and gravity come together. Since itis
so small, how are we to proceed?
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mechanics and gravity come together. Since itis
so small, how are we to proceed?

Thought experiments have often played a role in
the development of physical theories:
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mechanics and gravity come together. Since it is
so small, how are we to proceed?

Thought experiments have often played a role in
the development of physical theories:
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* Maxwell
* Einstein
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mechanics and gravity come together. Since itis
so small, how are we to proceed?
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« Hawking <—
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Hawking's thought experiment (1976):

4. Final state:
Hawking radiation

3. Black hole evaporation

2. Black hole formation

1. Initial state: infalling matter

irsa: 08040001

Repeat many
times, with same

initial state and all
possible measure-
ments on the final
state.
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Hawking's thought experiment (1976):

4. Final state:
Hawking radiation

3. Black hole evaporation

2. Black hole formation

1. Initial state: infalling matter
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The problem: the state on the
Indicated time slice is pure but %l
entangled, ¥, ;5,44)|8). The
state behind the horizon is not
observable, and after the black
hole evaporates
this information is
lost.

A)

B)

Thus the system
after evaporation

can only be
described by the
density matrix

Pac= Ep‘ S.iﬁi SCﬁi
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The final system cannot be
described by a pure state |y,) but

only by a mixed state (density

matrix). A

o=y — Pr=2a5 Sl (B
£ |yp) (Y
That is, the expectation value of an observable O is

ZAB S‘w“{B'O'A}, and not the usual U’t|0|w[‘3

(Phase) information has been lost.
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"Not only does God play dice, but he sometimes
throws them where they cannot be seen.”

This thought experiment implies a breakdown of
the ordinary rules of quantum mechanics, and this
should be happening everywhere, all the time, via
virtual black holes.

In addition to this paradox there is a related puzzle:
black holes satisfy thermodynamic laws, with a
Bekenstein-Hawking entropy S = A/4/,>. What is the
underlying statistical mechanics? \What states does
this entropy count.

This talk will focus on the paradox.
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Possible outcomes to black hole evaporation:

1. The state of the Hawking radiation is actually
pure. The information (about what went into the
black hole) is encoded in the Hawking radiation.

2. The state is indeed mixed. Information is lost.
3. The evaporation does not proceed to
completion, but terminates in a stable remnant

with a very large number of internal states.

4. A remnant which (slowly) decays, reemitting the
information.
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1. The information gets out with the Hawking radiation

Consider an analogous thought experiment:

S s
coherent light -

0 K coal

0 K coal
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\coherent radiation 0K co
- _— =] . e Nl B L N I al

The final state is similar to the black hole case, but
here the state is pure: there are definite phase
correlations between the different states of the
radiation.

Did Hawking miss such subtle phases in his
calculation?

It is easy to confuse oneself:
« Coordinate singularity —

transplanckian energies
» Time-reversed evolution unstable.
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Quantum no-Xerox principle (Wooters, Zurek, Dieks:
Susskind): take some entangled bit-pairs, and throw half
of each pair into the black hole. These pass through
the horizon essentially unchanged (the equivalence
principle) and reach the interior, which is spacelike
separated from the Hawking radiation.

irsa: 08040001 Page 22/100



1coherent radiation 0 K coal

The final state is similar to the black hole case, but
here the state is pure: there are definite phase
correlations between the different states of the
radiation.

Did Hawking miss such subtle phases in his
calculation?

It is easy to confuse oneself:
« Coordinate singularity —

transplanckian energies
* Time-reversed evolution unstable.

irsa: 08040001 Page 23/100



Quantum no-Xerox principle (Wooters, Zurek, Dieks:
Susskind): take some entangled bit-pairs, and throw half
of each pair into the black hole. These pass through
the horizon essentially unchanged (the equivalence
principle) and reach the interior, which is spacelike
separated from the Hawking radiation.
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But could there also be a second copy of the inside bit
encoded in the Hawking radiation?:
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There is no quantum xerox machine that can take
any state ¥)ina single Hilbert space into a state
W) |¥) in a pair of Hilbert spaces:

if 1) — [f)[h)

and [}) — [{)[{),
then |<=) = (|f)+[}))V2 W),
— (It I+ [ Hv2

Quantum information thrown into the black hole cannot
also be in the Hawking radiation, it is lost. A black hole
Is not like a lump of coal because it has a horizon.
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2. Information is lost

It is problematic whether there is a consistent
theoretical framework. For example, this seems to
Imply energy non-conservation (Banks, Peskin,
Susskind, 1984). Argument: a local time-evolution law
that turns pure into mixed states can be written as
evolution with a spacetime-dependent Hamiltonian
density (Ellis, Hagelin, Nanopoulos, Srednicki, 1984).

:}{i:‘ff - 2({ g”(f..'f) O” (_!-I}

Here, O, (7.x) are some set of local operators, and
¢ (1.x) is averaged incoherently. That is,

‘spacetime is dirty.
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Even if the average distribution of dirt is translation-
invariant, any given distribution is not, and so
momentum and energy conservation are lost.

Possible loopholes:
» Locality --- should be OK for small or virtual
black holes.
« Unobservability (Unruh & Wald, 1995).
Instantaneous change in Schwarzschild
mass?
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3. The information is stored in a stable remnant.

The Hawking calculation breaks down when the
black hole mass and curvature approach the Planck
scale. Perhaps the evaporation ceases, and we
have a remnant’ which has a large number of
internal states (representing the states of the infallen
Hawking particles), so that

remnant x Hawking radiation

IS In a pure state.

Problem: since the initial black hole could have been
arbitrarily large, the necessary number of internal
states is unbounded. Divergent effects from virtual
remnants?
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4. The information is stored in a long-lived remnant,
which slowly decays and releases the information.

There are of order M*/M,> Hawking quanta of energy
M,*/M, where M >> M, is the initial black hole mass.”*
If the final decay of the black hole involves a few
Planck-scale quanta, there are not enough degrees
of freedom to restore purity. However, if the
remnant decays via a large number of very low
energy quanta (energy of order M;°/M?).

Problem: still an unbounded number of light states,
giving divergent virtual effects.

==L
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Possible outcomes to black hole evaporation:

1. The state of the Hawking radiation is actually
pure. The information (about what went into the
black hole) is encoded in the Hawking radiation.

2. The state is indeed mixed. Information is lost.
3. The evaporation does not proceed to
completion, but terminates in a stable remnant

with a very large number of internal states.

4. A remnant which (slowly) decays, reemitting the
information.
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What about the singularity?
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One possibility: spacetime continues past the
singularity, forming a disconnected baby universe.’

Looks like information
loss, but consideration
of the quantum state
of the baby universe
apparently leads to

long-lived remnants
(JP & Strominger,
Strominger 1994). Long
story, a-parameters,
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Another possibility (e.g. Ashtekar & Bojowald, 1995):

Planckian
region

Apparently the
information is
emitted -—- how?

The observer obs sees a
Planck-sized object with a very
large number of internal states:
this is a long-lived remnant.
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Lesson: In order for the information to be in the
Hawking radiation, it must be transmitted over
large spacelike distances:

Black hole complementarity (Susskind, 1993): these
are the same state as seen by two different
observers —- radically nonlocal...
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Lesson: In order for the information to be in the
Hawking radiation, it must be transmitted over
large spacelike distances:

Black hole complementarity (Susskind, 1993): these
are the same state as seen by two different
observers —- radically nonlocal...
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Another hint of radical nonlocality: the Bekenstein-
Hawking entropy S = A/4/,- suggests the
holographic principle (‘t Hooft, Susskind, 1993), that
quantum gravity in any space can be formulated in
terms of degrees of freedom living on the
boundary of the space.

From G. ‘t Hooft

irsa: 08040001 Page 41/100



Black hole entropy counting:

Strominger and Vafa (1996) argued that by turning
down the coupling one could adiabatically turn some
supersymmetric black holes into weakly coupled
systems whose states can be explicitly counted,
giving a statistical interpretation to the Bekenstein-
Hawking entropy.

Q.' ]/D coupling
L2 : ?
=

weak strong

D-branes and strings black hole or brane
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Motivated by the information paradox, various groups
studied dynamical properties of this system
(scattering amplitudes, decays) and found surprising
agreements between very different calculations:

Gravitational tree amplitude

Field theory loop graph
in black hole background
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Maldacena (1997) explained this in terms of a new
duality:

R coupling

weak strong

D-branes and strings black hole or brane

low low

energy energy

limit limit
coupling

[IB superstring with

N =4 gauge theory P i

weak strong
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This is another duality; whereas previously known
weak-strong duality are

quantum field theory <= quantum field theory

string theory <« string theory
this is
quantum field theory <= string theory

That is, these are the same theory, in different
variables. Like most such dualities this is not
proven, but the evidence is very strong, and
growing.

The deepest thing we know about the theoretical
structures underlying nature, and a direct desendant
- OF the INformation paradox.



With a duality, information flows in both directions:

gauge theory ——> gravity/string theory
gauge theory <—= gravity/string theory

Lessons:

——> Algorithmic construction of quantum gravity
(in an AdS box).

——> We find out where the information goes.

<—— Solution to certain strongly coupled gauge
theories.

<~ A tool for understanding heavy ion collisions.
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—>

This duality provides an algonthmic
nonperturbative constuction of string
theory with AdS boundary conditions:
we could simulate the dual gauge
theory on a (large enough) computer.
(cf. Ken Wilson and QFT).

Almost background independent:
the asymptotic geometry is fixed, but in the interior
the geometry and even topology can fluctuate freely,
and pass through nongeometric Planckian states.

The interior spacetime, and its coordinate group are
emergent. The coordinate invariance acts trivially on
the gauge theory variables.

Pirsa: 08040001
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=

We can repeat our thought
experiment in an AdS box.
The dual description is in an
ordinary coherent system:
information is preserved
(option 1). A black hole is
dual to a plasma of hot glue,
not so different from a lump of
coal.

The gauge theory variables
are indeed strongly nonlocal,
and holographic (the gauge
theory lives on the boundary).

irsa: 08040001 Page 48/100




<—= AdS/CFT duality allows us to calculate

analytically in certain strongly coupled gauge theories:
we can do the calculations that we would like to do for
QCD (hadron spectra, scattering amplitudes).

Field theory loop graph

Gravitational tree amplitude
(one of many).

in black hole background
The original duality was for a gauge theory with a large
amount of symmetry (super- and conformal), but one
can progress towards systems of lower symmetry. Still

can’'t do real QCD, but can do some approximate
calculations.
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At RHIC (Brookhaven) and in the future at the LHC,
heavy nuclei are collided with the goal of making a
quark-gluon plasma:

PHENIX
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Heavy-ion collision timescales and “epochs” @ LHC

- = &
"X - = C %» ® v o® - : .
®, - . \ \ f e/ © @ ®

Hot Hadron Gas
15 < T < 18 fmic

Chemical "Freezeout”
T > 18 fmic

|

Equilibrium QGP
' 2<T<15fmic

Non-equilibrium QGP
01<T <2fmic

Semi-hard partide production
0< T <0.1fmic

Michae! Strickland *1fm/ic ~ 3 x 10~* seconds
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Insights from black hole dual:

« Shear viscosity
* Entropy density

» |s the plasma weakly or strongly coupled? Black hole
~ "harmonic oscillator’ for strongly coupled nonequi-
librium CFT.

» Recent: improved understanding of relativistic
hydrodynamics.

» There may also be condensed matter applications
(Subir et al.)
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Hot Hadron Gas
15 < T < 18 fmic

Chemical "Freezeout”
T > 18 fmic

. Equilibrium QGP
' 2< T < 15fmic

Non-equilibrium QGP |
0.1<T < 2Z2fmlc I

Semi-hard partide production
0< T <0.1fmic

Michae! Strickland *1 fm/c ~ 3 < 10~ *® seconds
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Insights from black hole dual:

« Shear viscosity
* Entropy density

» |s the plasma weakly or strongly coupled? Black hole
~ "harmonic oscillator’ for strongly coupled nonequi-
librium CFT.

» Recent: improved understanding of relativistic
hydrodynamics.

« There may also be condensed matter applications
(Subir et al.)
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But is RHIC really making a black hole?

Obvious answer: of course not, it's just quarks and
gluons!

irsa: 08040001 Page 55/100



But is RHIC really making a black hole?

Obvious answer: of course not, it's just quarks and
gluons!

Yes and no: duality erases distinctions that we make
with our classical experience - between particle and
wave, and black hole and plasma - because a single
quantum theory has many classical limits.
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The future...

The problems of quantum gravity:

» Spacetime foam (nonrenormalizability).

* The cosmological constant.

 Black hole entropy.

 Black hole information.

» Cosmological singularities (the Big Bang); initial
conditions.

» The interpretation of quantum mechanics, applied to

the whole universe.  Thg |ast two are especially

important for understanding
which of the many vacua of
string theory we are in.
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How to proceed? E.g., how to
extend AdS/CFT to cosmological
situations? Is there more to learn
from Hawking's paradox?

(> 1/2 of Hawking
photons emitted
but curvature still
small)

Answering one question raises a new one: where was
‘Hawking's mistake’ - where does his argument for
information loss, based on the low energy effective
description of gravity, break down?
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How exactly does locality emerge,
and how does it break down?

If the black hole has an S-
matrix, how do we calculate it?

¥

In AdS/CFT:
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and how does it break down?

If the black hole has an S-
matrix, how do we calculate it?

In AdS/CFT:

initial bulk state ———> initial CFT state
duality
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How exactly does locality emerge,
and how does it break down?

If the black hole has an S-
matrix, how do we calculate it?

In AdS/CFT:

final CFT state

gauge
theory
evolution

initial bulk state ———> initial CFT state
duality
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How exactly does locality emerge,
and how does it break down?

If the black hole has an S-
matrix, how do we calculate it?

-.'l
¥y

In AdS/CFT:

final bulk state <—= final CFT state

duality gauge
theory
evolution

initial bulk state ———> initial CFT state
duality
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How exactly does locality emerge,
and how does it break down?

If the black hole has an S-
matrix, how do we calculate it?

¥)

In AdS/CFT:

final bulk state <—= final CFT state

duality gauge
I ﬂ theory
evolution
initial bulk state ———> initial CFT state
duality

Can we short-circuit this?
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If the black hole has an S-
matrix, how do we calculate it?

In AdS/CFT:

initial bulk state
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In AdS/CFT:
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How exactly does locality emerge,
and how does it break down?

If the black hole has an S- S
matrix, how do we calculate it?

In AdS/CFT:

initial bulk state ———> initial CFT state
duality
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and how does it break down?
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If the black hole has an S-
matrix, how do we calculate it?

In AdS/CFT:
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A simple toy model (lizuka & JP, following Festuccia
& Liu):

The AdS/CFT gauge theory is an infinite number of
coupled modes, which are N x N matrices in color

space. One can look for reduced models which retain
key features of the paradox. Example:

NZ*+N harmonic oscillators X, ¥;:
V= m:X,jXﬁ + M?Y7Y. + gY’ X.Y,

Think of X, as a heat bath coupled toY,. Butalso, X,
~ black hole, Y, ~ probe.
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This model captures Maldacena’s version of the
information problem: AdS/CFT is gravity in a box,
and like any finite quantum system should have a
discrete spectrum (i.e. Bekenstein-Hawking entropy is
finite. Quantization of gravity as
an effective field theory gives a
continuous spectrum in the
presence of a horizon.

The toy model captures this, in
that in the leading large-N
(planar) approximation,
corresponding to semiclassical
gravity, there is a continuous
spectrum.
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Graphical structure the same as ‘'t Hooft's 2-D QCD:
BB =

> i
—

G( ..;.ff :lf;.'i]{ o] — \-i-:r:]

J e =il

(¢;,(w)has been

(;lul.J-‘} = — [:t-ir{-u') = — - =
w + € W — m* + i€ expanded near
pole, and shifted,
Close contour, get using M large)

) ‘ ) )
Glw) = L 1 — Glw)G(w — m)
2m
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Graphical structure the same as ‘'t Hooft's 2-D QCD:
B @ =

xC N
it

(}( ...Lff I.'[;;Flj{ (g — u-;.".]

G(w) = Go(w) — A\Go(w)G(w) [

J e =il

(;'n{-u‘} = =3 fi—n(#) = — ! , : (C-;“{*T] has been
W + i€ W* — m?* + i€ expanded near
pole, and shifted,
Close contour, get using M large)

) ‘ ) T )
Glw) = L (1 =T Gw)Glw — ns})

PALL
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At finite temperature we don’t need full Schwinger-
Keldysh, because ensemble is free. Get same
Schwinger-Dyson equation with thermal propagator

= p | f_—m-'r
Ro(T.w) = N
1 —e™™ We—m*-+i€e W= —m- — i€

Slightly more complicated result:

G(T.w) = i {l - 10 _I:-_m _.I_)C'{T. W) [(::?{T. W —m)+ e ™EaT i 4 m)]}

e

T:-O: C:;'{*] - L (1 — ) C'{.L-}C:r(q.. - H!])

9, 2m

One strategy: recurse from G(T..) ~— atlarge |,

This works if recursion is stable, which is the case only
forT=0.
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Zero temperature - poles on real axis:
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irsa:

Finite temperature - poles widen into cuts, which then

merge:

V= E—nb’T

coupling smaller than
previous slide

a) yv=»0

A ! d) _l.'=['l'_-;"ﬂ

b) v=004

¢c) y=025 |
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What can we learn from this?

Continuous spectral weight

breaks up into poles with

spacing of order exp{-O(N?)}.

How do we see this in the
1/N expansion?

e) v=1

-2 () ) 2

Conjecture of Maldacena (Hawking): additional
Euclidean saddle, weight exp{-O(N?)}.

AdS
black
hole

thermal
AdS

Problem (Barbon and Rabinovici): exp{-O(N?*)} do not
have necessary secular growth.
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Another conjecture...

Q: This model is so simple, what can remain?

A: The stringy exclusion principle. For Nx N matrices,
Tr(X*) is not independent for k >N. This implies that

the string Hilbert space is smaller than the naive Fock
space.

Conjecture: this is the same reduction as required by
that required by black hole complementarity.
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In conclusion...

Don Page (1993) showed that if the information is
emitted with the Hawking radiation, there is
essentially none in the first half of the radiation, and

then it gradually* begins to emerge.

This is a good metaphor for the information problem
itself. Hawking found the problem in 1976, and for a
while much effort went in and nothing came out. The
first information emerged in 1993 (complementarity,
holography), and more since, but | don't think that the

problem has decayed completely...

*recent interesting paper by Hayden & Preskill:
information return time can be as short as MInM

(versus M- lifetime of black hole).
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irsa:

Finite temperature - poles widen into cuts, which then

merge:

Vv = E—mﬁT

coupling smaller than
previous slide

a) v=>0 .
ﬂ . d) y=0.70
b) v=004
A
= ] J
¢c) y=025 §
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Zero temperature - poles on real axis:
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Graphical structure the same as ‘'t Hooft's 2-D QCD:
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G(w) = (‘;'n{-'-'] — AGo(w)G(w) / =

J e =il

B — Bl —— (Gy(w) has been
w + te W2 — m* + i€ expanded near
pole, and shifted,
Close contour, get using M large)
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This model captures Maldacena’s version of the
information problem: AdS/CFT is gravity in a box,
and like any finite quantum system should have a
discrete spectrum (i.e. Bekenstein-Hawking entropy is
finite. Quantization of gravity as
an effective field theory gives a
continuous spectrum in the
presence of a horizon.

The toy model captures this, in
that in the leading large-N
(planar) approximation,
corresponding to semiclassical
gravity, there is a continuous
spectrum.
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What can we learn from this?

Continuous spectral weight

breaks up into poles with

spacing of order exp{-O(N?)}.

How do we see this in the
1/N expansion?

e) y=1

-2 () w 2

Conjecture of Maldacena (Hawking): additional
Euclidean saddle, weight exp{-O(N?)}.

AdS
black
nole

thermal
AdS

Problem (Barbon and Rabinovici): exp{-O(N?)} do not
have necessary secular growth.
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Finally, and of
greatest interest to astronomy, if it is only anthropic con-
straints that keep the effective cosmological constant
within empirical limits, then this constant should be rath-
er large, large enough to show up before long in astro-
nomical observations.

From Weinberg (1989).
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